
FAST CONVERSION OF H.264/AVC INTEGER TRANSFORM
COEFFICIENTS INTO DCT COEFFICIENTS

R. Marques1, V. Silva1,2, S. Faria1,3, A. Navarro1,4, P. Assuncao1,3
1Instituto de Telecomunicações,2Universidade de Coimbra - DEEC, 3030-290 Coimbra, Portugal

3Instituto Politécnico de Leiria- ESTG , Apt 4163, 2411-901 Leiria, Portugal
4Universidade de Aveiro – DET, 3810-193 Aveiro, Portugal

Keywords: Transform conversion, video transcoding.

Abstract: In this paper we propose a fast method to convert H.264/AVC 4x4 Integer Transform (IT) to standard
Discrete Cosine Transform (DCT for video transcoding applications. We derive the transcoding matrix for
converting, simultaneously, in the transform domain, four IT 4x4 blocks into one 8 8× DCT block of
coefficients. By exploiting the symmetry properties of the matrix, we show that the proposed conversion
method requires fewer operations than its equivalent in the pixel domain. An integer matrix approximation
is also proposed. The experimental results show that a negligible error is introduced, while the
computational complexity can be significantly reduced.

1 INTRODUCTION

The H.264 is a new video coding standard, recently
approved by ITU-T and ISO/IEC as International
Standard. When compared to earlier video coding
standards like H.263, the H.264 video coding tools
can provide enhanced compression efficiency.
Experimental results show that about 50% of the
bitrate can be saved by using H.264 (Sullivan et al.
2004). Given this coding efficiency, H.264 has been
adopted by various international consortiums like
the Korean Digital Multimedia Broadcasting
(DMB), the European Digital Video Broadcasting
(DVB) and the 3rd Generation Partnership Project
(3GPP) as the standard video codec, and is expected
to be extended to other areas of application, such as,
the Blu-ray Disc (BD).

Whenever a new standard is adopted, this
always gives rise to interoperability problems with
legacy systems. In the case of H.264,
interoperability with MEPG-2 systems is of
particular importance. In general, this is achieved
through video transcoding methods (Chuang et al.
2005). However, there are significant differences
between the H.264 and other video coding standards,
which difficult the transcoding process, e.g., while
the common video codecs use the 8 8× Discrete

Cosine Transform (DCT) to reduce spatial
correlation, H.264 uses either 4 4× or 8 8× Integer
Transforms (IT). The latter is only used in Frext
profiles (Sullivan et al. 2004).

This paper addresses the problem of converting
H.264/AVC 4 4× IT to standard DCT coefficients
for video transcoding applications. We derive the
conversion matrix in the transform domain and
along with a fast algorithm to reduce the number of
operations. Then, we introduce an integer matrix
approximation to increase computing performance
using fixed-point arithmetic.

The organization of this paper is as follows. In
section 2, we describe the proposed transform
domain IT-to-DCT conversion. In sections 3 and 4
the fast conversion algorithm and its integer
approximation are, respectively, described. The
experimental results are presented in section 5 and,
finally, in section 6 the main conclusions are
reported.

2 IT-TO-DCT CONVERSION

The complete (two steps) conversion IT-to-DCT is
shown in Figure 1. The input is comprised of four
4 4× IT blocks, 1 2 3 4, , ,X X X X . The inverse IT is

5
Marques R., Silva V., Faria S., Navarro A. and Assuncao P. (2006).
FAST CONVERSION OF H.264/AVC INTEGER TRANSFORM COEFFICIENTS INTO DCT COEFFICIENTS.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 5-8
DOI: 10.5220/0001572500050008
Copyright c© SciTePress

applied to each block in order to obtain the pixel
domain blocks, 1 2 3 4, , ,x x x x . Then, the four pixel
domain blocks are combined to form a single 8 8×
block x to which the DCT is applied, such that an
8 8× block of transform coefficients Y is obtained.
However, a full transform domain conversion (one
step approach) is more efficient because complete
decoding up to the pixel domain is not required.

Figure 1: Pixel domain IT-to-DCT conversion.

