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Abstract: Dynamic traitor tracing schemes are used to trace the source of piracy in broadcast environments such as ca-
ble TV. Dynamic schemes divide content into a series of watermarked segments that are then broadcast. The
broadcast provider can adapt the watermarks according to the pirate’s response and eventually trace him/her.
As dynamic algorithms are deterministic, for a given set of inputs, the tracing algorithm will execute exactly
the same way each time. An adversary can use this knowledge to ensure that the tracing algorithm is forced
into executing at its worst case bound. In this paper we review dynamic traitor tracing schemes and describe
why determinism is a problem. We ammend several existing dynamic tracing algorithms by incorporating
randomised decisions. This eliminates any advantage an adversary has in terms of the aforementioned attack,
as he/she no longers knows exactly how the tracing algorithm will execute. Simulations show that the ran-
domising modifications influence each dynamic algorithm to run at its average case complexity in terms of
tracing time. We provide an efficiency analysis of the ammended algorithms and give some recommendations
for reducing overhead.

1 INTRODUCTION

The proliferation of high speed Internet connections,
mobile phones and Cable TV (PayTV) has made
online multimedia content accessible to the masses.
Downloading movies, songs and pay-per-view con-
tent is becoming increasingly popular. While this
technology is convenient, it has also been accompa-
nied by a significant rise in piracy. File sharing pro-
grams such as DC++1 make it easy to for anyone to
distribute pirated material to countless other illegiti-
mate viewers.

An individual that makes a copy of, and/or views
content in the above context is referred to as api-
rate. The traditional method for preventing piracy is
to encrypt the content and issue the users with ade-
coder. The decoder is a program or device that con-
tains a set of keys capable of decrypting the message.
Although this approach prevents unauthorised parties
from eavesdropping on the content, piracy can still
occur in the following ways:

- An authorised user retransmits their copy of the
digital content to an unauthorised user; or

1http://www.dcplusplus.sourceforge.net

- A pirate has access to a set of legitimate user’s keys
that allows the pirate to construct apirate decoder
which is capable of interpreting the encrypted con-
tent.

In either scenario, such legitimate users who willingly
aid a pirate are known astraitors.

While an ideal solution to piracy is to stop it from
occurring in the first place, this is almost impossible
to achieve in reality given the presence of traitors. It
is therefore prudent to assume that some piracy will
occur so that counter measures can be taken to deal
with the threat. Atraitor tracing scheme is a mech-
anism that is designed to trace and cut off the source
of a pirate decoder or transmission once piracy has
been detected (see (Choret al, 1994; Pfitzmann 1996;
Trevathanet al, 2003)).

A traitor tracing scheme can be considered as ei-
ther static or dynamic. In static schemes, keys found
in a pirate decoder are used to trace the legitimate
user who was originally allocated the keys. Keys
are allocated once and are not changed throughout
the lifetime of the content. This makes static tracing
schemes ideal for distribution of one-off content such
as DVDs, but is of limited use to online/real-time con-
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tent.
Dynamic schemes are able to adapt to a pirate’s ac-

tions in real-time by changing key allocations at cer-
tain intervals throughout the content. Watermarks are
embedded in the plaintext content. The tracing algo-
rithm in this case examines the watermark found in a
pirate copy and links this back to the particular users
who received the same watermark. The scheme at-
tempts to isolate suspected traitors by changing the
marking scheme in response to the pirate’s feed back.
When a traitor is identified the algorithm disconnects
them from future broadcast.

Various schemes for dynamic traitor tracing have
been presented (see (Fiat and Tassa, 1999; Berkman
et al, 2000; Safavi-Naini and Wang, 2000)). How-
ever, all of these schemes are deterministic. This is a
problem as a traitor is able to run through the tracing
algorithm in advance and totally deduce the marking
strategy that will be used. While this does not prevent
a traitor from being caught, this situation is undesir-
able, as it allows a traitor to force the algorithm to run
at its worst case complexity through strategic use of
feedback.

