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Abstract: Routing in a Peer-to-Peer environment faces a number of challenges, mainly due to its distributed nature. In 
this paper we evaluate a new distributed hash table architecture that is able to provide efficient routing 
through a fixed-size table. By introducing a set of base algorithms, multiple replication schemas, virtual 
nodes and a variable repair mechanism, we are able to ensure successful lookups of published keywords. 
Along with theoretical analysis of our proposed work, we present extensive simulation results that testify 
and evaluate our protocol. 

1 INTRODUCTION 

One of the core issues in every network topology is 
the routing algorithm applied. This has been 
extensively studied and established in constantly 
connected networks. However, such algorithms as 
OSFP (Moy,1998) require a relevantly good 
knowledge of the network topology and assume 
constant or almost constant links, at least for a 
desired period of time. The introduction however of 
ad-hoc and Peer-to-Peer (P2P) networks necessitates 
the implementation of new routing strategies that are 
able to operate in robust and distributed 
environments.  

Various solutions have been proposed and there 
has been an increasing interest in the adaptation of 
distributed hash tables into such networks. Most of 
these algorithms are characterized by the size of the 
routing table, as this modulates both the algorithms’ 
efficiency and tolerance to errors. This paper 
introduces the Umbrella architecture, a novel routing 
scheme based on a distributed hash table of fixed-
size on top of an overlay network. We provide 
efficient algorithms for keyword publication and 
lookup along with a number of extensions that 
improve the system’s tolerability. The key novelty 
of our work lies in the fixed-size routing table, as 
opposed to other algorithms which are usually 
proportional to the network’s size.  

The rest of the paper is organized as follows. In 
chapter 2 we present related work and ideas that 
have been thoroughly studied prior to our 
architecture design and in chapter 3 we present our 

novel architecture. In the following chapter we 
provide in detail the routing algorithms invoked by 
our protocol and introduce a number of extensions 
that enrich our protocol. Chapter 5 discusses a 
number of results obtained through our simulation of 
the system and finally, chapter 6 offers useful 
conclusions. 

2 RELATED WORK 

The firsts to introduce routing algorithms that could 
be applied to DHT systems were Plaxton, Rajaraman 
and Richa (Plaxton,1997). The algorithm wasn’t 
developed for P2P systems, and thus every node had 
a neighborhood of Ο(logN) and inquires resulted in 
Ο(logN) steps. It was based on the ground rule of 
comparing one byte at a time until all bytes of the 
identifier (or best compromise) were met. A key 
feature of their scheme was that the routing table 
could be transformed as thus the overlay distance 
between nodes could be of a constant factor of the 
real distance, when all latencies between nodes are 
known. Our scheme meets the logarithmic growth of 
inquiries introduced by Plaxton, and even though 
nodes are not placed within constant distance from 
each other, this is not an issue as it was only 
implemented in a theoretical study and not for P2P 
environments. A variation of the Plaxton algorithm 
was developed by Tapestry (Zhao,2004), properly 
adjusted for P2P systems (where overall state is not 
available). The algorithm once again tackles one 
digit at a time and through a routing table of 
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β*logβN neighbors routes to the appropriate node, 
resulting in a search of logβN maximum steps. Our 
architecture is based on the fundamentals ideas set 
by Plaxton and further developed by Tapestry, but is 
also fine-tuned for P2P systems that are likely to 
have an enormous amount of population and 
content. 

Pastry (Rowstron,2001) is similar to Tapestry but 
added a leaf set of neighbors that the node first 
checks before referring to the routing table. Also a 
different neighbor set is maintained for tolerability 
issues. Each node maintains a neighborhood of 
log2bN rows with (2b-1) elements in each row and 
requires a maximum of O(log2bN) steps for enquires. 
Proper routing is maintained as long as (L/2) nodes 
are available in the neighborhood of each node. 
Once again, the variable size of each node’s table 
limits the algorithm’s scalability. In addition, our 
algorithm’s results showed that inquiries can be 
successful even with less available nodes in the 
routing table. In Chord (Stoica,2001) a different 
approach was applied, placing nodes in a circular 
space and maintaining information only for a 
number of successor and predecessor nodes through 
a finger table. Routing is established through 
forwarding queries to the correct successor. Even 
though the basic Chord mechanism only requires the 
knowledge of one successor, modifications where 
needed in order for the system to be applicable to a 
robust environment, introducing a finger table of 
O(logN) size. 