The proposed transform domain IT-to-DCT
conversion is based on simple algebraic matrix
relationships (Xin et al. 2004). It is directly applied
to an 8 8× block X comprised of four 4 4× IT
blocks, , , ,1 2 3 4X X X X , to produce the corresponding
8 8× DCT block, Y. The conversion is given by the
following operation,

 T= × ×Y S X S , (1)

where S is the transcoding matrix. In order to
derive S , we have to consider the inverse IT of
blocks, , , ,1 2 3 4X X X X , given by

 , 1 4T
i i i= ≤ ≤x JX J , (2)

where J is the following matrix (Malvar et al. 2003),

1
2

1
2
1
2

1
2

1 1 1
1 1 1
1 1 1
1 1 1

⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

J . (3)

If we consider the following matrix,
0

0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

J
K

J
,

then, we can compute x in a single step as given by,

T T

T
T T

⎛ ⎞
= × × = ⎜ ⎟

⎝ ⎠
1 2

3 4

JX J JX J
x K X K

JX J JX J
. (4)

Since the DCT of an 8 8× block can be defined as
 T= × ×Y T x T , (5)
where T is the DCT kernel matrix, then, it follows
that,
 T T= × × × ×Y T K X K T . (6)
From (6) we can define the transcoding matrix S as,
 = ×S T K . (7)
The structure of matrix S is given by,

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

a a
b c d e b c d e

f g f g
h i j k h i j k

a a
l m n o l m n o

g f g f
p q r s p q r s

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟

−⎜ ⎟= ⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟⎜ ⎟− −⎝ ⎠

S (8)

with

1.4142 1.2815 0.4618 0.1065
0.0585 1.1152 0.0793 0.45
0.8399 0.7259 0.0461 0.3007

0.4319 1.0864 0.5190 0.2549
0.2412 0.5308 0.9875

a b c d
e f g h
i j k l

m n o p
q r s

= = = = −
= = = = −
= = = − =
= − = = = −
= = − =

The shown S matrix values are rounded to four
decimal places.

3 FAST ALGORITHM

The proposed fast IT-to-DCT conversion algorithm
is based on the symmetry properties of the S matrix
shown in (8). As it shall be explained, this
characteristic of the S matrix is exploited for
achieving fast computation of the transform
conversion.

Since the conversion defined by (1) is separable,
it can be computed by columns followed by rows. If
we define z as an input 8 point column vector and Z
its 1D conversion, then, by using the horizontal
symmetry of the S matrix, we can use the following
fast algorithm to compute Z as,

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

6

1

2

3

4

5

6

7

8

 [1] [5]
 [1] [5]
 [2] [6]
 [3] [7]
 [4] [8]
 [4] [8]
 [3] [7]
 [2] [6]

m z z
m z z
m z z
m z z
m z z
m z z
m z z
m z z

= +
= −
= +

= −
= +

= −

= +

= −

, (9)

1

2 3 4 5

8 6

2 3 4 5

7

2 3 4 5

8 6

2 3 4 5

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Z a m

Z b m c m d m e m

Z f m g m

Z h m i m j m k m

Z a m

Z l m m m n m o m

Z g m f m

Z p m q m r m s m

= ×

= × + × + × + ×

= × + ×

= × + × + × + ×

= ×

= × + × + × + ×

= × + ×

= × + × + × + ×

. (10)

This algorithm needs 22 multiplications and 22
additions, i.e., a total of 44 operations to perform
one 1D conversion. The full 2D fast conversion
algorithm needs 8 44 2 704× × = operations.
Instead, the pixel domain approach needs four
inverse IT (320 operations) and one direct DCT (672
operations) which yields a total of 992 operations.
(Xin et al. 2004, Lee et al 2005). Thus, the proposed
fast algorithm significantly reduces the number of
operations (29%) when compared to the pixel
domain conversion.

4 INTEGER APPROXIMATION

In order to achieve higher computing performance,
we have further introduced an integer approximation
of the matrix S . This is of particular relevance for
fixed-point arithmetic hardware, which is much
faster than floating point. The ultimate generation of
DSPs operate with clock frequencies of 300MHz for
floating-point architectures, while that of fixed-point
architecture is about 1GHz (Texas Instruments,
2004).

In order to work with integer arithmetic, we scale
the S matrix by multiplying it by an integer that is a
power of 2. To represent each H.264 residual pixel
value, we need 9 bits and to perform the IT, we need

11 bits to represent the coefficients. The maximum
gain of the 2D S -transcoding matrix is 24.67 ,
which implies that more 5 bits are needed to
represent the result of the conversion. Therefore, the
scaling factor must be smaller or equal than the
square root of ()32 162 2 256− = . The integer S matrix

version is given by, (256)int round= ×S S , yielding

int

' 0 0 0 ' 0 0 0
' ' ' ' ' ' ' '

0 ' 0 ' 0 ' 0 '
' ' ' ' ' ' ' '

0 0 ' 0 0 0 ' 0
' ' ' ' ' ' ' '

0 ' 0 ' 0 ' 0 '
' ' ' ' ' ' ' '

a a
b c d e b c d e

f g f g
h i j k h i j k

a a
l m n o l m n o

g f g f
p q r s p q r s

− −
− −

− −
=

− −
− −

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

S

The corresponding intS values are given by,

' 362 ' 328 ' 118 ' 27
' 14 ' 285 ' 20 ' 115
' 227 ' 185 ' 11 ' 75
' 110 ' 278 ' 132 ' 65
' 61 ' 136 ' 352

a b c d
e f g h
i j k l

m n o p
q r s

= = = = −
= = = = −
= = = − =
= − = = = −
= = − =

.