This paper discusses the implications of determin-
ism in dynamic traitor tracing schemes. We pro-
pose several amendments to existing dynamic trac-
ing algorithms that incorporate randomised decisions.
Through the use of random decisions, an adversary is
unable to predetermine the manner in which the trac-
ing algorithm will execute. This effectively removes
any benefit that can be gained from altering the input
data for the tracing process. Simulations have shown
that there is a significant gain in tracing efficiency and
hence security by making our proposed amendments.

This paper is organised as follows: Section 2 in-
troduces traitor tracing schemes. Section 3 describes
how dynamic traitor tracing schemes operate. Sec-
tion 4 shows how to incorporate randomness into sev-
eral existing dynamic traitor tracing schemes. Sec-
tion 5 provides an efficiency analysis of existing dy-
namic schemes and shows the effect on security that
randomisation provides. Section 6 provides some
concluding remarks.

2 TRAITOR TRACING SCHEMES

A traitor tracing scheme is an algorithm employed
by a content provider that enables piracy to be traced
back to its original source (a traitor). Once a traitor
has been discovered the content provider is then able
to take legal or extra-legal measures against them.
The problem of tracing traitors can be addressed via
careful key distribution or marking of content.

Tracing Goals
The goals of traitor tracing schemes and the desir-

able properties they should exhibit include:

• Capable of tracing the source of the piracy;

• Must not harm legitimate users by falsely incrim-
inating them, or by allowing traitors to be able to
frame them;

• The source of piracy should be denied from receiv-
ing future transmissions;

• Supply legal evidence of the pirate’s identity;

• Provide some value in deterring potential traitors.

Terminology/Notation
The following terminology and notation is used

throughout this paper. A user is denoted byu and is
the authorised receiver of the digital content.U is the
set of all authorised usersU = {u1, ..., un}, whereuı

is theıth user inU . The broadcast provider encrypts
digital content and distributes it toU . A session is the
period for which the decryption keys are valid e.g., a
few minutes of video. Every user is allocated a set of
decryption keys that allows them to view the content.
This is referred to as a user’s personal key or code-
word. Some users may collude in order to distribute
illegal copies of the content to unauthorised users. We
refer to such users as traitors and to their coalition as
the pirate and denote them byT = {t1, ..., tp}, where
T ⊂ U . Some of the traitors may combine a subset of
their keys and construct apirate decoder.

When a pirate decoder is found either in hardware
or software, its behaviour can be examined to deter-
mine which keys it is comprised of. By treating a
captured decoder as a black box and observing its
output when given particular inputs, the decryption
keys can be traced back to the members ofT . Hence,
there is no need to tamper with the decoder in any
way. It is assumed that there are no mechanisms in
place to thwart the tracing algorithm. The manner in
which the tracing proceeds depends on the type of
scheme used.

Components of a Traitor Tracing Scheme
There are three main components that jointly con-

stitute a traitor tracing scheme:
1. Key generation/distribution scheme: used by

the data supplier to generate and distribute users’ per-
sonal keys. The data supplier has amaster key, α, that
defines a mappingPα : U 7→ K, whereU is the set of
possible users andK is the set of all possible personal
keys.

2. Encryption/decryption scheme: an encryption
scheme,Eα, is used by the data supplier to encrypt
the session key before broadcasting, and a decryp-
tion scheme,Dβ , is used by each authorised user
(i.e., its decoder) to decrypt the session key, where
β = Pα(ui). The session key is used to encrypt
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Figure 1: Encryption/Decryption of a segment.

data content using an off-the-shelf symmetric encryp-
tion scheme such asAdvanced Encryption Standard
(AES) (Daemen and Rijmen, 1998).

3. Tracing algorithm: used upon confiscation of
a pirate decoder, to determine the identity of one or
more traitors. It is assumed that the contents of a pi-
rate decoder are unknown. Instead, the tracing algo-
rithm must access a pirate decoder as a black box, and
perform the tracing based on the decoder’s response
to different input ciphertexts.