CAN (Ratsanamy,2001) furthered on Pastry’s 
alternation and implied DHT in a d-dimensional 
Cartesian space based on a d-tore. The space is 
constantly divided and distributed amongst nodes, 
which must maintain information about their 
neighbors and route by following the Cartesian 
space. CAN provides a constant O(d) table but, 
unlike our algorithm, requires O(dN1/d) steps for 
lookups. Finally, Kademlia (Maymounkov,2002) 
bases nodes in a binary-tree through identifiers. 
Each node of the tree retains information concerning 
one node from each leaf, other than the one it 
resides. It also differentiates by applying an XOR 
comparison on identifiers instead of the casual 
comparison of each bit, adopted by all other 
algorithms. Our algorithm familiarizes with 
Kademlia by inserting nodes in a B-tree form, which 
is much more versatile and fault-tolerant. 

3 ARCHITECTURE OVERVIEW 

The proposed architecture is based on the creation of 
an overlay network, where all inserting nodes are 

identified by a unique code, asserted by applying the 
SHA-1 (NIST,1995) hash-function on the 
combination of IP and computer name, which 
returns an 160-bit identifier. This hash-function has 
been proven to distribute keys uniformly in the 160-
bit space and thus provide the desired load balancing 
for both the user space and the content space, as the 
same function is applied to each content destined for 
distribution in the system. 

The main objective of the Umbrella architecture 
is to insert and retain nodes in a simple and well 
structured manner, thus querying and fetching of 
content is both efficient and fault-tolerant. In 
addition, each node will need only to retain up-to-
date information of a limited, constant number of 
neighboring nodes, such allowing the system to 
escalate in population of both users and content. 

Each node is inserted in the system through an 
existing node, which announces the new entrance. 
When this procedure has ended successfully, the 
new node can, having acquired and informed all 
neighboring nodes, continue to publish all of its 
content. The publishing procedure is similar to the 
insertion mechanism, as content is characterized by 
a number of keys, which after being hashed can be 
forwarded in the same manner. All keys are 
published in an existing node that its identifier is the 
closest match to the key identifier. In a similar 
fashion, querying is performed by routing the 
request to the node with identifier closest to the 
desired key.  

 
Figure 1: The Umbrella architecture. 

The overlay network is constructed in the form 
of a loose B-Tree, where each node is placed in a 
hierarchy tree with a parent node and b child nodes. 
All nodes are placed along the tree structure, without 
being required to fulfil pre-defined ranges as in a 
proper B-tree structure, and are responsible for 
updating their connections with neighbouring nodes 
that reside on either the parent, sibling or child level. 
Thus, each node operates autonomously and no 
central coordination is needed to maintain the 
structure’s integrity. Along with obvious 
connections (parent, child and sibling level of each 
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node), further links to a limited number of nodes in 
the near vicinity are kept in record for fault-tolerant 
operations. Figure 1 illustrates the structure of this 
loose B-Tree. Each level n of the structure is capable 
of withholding bn+1 nodes. Each node has a unique 
parent node, which is always one level higher, and a 
maximum of b children at a lower level. The 
Umbrella overlay network is configured with the 
following simple rule.  The relation between a parent 
node at level n and a child node (which must by 
default reside on level n+1) is defined as such and 
only such that : 
• The n+1 first  digits of the parent’s identifier are 

equal with the corresponding numbers of the 
child’s identifier 

• The n+2 digit of the child’s identifier determines 
the child’s position in the parent’s child list 
The use of a consistent hash function to 

distribute identifiers in our node and content space 
allows the construction of a well balanced loose B-
tree. The structure becomes even more balanced as 
node population increases and nodes fill empty 
spaces. The consistent hash function also balances 
key distribution among nodes as stated in 
(Karger,1997).  

As in most DHT systems, a routing table is 
maintained by each node in order to route incoming 
messages. Each node is responsible for keeping the 
table up-to-date by issuing messages to all nodes in 
its table at different intervals. The routing table in 
our architecture consists of three different sets, a 
basic, an upper and a lower set. The basic set stores 
nodes and information needed for basic routing 
operations under fault-free conditions. The upper 
and lower set store additional indexes to nodes in the 
upper and lower levels, correspondingly, which are 
utilized when nodes in the basic set become 
unreachable. These three sets constitute the node’s 
neighbourhood table and are presented in Table 1.  

Table 1: Fields of the neighborhood table. 