Since the intS matrix symmetries are similar to

S, thus, we can also apply the fast algorithm
described in section 3.

4.1 Multiplierless Implementation

In order to reduce, even more, the computational
complexity of the proposed integer conversion
algorithm, we may not use hardware multipliers. It is
possible to identify in (10) the following multiple
constants multiplication boxes,

1 2 2 3 3 4

4 5 5 6 6 8

, ,

, ,

b c d
h i j

b m b m b m
l m n
p q r

e
k f g

b m b m b m
o g f
s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × = × = ×
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥= × = × = ×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

which are easily implemented using only elementary
operations, i.e., additions, subtractions and shifts

FAST CONVERSION OF H.264/AVC INTEGER TRANSFORM COEFFICIENTS INTO DCT COEFFICIENTS

7

(Puschel et al. 2004), The number of low complexity
operations required to compute each multiplier box
is shown in Table 1.

Table 1: Number of operations per multiplier block.

Block Add/Sub Shift Neg
1b 5 7 2
2b 5 7 1
3b 6 7 1
4b 4 7 1
5b 3 4 1

Table 2 shows the number of clock cycles required
by a general purpose processor (Intel, 2001) to
compute each multiplier block, (column Mb) as well
as the conventional multiplier method (column Mu).
As it can be seen, the number of clock cycles
required by the integer fast approximation based on
multiplier blocks is about 61% of those required by
the conventional method.

Table 2: Number of clock cycles per block operations.

Block Add/Sub Shift Neg Mb Mu
1b 5 35 2 42 68
2b 5 35 1 41 68
3b 6 35 1 42 68
4b 4 35 1 40 68
5b 3 20 1 24 34

5 EXPERIMENTAL RESULTS

We have evaluated the error introduced by integer
approximation of the S matrix by comparing both
methods described in previous sections.
A set of 3 different grey level images was used
(256x256, 8 bit/pel). For each one, the whole image
was transformed into 4 4× IT coefficient blocks.
Then, each group of four adjacent 4 4× IT
coefficient blocks are DCT converted by means of
two different methods: i) the full precision algorithm
described in section 2; ii) the integer approximation
described in section 4. The mean squared error
(MSE), between both resulting images (pixel
domain), was used for evaluating the error
introduced by the integer approximation method.

The results are shown in Table 3, where it can be
seen that the error due to the integer approximation
in the conversion process is actually very small. In
fact, the resulting MSE is negligible in practical
terms, which proves the usefulness of the proposed
method for fast transcoding implementations.

Table 3: MSE of the integer approximation.

Image Einstein Smandril Cameraman
MSE 0.337 0.339 0.340

6 CONCLUSIONS

In this paper, we proposed a transform domain
approach for fast conversion H.264/AVC 4x4
Integer Transform to standard DCT. We derived the
conversion matrix and an efficient algorithm for
computing the transform, as well as, a low
complexity integer approximation method. The
presented results show that the proposed methods
are much faster than the pixel domain approach.
These methods are suitable for video transcoding
applications where fast processing is required.

REFERENCES

Chuang, S.,Vetro, A., 2005. Video Adaptation: Concepts,
Technologies, and Open Issues In Proceedings of the
IEEE, vol. 93, no. 1, pp 148-158.

Intel, 2001. Intel Pentium 4 Processor Optimization
Reference Manual, Order Number 248966

Lee, J., Chung, K., 2005. Quantization/DCT conversion
Scheme for DCT-Domain MPEG-2 to H.264/AVC
Trascoding. In IECIE Trans. Commun., vol E88-B.

Malvar, H., Hallapuro, A., Korczewicz, M., Kerofsky,
L.,2003. Low-Complexity Transform and
Quantization in H.264/AVC. In IEEE Transactions on
Circuits and Systems for Video Technology, vol 13, pp
598-603.

Pushel, M, Voronenko, Y., 2004. Multiplierless Constant
Multiplication, Spiral Project, Carnegie Mellon
University (http://www.spiral.net).

Sullivan, G., Topiwala, P., Lu, A., 2004. The H.264/AVC
Advanced Video Coding Standard: Overview and
Introduction to the Fidelity Range Extensions. In SPIE
Conference on Applications of Digital Image
Processing XXVII.

Texas Instruments, 2004. TMS 320C600 CPU and
Instruction Set Reference Guide. Literature Number
SPRU189F.

Xin, J., Vetro, A., Sun, H., 2004. Converting DCT
Coefficients to H.264/AVC Transform Coefficients. In
Technical Report of Mitsubishi Electric Lab. TR-
2004-058.

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

8