The off-the-shelf encryption schemeE must be a
block cipher. The data supplier divides the content
into sessions whose size is a multiple of a block size
accepted byE. For each content sessionM , a typical
traitor tracing scheme will output two blocks. Aci-
phertext block Bc is the result of encryptingM by the
encryption schemeE using asession key, s, randomly
chosen from the key space ofE : Bc = Es(M). A
second block is called anenabling block, because it
contains data that enables each authorised user to ob-
tain the session key and decrypt the corresponding ci-
phertext block (see Figure 1.3).

3 DYNAMIC SCHEMES

Static schemes are often limited to one-time mark-
ing of content such as DVDs. Legal recourse is only
taken after a pirate copy has been found which of-
ten involves the entire content being stolen before the
tracing procedure can even begin. In situations where
there is some ongoing relationship between the users
and the content provider (such as PayTV or Internet
multicast applications), static schemes are often too
limited and miss out on opportunities to help trace
and/or punish traitors.

Dynamic traitor tracing assumes there exists an on-
line feedback channel from a pirate to the broadcast
provider. Such feedback may be the detected retrans-

mission of the content by the pirate or the publica-
tion of decryption keys in some publicly accessible
place (such as on the Internet). By observing the feed-
back sequence, a distributor can search for traitors by
adaptively changing the content marking scheme in
response to pirate activity. Eventually an individual
traitor can be isolated and disconnected from future
transmittal of information.

Dynamic tracing can be best described by the fol-
lowing combinatorial game which is an abstraction of
the scenario described above. This game serves as a
model for all dynamic schemes presented throughout
this section.

A session is the duration of a piece of information
to be broadcast. A session is split up intosegments
j1, ..., jm. Eachj is divided intoℓ variants v1, ..., vℓ,
where each variant is unique (i.e.,vi 6= vk, i 6= k).
All variants have the same information but contain a
robust watermark (using the methods of (Boneh and
Shaw, 1995)). Given any set of variantsv1, ..., vl for
a particular segment, it should be impossible to gen-
erate another variant that cannot be traced back to the
original variants from which it was comprised. The
termscolour, mark and variant are used interchange-
ably.

In eachround, the algorithm assigns a variantv of
the current segment to every user. This is followed by
the pirate’s response, which is a variant of one of its
supporting traitors. The pirate’s series of responses is
referred to as afeedback sequence and is denoted by
F . When feedbackfi, for segmentji is detected from
the pirate (where1 ≤ i ≤ l), fi is appended toF .

When a particular variant that was only given to
one set of users is found inF , this implies that the
set contains a traitor. A traitor islocated if only a
single user (and no one else) was the recipient of a
variant that is given as the pirate’s response. Since
the number of traitors is not known in advance, this is
the only way to locate a traitor. A traitor that has been
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located isdisconnected, i.e., removed fromU thereby
excluding them from all succeeding rounds.

The pirate loses the game when s/he does not an-
swer. This most likely means that s/he has gone out
of business because the algorithm has located and dis-
connected all traitors. The performance of the scheme
is measured by the maximal number of variants used
in any single round (marking alphabet) and also the
number of rounds needed in the worst case (conver-
gence time). There is a trade-off between the two
measures.

A pirate does not have to decide in advance who
thep traitors are. Instead, s/he can choose the traitors
adaptively throughout the game. However, once he
decides to corrupt a user, s/he is committed to this
decision until the end of the game.

(Fiat and Tassa, 1999) present three deterministic
dynamic tracing schemes. These algorithms are re-
ferred to as the FT1, FT2 and FT3 algorithms respec-
tively. (Fiat and Tassa, 1999) establish that the theo-
retical minimum bound on the number of variants re-
quired to trace any number of traitors in the dynamic
model isp + 1. Two of the proposed algorithms use
p + 1 variants, but have an exponential convergence
time. The other algorithm has a convergence time
polynomial inp, but uses2p + 1 variants.

(Berkmanet al, 2000) propose an algorithm that
traces allp traitors inO(p3 log n) rounds usingp + 1
variants. This is referred to as theclique algorithm.
The clique algorithm is used to construct an optimal
algorithm that is able to trace all traitors in polynomial
time using the minimal number of variants. (Berkman
et al, 2000) show that by increasing the number of
variants used in the optimal algorithm, a measurable
trade-off in convergence time can be obtained.