Field Set Description 
Level Basic The level it resides 
Right Basic The non-empty node to the right 
Left Basic The non-empty node to the left 
Up Basic The parent node 

Right2 Upper The node residing to 
the right of the parent node 

Left2 Upper The node residing to the 
left of the parent node 

Up2 Upper The parent’s parent node 

Right3 Lower One (random) child 
of the node to the right 

Left3 Lower One (random) child of 
the node to the left 

Umbrella Basic All children nodes 

Umbrella2 Lower A (random) child node 
from each child 

Our architecture’s structure and routing table 
described so far ensure that a published key can be 
located by an appropriate query within logarithmic 
overlay steps to the total size of the network. This is 
stated and proved within the following two 
theorems: 

Theorem 1. Given an Umbrella network of N 
nodes with identifiers of base b acquired by a 
consistent hash function, the maximum height of the 
loose B-tree structure is of logarithmic scale. 

Proof : Let b denote the base of our identifiers, N 
the total number of nodes and k a particular level in 
the Umbrella structure. Then according to the 
Umbrella protocol, in each level a maximum of bk 
nodes can reside, with b0=1 as stated for the first 
node that creates the network. Thus, if m denotes the 
number of levels required for the above population 
of nodes, we acquire, with high probability, the 
following relation: 
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Thus the maximum height m of our structure is 
of O(logbN).                 

Theorem 2. A successful lookup in an Umbrella 
network requires with, high probability, O(logbN) 
steps. 

Proof : Suppose that a node p that resides at level 
lp is seeking for a specific key k that resides within 
our network in another node f at level lf. If m 
denotes the number of levels of the current network, 
N the nodes and b the base of identifiers, then we 
could argue that the worst case scenario would 
require both nodes to reside at level m and with 
maximum distance between them (thus node p is a 
m-depth child of the first child at level 0 and on-
forth and node f is the m-depth child of the b child at 
level 0 and on-forth). In this case, the lookup must 
first ascend all the way to the top of our structure 
(thus m steps) and then descend to the bottom (m 
steps again). In total, a maximum of 2m steps are 
required. Hence, from theorem 1, the required 
maximum steps for a successful lookup is, with high 
probability, of O(logbN) steps.                           

4 ROUTING ALGORITHMS 

During the creation of the overlay network, the b 
first nodes to enter create the new network by 
placing themselves on the top level and forming a 
ring. As new nodes arrive, they are placed according 
to their identifier. A node only needs to contact an 
existing node in the system in order to be inserted 
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(mechanisms for fetching existing nodes are not in 
the scope of this paper as numerous such techniques 
exist (Francis,1999)). Only the first nodes are 
automatically inserted regardless of their identifiers; 
all subsequent nodes are placed within the system 
according to the insertion algorithm. The insertion 
mechanism is quite simple and consists of the 
following steps: 
• Issuing a request on a connected node 
• The node checks if the n+1 first digits of its 

identifier match,  where n is the level it resides 
• If not it forwards the message to its parent 
• If yes it forwards it to the child with the n+2 

digit common with that of the new node 
• If such a child does not exist then the new node 

is placed as a child to the current node 
The publish procedure is similar to insertion and 

is therefore suppressed. Conversely, the lookup 
mechanism is executed as shown by example in 
Figure 2.  

 

Figure 2: Instance of  lookup mechanism. 

The final mechanism provided by our protocol is 
that of voluntary departure from the system and is 
given as pseudo-code in Figure 3. 

1. delete ( ) 
2. if ( has_kids( ) ) 
3.      rand_kid = choose_random_kid( ) 
4.      if ( rand_kid.has_kids( ) ) 
5.           rand_kid.delete( ) 
6.      else 
7.           rand_kid.move_published( ) 
8.           rand_kid.copy_neighbors( ) 
9.           inform_neighbors( rand_kind ) 
10.           disconnect( ) 
11. else 
12.      this_node.father.move_published( ) 
13.      inform_neighbors( this_node.father )
14.      disconnect( )  

Figure 3: Example for voluntary departure mechanism. 