4 RANDOMISED DYNAMIC
TRACING

All dynamic schemes created so far are determinis-
tic. This means that a pirate is able to run through the
tracing algorithm in advance and totally deduce the
marking strategy that will be used. While this does
not prevent a pirate from being caught, this situation
is undesirable, as it allows a pirate to force the al-
gorithm to run at its worst case complexity through
strategic use of feedback.

This can be best illustrated using the Quicksort al-
gorithm (Hoare, 1961). Given a set of data to sort,
the Quicksort algorithm chooses an element from the
array (referred to as thepivot). The data is partitioned
either side of the pivot such that elements less than the
pivot are below it, and those greater are above it. The
algorithm then recursively sorts the partitions. Quick-
sort is deterministic and given the same set of input,

will execute exactly the same way each time.
The performance of the Quicksort algorithm de-

pends on the pivot point chosen. On average, this al-
gorithm runs inO(n log n) steps wheren is the num-
ber of items to be sorted. However, if the set of data is
already nearly sorted, performance degrades toO(n2)
steps.

Consider the case where an adversary of the Quick-
sort algorithm is permitted to order the array. The ad-
versary can in each instance force the Quicksort algo-
rithm to run in its worst case complexity by ensuring
that the array is reverse sorted. By doing so, the array
will always be split into two unbalanced sets, a set of
one element and a set consisting of the remainder of
the array. (Further attacks of this nature on Quicksort
are described in (McIlroy, 1999).)

To protect against this type of attack, random
choices can be introduced into the sorting process.
For example, the array is randomly re-ordered prior
to sorting, and/or the pivot point is randomly chosen.
Under these conditions, the adversary does not benefit
from pre-ordering the input data. Random decisions
ensure that the algorithm runs at its average case com-
plexity, regardless of the initial order of input data.

Dynamic traitor tracing schemes are no different
to the Quicksort algorithm. The traitor can influence
the algorithm to perform at its worst case complexity,
thereby delaying his/her tracing. Likewise random
decisions can also be used in dynamic traitor tracing
to ensure average case complexity.

This section presents several amended dynamic
schemes from literature. Each algorithm has been
altered to include random decisions during the trac-
ing process. This ultimately removes any advantage a
traitor has in terms of the aforementioned attack.

4.1 FT1 Algorithm

The FT1 Algorithm uses the optimal number of
variants (i.e.,p + 1). Traitors are traced by marking
designated combinations of users based on the
current known traitor countt. Either all traitors
will be isolated when the correct combination of
users is selected, or there are more than the current
number of known traitors in the system. The latter
scenario allows us to increment the traitor count by
one and repeat the same process with an extra variant.
Convergence time is O(

(

n

p

)

+ 2×
∑p−1

t=0

(

n

t

)

).

Algorithm 4.1 - FT1

1. Sett = 0

2. Repeat forever:

(a) For all selections oft users out ofU , w1, ..., wt ⊂ U ,
producet + 1 distinct variants of the current segment
and transmit theith variant towi, 1 ≤ i ≤ t, and
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Figure 2: FT2 Algorithm using graph notation.

the(t + 1)th variant to all other users, until the pirate
transmits a recognised variant.

(b) If the pirate ever transmits varianti for somei ≤ t,
disconnect the single userwi and decrementt by one.
Otherwise, incrementt by one.

In step 2(a), users are added to the suspect group
(i.e., those whom are issued with a unique variant)
according to an ordered sequence. An adversary can
ensure worst case timing by only using traitors that
are towards the end of the sequence. We propose two
methods that can be used to protect this algorithm
from this type of attack. Firstly, the set of usersU
in step 1 can be randomised to prevent a pirate from
initially ordering the data (i.e., placing traitors at the
end). Secondly, the selection of the next user added
to the suspect set (step 2(a)) can also be randomised.
This ensures that it is no safer embed traitors at the
end of the group, than it is anywhere else in the group.