The algorithms presented so far embody the 
main mechanisms of our routing protocol and are 
capable of maintaining the system stable and fully 
functional under normal conditions. The system is 
however liable to node departures, either intentional 
or due to network disconnections, which we will call 
“node failures”. Through changes in the algorithms 
already presented we allow the system to bypass 
node failures. Most changes are based on using the 
upper and lower set of our neighbourhood table to 
bypass nodes that aren’t responding. The upper set is 

utilized to forward messages to nodes of a higher 
level while the lower set for nodes on a lower level. 
In the first case, when a node is unable to contact its 
parent node it attempts to forward requests 
consequently to: 
1. the parent’s parent node (Up2) 
2. the node to the right of the parent node (Right2) 
3. the node to the left of the parent node (Left2) 

Whichever of the above succeeds first will 
terminate the mechanism.  Similarly, the lower set is 
utilized for bypassing child node failures. In order to 
address the problem of node failures even further, 
we have designed a repair mechanism, which is 
invoked whenever such a failure is detected. The 
algorithm utilizes the voluntary departure algorithm 
in order to repair a failure to a child node. It can be 
proven that all other failures can be transformed into 
a child failure through contacting nodes in the 
neighbourhood table and forwarding the repair 
message. Once the appropriate node is reached, a 
variation of the departure algorithm is evoked in 
order to repair the failure by substituting the failed 
node with one of its children or by deleting it if none 
is available and informing all of its neighbours. 

Having presented the core structure and logic 
behind our routing protocol, we will continue with a 
number of extensions that improve the system’s 
performance. The first extension introduces the use 
of replication schemas, which has been shown to 
increase the robustness of content distribution 
systems (Ghodsi,2005). In this paper we have 
implemented three additional replication schemas. 
We must note that, in contrast with other schemas 
found in different protocols, we only replicate 
published keywords in nodes and not the actual 
content.  

Our core routing protocol publishes a keyword in 
a single node, the one with closest identifier to that 
of the keyword. All three replications schemas retain 
this quality and enhance it by also publishing the 
keyword to a number of additional nodes, from 
which one can recall a successful lookup. Our three 
variations are the following: 
1. Local Spread Replication (LSR) 

The keyword is also published in all nodes 
residing in its neighboring table.  

2. Inverse Replication (IR) 
This mechanism publishes keywords to the 
closest match and to the inverse closest match.   

3. Local Spread Inverse Replication (LSIR) 
It implements a local spread in both the closest 
and the inverse closest match. 
The second extension implemented allows 

nodes to participate in a number of virtual networks, 
with a different identifier in each one. This allows 
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each node to have a different set of neighbours and 
thus increase its tolerability substantially. In order to 
achieve this, we have defined a number of singular 
identifier assignment functions that transform the 
original identifiers into a new set of identifiers. This 
new set is then used to allocate nodes and route 
requests in the virtual networks. We have defined 7 
different such functions, which are given below: 
1. Inverse Identifier (II) 

This function inverses the identifier 
2. Inverse per Pair (IP) 

The identifier’s digits are inversed by pair 
3. Inverse per Pair and Whole (IPW) 

All digits are inversed by pair and the result is 
inversed as a whole 

4. Inverse by Halves (IH) 
The II function is applied to the first and second 
half of the identifier independently 

5. Switch Halves (SH) 
The first and second halves are switched  

6. Random Reordering (RR) 
A random reordering of the identifier’s digits 

7. Second Random Reordering (SRR) 
Same as RR with different random generator 

5 SIMULATION RESULTS 

In order to testify our architecture’s integrity and 
elaborate on its efficiency we have modeled our 
system and its algorithms using the neurogrid 
(Joseph,2003) simulator. All of our simulations were 
executed on a 3.2MHz PC with 512Mb of RAM and 
based on Java. 

Prior to our simulation analysis on the efficiency 
of our protocol and its performance in general, we 
will present the Umbrella topology, as this derives 
from the architectural design. For this purpose, we 
have used the JUNG (Madadhain,2005) library, 
which allows the visual representation of networks. 
Once our overlay network has been created and fully 
populated, we produce an instance of the network 
topology by representing each node (peer) along 
with the parent-children pairs of connections. In 
addition, we color each node according to the level it 
resides, providing an in-sight view of our protocol. 
In Figure 4, a number of such instances are given for 
different node populations varying from 10 and up 
to 1,000 nodes. As can be seen, nodes are spread 
along the B-tree structure and although we do not 
imply restrictions on the minimum or maximum 
number of children for each level (as in a proper B-
tree) the structure is still quite compact.  

     
Figure 4: The Umbrella topology for 10, 100 and 1,000 
nodes. 

The first part of our initial simulations tested the 
basic functionality of the routing protocol under 
normal conditions, in other words without the 
presence of node failures. All of the results 
presented in this set provided 100% success. We 
thus present only the number of hops required for a 
successful insertion, publish and lookup with a 
varying population of nodes. As is seen in Figure 5, 
the number of hops grows logarithmically with node 
population in all mechanisms. We also notice that 
the variance is mainly towards lower number of 
hops while higher values are only a fraction larger 
than the mean. If we further analyze the results from 
the previous figures we will observe that the average 
hops required by each operation are given by 
2.5*log16N. Thus it satisfies theorem 3 and only 
introduces a constant factor of 2.5. 

 
Figure 5: Number of hops for insert publish and lookup 
operations. 

In the next set of simulations we tested our repair 
mechanism in the case of failing nodes in order to 
evaluate its effect on the success rate. We conducted 
simulations with variant node populations from 
1,000 up to 100,000 nodes and periodically issued 
random node failures in steps of 10% from 0 up to 
80%. An important metric in our repair mechanism 
is the rate at which the mechanism is invoked. More 
precisely, each node invokes the mechanism in two 
cases; either whenever a failure is detected during a 
call of one of the protocol’s algorithms or during the 
course of a routing table consistency check, which is 
issued periodically by each node. The former is 
constant and issued throughout our simulations, 
while the latter varies as we have conducted 
simulations with different consistency check 
periods. In the results presented here we have varied 
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this period and executed simulations for period times 
10T and 20T, where T is a constant representing 
communication activity of each node (in our case T 
equals to 100 messages), ensuring that an inactive 
node will not suffocate the network with repair 
messages.  

 
Figure 6: Successful lookups as a function of failures 
without and with repair 10T. 

Firstly we investigate the impact of the repair 
mechanism on the success rate of lookup operations. 
As seen in Figure 6 the repair mechanism 
dramatically increases the success rate regardless of 
the node population and the check period. The 
protocol is able to produce linear deduction of the 
successful lookup rate as opposed to the logarithmic 
decrease observed without the repair mechanism. 
The impact of the repair mechanism is better 
observed in Figure 7, where we have mapped the 
success rate of lookups against node failures for the 
case of 100,000 nodes, for no repair, repair period 
10T and 20T. The results were dramatically 
improved in both cases where the repair mechanism 
was applied. The results obtained with repair period 
10T are a fraction higher than those of 20T, which 
was expected as nodes check their routing table’s 
consistency less frequently. 

 
Figure 7: Successful lookup for no-repair, 10T and 20T 
repair. 

In the second set of simulations we applied our 
two protocol extensions, the replication schemas and 
the virtual networks. We will present the effect of 
each extension and evaluate the overall protocol 
efficiency when all variations are applied. 

 
Figure 8: Lookup success ratio for different replication 
schemas and repair periods. 

Firstly we will evaluate the effect of the different 
replication schemas to the efficiency and tolerability 
of our routing protocol. In our simulations, we 
varied the node population from 1,000 up to 50,000 
nodes and generated failures in steps of 10% from 0 
up to 80%. In the first diagram of Figure 8 we have 
sketched the successful lookup ratio as the node 
failure ratio increases, for a network of 50,000 nodes 
and varying replication schemas and repair periods. 
We observe that while the inverse replication (IR) 
schema does not better the protocol’s efficiency, 
both the local spread replication (LSR) and the local 
spread inverse replication (LSIR) schemas improve 
the protocol’s success rate vastly. These 
improvements are even more significant when the 
repair mechanism is applied, as seen in the second 
diagram of Figure 8. The protocol is able to sustain 
100% success rates up to 30% fail rates when a 
repair period of 10T and either LSR or LSIR 
schemas are applied. Moreover, success rates higher 
than 80% are achieved for up to 70% fail rates when 
a 10T repair period is applied and a LSR or LSIR 
replication schema is implemented.  

 
Figure 9: Lookup success ratios for different replication 
schemas and failure ratios. 

In the next figure, Figure 9, we can see the 
impact of node population on the combination of 
replication schemas. We have controlled the repair 
period and retained it constant and equal to 10T and 
varied the failure ratio between 20% and 60% for the 
four different replication schemas and for node 
populations of 1,000 up to 50,000. As can be seen, 
the node population does not affect the success rate 
for any replication schema or failure ratio. This 
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shows that our protocol can escalate and support 
intense node populations. 

 
Figure 10: Per node messages for different replication 
schemas as a function of node population. 

Finally we investigated the drawback of the 
proposed replication schemas. As can be seen from 
Figure 10 the new schemas incur an increase in the 
number of messages exchanged between peers. The 
use of the IR schema doubles the number of 
messages required while the LSR and LSIR induce 
an increase by a factor of 2.5 and 6.0 respectively. 
Even though these changes may sound significant 
they are actually quite efficient since even in the 
case of 50,000 nodes and LSIR replication schema 
the total does not exceed that of 45 messages for the 
whole duration of the simulation. 