4.2 FT2 Algorithm

The FT2 Algorithm uses2p + 1 variants and locates
all p traitors in O(p log n) rounds. The algorithm
(shown below) uses a recursive approach by continu-
ously dividing and recombining groups of users. This
scheme introduces a ‘trusted’ set of users (denoted
by I). Initially, all users are considered innocent
and are part ofI. It is only when piracy is detected
from this set that all its members become suspects,
allowing us to increase the known traitor count.
When piracy is detected from any particular group
(I inclusive) it is evenly divided and the resulting
two subgroups are marked as a pair(Li, Ri) forming
part of the partitionP of U . The partner set of the
split group is added toI, which in a sense means
that the algorithm also searches for innocent users.
Although this greatly improves convergence time, it
comes at the cost of increasing the number of variants.

Algorithm 4.2 - FT2

1. Sett = 0, I = U , P = I.

2. Repeat forever:

(a) Transmit a different variant for every non-empty set of
usersS ∈ P .

(b) If the pirate transmits a variantv of the current seg-
ment then:

- If v is associated withI, incrementt by one, split
I into two equal sized subsets,Li andRi, add those
sets toP and setI = ∅.

- If v is associated with one of the setsLi, 1 ≤ i ≤ t,
do as follows:

i. Add the elements inRi to the setI.
ii. If Li is a singleton set,disconnect the single trai-

tor in Li from the user setU , decrementt by one,
removeRi and Li from P and renumber the re-
mainingRi andLi sets inP .

iii. Otherwise (Li is not a singleton set), splitLi into
two equal sized sets, giving new setsLi andRi.

- If v is associated with one of the setsRi, 1 ≤ i ≤ t,
do as above while switching the roles ofRi andLi.

Graph notation can also be used to represent the
data structures of dynamic algorithms. For example,
the tracing process of the FT2 algorithm can be de-
picted by an undirected graphG = (V,E). Each ver-
tex represents a set of users and an edge(X,Y ) con-
necting two vertices indicates that the subsetX ∪ Y
contains a traitor (see Figure 2). The allocation of
variants effectively colours each vertex of the graph.
When the pirate transmits a colour given to a vertex,
the vertex is split and an edge is added. If the ver-
tex only contains one user (referred to as a singleton
vertex), then that user is a traitor and is disconnected.

As in the FT1 algorithm, users are in an ordered se-
quence and it is possible to determine precisely where
a given set will be split. An adversary can ensure that
s/he selects the traitors in a manner that results in the
most number of splits. We recommend that to prevent
this from occurring, the set of usersU in step 1 should
be randomised to prevent a pirate from initially order-
ing the data. Next, the division point for a set must
not occur precisely in the middle of the ordered se-
quence. Instead, we endorse that the members of the
set must be randomly reordered before splitting. This
ensures that the pirate cannot determine where it is
safe to embed traitors in the sequence.

4.3 FT3 Algorithm

The FT3 Algorithm effectively combines the previous
schemes. As this algorithm usesp + 1 variants, at
each step either a group is split, or the FT1 algorithm
is being run on an individual group. In order to do
this, the algorithm keeps a lower bound on both the
current known number of traitors,k, and alsot, the
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number of subsets of users{Li, Ri} in the partition
P of U . Each pair is known to contain at least one
traitor. This algorithm makes progress at every stage
but is still exponential in convergence time, requiring
O(3pp log n) rounds.

Algorithm 4.3 - FT3
1. Sett = 0, k = 0, I = U , P = I.

2. Repeat forever:

(a) For every selection ofS1, ..., Sk ⊂ P whereSi ∈
Li, Ri, 1 ≤ i ≤ t, andSi, t + 1 ≤ i ≤ k are any
otherk − t sets fromP , producek + 1 variants,σi,
1 ≤ i ≤ k + 1. Transmitσi to Si for all 1 ≤ i ≤ k,
while all remaining users get variantσk+1.

(b) Assume that the pirate transmits at some step a variant
σi that corresponds to a single set inP (whenK <
2t) those are the variantsσi where1 ≤ i ≤ k; when
k = 2t, on the other hand, all variants correspond to
a single set, since then alsoσk+1 is transmitted to just
one set). In that case:

i. If σi corresponds to anLi set, then that set must con-
tain a traitor. In that case add the complementary set,
Ri, to I and splitLi into two equal sized sets giving
a newLi, Ri pair. In this case neithert nork changes
but eventually, when the size of the incriminated set
is one,disconnect the traitor in that set. When this
happens, restart the loop after decrementingk andt
by one.

ii. If σi corresponds to anRi set, we act similarly.
iii. If σi corresponds toI, it allows us to incrementt by

one (andk as well, ifk was equal tot), split I into a
newLt, Rt pair, setI = ∅ and restart the loop.

(c) If k < 2t and the pirate transmitsσk+1, after com-
pleting the entire loop incrementk by one and restart
the loop.

To prevent a pre-ordering attack, we recommend
that the set of usersU in step 1 be randomised. As
this algorithm is a hybrid of the previous algorithms,
the randomising amendments for the FT1 and FT2 al-
gorithms also apply to this algorithm.

4.4 Clique Algorithm

The clique algorithm uses fully connected subgraphs
in the tracing procedure. The clique algorithm utilises
the basic strategies of (Fiat and Tassa, 1999) and is
employed in the construction of a polynomial algo-
rithm. The clique algorithm itself is not optimal. It
traces all traitors inO(p3 log n) rounds, usingp + 1
variants.

The data structure for this algorithm is referred
to as a(t, k)-graph wheret ≥ k ≥ 0. A graph
G = (V,E) is a(t, k)-graph ifG containst + k + 1
vertices, includingI. These vertices form a partition
of U and all (except possiblyI) are non-empty. Any
edge(X,Y ) ∈ E, implies that the subsetX ∪ Y
contains a traitor. The vertices inV \{I} are par-
titioned into k disjoint cliques{Q1, ..., Qk}, where

|Qi| = ti ≥ 2 for each1 ≤ i ≤ k. The number of
vertices in a(t, k)-graph is at most2t + 1.

At each stage of the algorithm, the centre broad-
casts a segment and observes the pirate’s response.
Based on the feedback, users are partitioned into dis-
joint cliques of suspected traitors (see Figure 3). As
there may not be enough colours to give each vertex a
unique colour, the algorithm pairs thek cliques. This
forces the pirate to either transmit a colour given to
only one vertex, or to disclose an edge given to a pair
of cliques.

A response from a single vertex allows us to
split the vertex creating a new clique of size two.
Alternately, disclosed edges are added to the graph in
order to eventually merge two cliques together. When
a merging of cliques occurs, the users who appear to
be the most innocent at this stage of the algorithm
(least connected vertex in the new larger clique) are
placed inI. The algorithm continues in this fashion
until G only contains one clique of sizet + 1. This
then allows us to give each vertex a distinct variant,
limiting the pirate to disclosing only one particular
vertex as its response.

Algorithm 4.4 - Clique

Start with a (0, 0)-graph G = (V, E) with I = U ,
V = I, andE = ∅. Repeat the following phases:

Phase 1: Distributing the colours to the vertices of G

Allocateti − 1 colours to each cliqueQi for a total oft
colours. The last colour is allocated toI. We now describe
how to distribute these allocated colours in each zone and
block ofG.

1. Colour each block in zoneZ1 separately, using the
colours allocated to the pair of cliques in it: LetB be
a block inZ1 and letQi andQj be the two cliques in
B. By the definition of the blocks in zoneZ1, there exist
four distinct verticesX1, X2 ∈ Qi andY1, Y2 ∈ Qj

such that(X1, Y1), (X2, Y2) /∈ E. ColourX1 ∪Y1 with
one colour andX2 ∪ Y2 with another colour. Colour the
remainingti−tj−4 vertices ofQi, Qj using the remain-
ing ti− tj −4 colours allocated to those two cliques, one
colour per vertex.