 
Figure 11: Average of successful lookups for varying 
virtual networks as a function of node population. 

In our final series of simulations we will try to 
evaluate the effect of the virtual networks extension. 
During this analysis, in many cases, we present 
aggregated results due to the multiple variables that 
affect each simulation. All presented results evaluate 

the case of having 1 (no virtual networks), 2 , 4 or 8 
virtual networks. In Figure 11 the average of 
successful lookups is shown for varying virtual 
networks as a function of node population. The 
average derives from the aggregation of all 
combinations of replication schemas, repair periods 
and failing ratios. With that in mind, we must point 
out that the optimum success rate for our protocol is 
much higher than the average shown in this figure. 
However, the average presents an indication of the 
virtual networks’ effect on the success rate. It is 
clear form the data on the figure that as the number 
of virtual networks increases the success rate 
improves tremendously, and from an average of 
around 65% for no virtual networks it raises to 75%, 
85% and 90% for the cases of 2, 4 and 8 
respectively. This is further testified by observing in 
Figure 12 how virtual networks affect the success 
rate for different replication schemas. Once again, 
the success rate increases linearly with the number 
of virtual networks, for all replication schemas.  

 
Figure 12: Average of successful lookups for varying 
replication schemas as a function of virtual networks. 

Having established the beneficial effect of the virtual 
networks extension, we will now present the 
optimum protocol performance. In Figure 13 we 
seek the optimum performance of our protocol. We 
vary the number of virtual networks between 1 and 8 
and the repair period between 0 and 10T, for the 
average of all replication schemas. As can be seen,  

Table 2: Success rates for combinations of virtual networks, repair periods and replication schemas per node failure ratio. 

Network 2 4 8 
Repair  10T 20T 10T 20T 10T 20T 

Replication LSR LSIR LSR LSIR LSR LSIR LSR LSIR LSR LSIR LSR LSIR 
0 100 100 100 100 100 100 100 100 100 100 100 100 

10 100 100 100 100 100 100 100 100 100 100 100 100 
20 100 100 100 100 100 100 100 100 100 100 100 100 
30 100 100 99 99 100 100 100 100 100 100 100 100 
40 100 100 99 100 100 100 100 100 100 100 100 100 
50 99 100 99 99 100 100 100 100 100 100 100 100 
60 99 99 98 99 100 100 100 100 100 100 100 100 
70 96 97 93 97 99 100 96 99 100 100 96 100 

Fa
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80 73 86 67 77 98 98 82 97 98 99 97 99 

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

240



for the case of 8 virtual networks, a 100% 
mechanism, while this rate increases up to 80% 
when a 10T repair period is applied. In the latter 
case, even with 4 virtual networks an optimum 
performance is achieved for up to 60-70% node 
failures. 

 
Figure 13: Success rate for different combinations of 
virtual networks and repair period as a function of failures. 

Finally we will present some conclusive results 
for the optimum performance of our protocol. In 
Table 2 we can see the success rates for the best 
combinations of virtual networks, replication 
schemas and repair periods as node failures increase. 

For all combinations, the protocol routes 
seamlessly when node failures don’t exceed a 40-
50% ratio. If we want our protocol to tolerate even 
more node failures then either 4 or 8 virtual 
networks should be implemented, regardless of the 
check period or the replication schema. Here we 
point out that the repair mechanism is a pre-
requirement, in contrast to the repair period, which 
can be relaxed to 20T without significant loss in 
performance. The same applies for the replication 
schema; the LSR schema must be at least applied but 
the LSIR is not vital as results are only slightly 
better.  

6 CONCLUSIONS 

Through the course of this paper we presented the 
Umbrella protocol; a novel protocol based on a 
distributed hash table that supports key publishing 
and retrieval on top of an overlay network for 
content distribution. We have analysed our protocol 
and its algorithms through both theoretical and 
simulation means and proved its corrective ness and 
efficacy. Its main novelty lies in its fixed-size 
routing table sustained by each node, which is able 
to provide efficient routing even under contrary 
conditions. The protocol has also proved to be 
scalable due to its low traffic load demands. The 
results obtained by our simulations proved that the 

protocol, along with a number of valuable 
extensions, is able to route seamlessly successful 
lookups in O(logbN) steps even when more than 
80% of the system’s population suddenly fails.  
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