2. If Z2 contains only the vertexI, then colourI using
the colour allocated to it. Otherwise,Z2 contains also
a cliqueQi and there exists a vertexX ∈ Qi, such that
(X, I) /∈ E. Use one colour forX ∪ I, and colour the
remainingti − 1 vertices ofQi usingti − 1 colours, one
colour per index. (IfI is empty, all vertices ofQi are
coloured with distinct colours.) Therefore,ti colours are
used, which is the total number of colours allocated to
Qi andI.

Phase 2: Reorganising the graph following the pi-
rate’s response

1. If the pirate broadcasts a colour given to only one vertex
X: RemoveX and the edges incident with it fromG.
Split X into two new verticesX1, X2 of equal size (or
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Figure 3: Clique Algorithm.

differing in size by one, if|X| is odd), and add the edge
(X1, X2).

(a) X = I: Define a new cliqueQ consisting of the two
verticesX1, X2. SetI = ∅, t = t+1, andk = k+1.
Incorporate the cliqueQ into the zones (see step 3).

(b) Otherwise: LetQi be the clique to whichX belongs.
SetQi = Qi\X.

i. If |Q|i = 1 then remove all edges incident with the
vertex remaining inQi, remove this vertex fromQi

and add it toI. PlaceX1 andX2 into Qi. The clique
Qi now consists of the two verticesX1, X2.

ii. Otherwise,Qi is still a legal clique. In this case the
two setsX1, X2 will form a new cliqueQ. Setk =
k+1 and incorporate the new clique Q into the zones
(see step 3).

2. If the pirate broadcasts a colour given to a pair of vertices
X, Y : Add the edge(X, Y ) to G, and:

(a) If this edge connects vertices belonging to a pair of
cliquesQi, Qj in some blockB, and after adding this
edge, the blockB contains a large cliqueQ of sizeti+
tj − 1: Let Z be the remaining vertex inB that does
not belong to this large clique (i.e.,Z /∈ Q). Remove
Z and all edges incident with it from its clique, and
addZ to I. Furthermore, setk = k − 1, remove the
cliquesQi, Qj and their blockB. Incorporate the new
cliqueQ into the zones (in step 3).

(b) If this edge connects I and a vertex of the cliqueQi in
zoneZ2, and after adding this edge,Qi and I form a
clique onti + 1 vertices: AddI as a vertex toQi and
create a new special vertexI = ∅. Sett = t+1 (since
ti was increased by 1).

3. If a new cliqueQ was created during one of the above
steps, reorganise the zones as follows to incorporateQ: If
zoneZ2 contains onlyI, placeQ in zoneZ2. Otherwise,
zoneZ2 contains a cliqueR in addition toI. In this
case, remove all edges incident withI, removeR from
Z2, pair it with the new cliqueQ, and create in zoneZ1

a new block containing the cliquesQ andR.

We suggest the following randomising amend-
ments to this algorithm. As usual, the set of usersU in

step 1 can be randomised to prevent a pirate from ini-
tially ordering the data. Since this algorithm utilises
the approach of FT2, the random amendments for FT2
also apply to the clique algorithm. That is, before a
vertex is split, the order of the users should be shuf-
fled so that a pirate does not know which of the new
vertices they will end up in.

Furthermore, during the colouring stage, the algo-
rithm pairs vertices that do not have an edge and as-
signs them the same colour. In a sense the algorithm
is probing for traitors. This process occurs in a deter-
ministic manner and therefore the pirate gains some
information about the colouring sequence. We advo-
cate that this step be performed randomly so that the
algorithm spontaneously selects the next pair of ver-
tices for probing.

5 RESULTS

The algorithms described in this paper were imple-
mented in C++. A series of simulations was per-
formed to gauge the effectiveness of the proposed se-
curity enhancements. A pirate was given the task of
engaging in piracy against a content provider within
the scope of the game described in Section 3. The
pirate had complete knowledge of the tracing algo-
rithms and had the ability to run through the execution
sequence of the algorithm in advance.

In order to describe our results, we must first
examine the complexity of dynamic traitor tracing
schemes. Table 1 lists the algorithms and their asso-
ciated complexities. The convergence time for a dy-
namic algorithm is a function of the number of users,
n, and the number of traitors,p, in the system. The
number of variants used depends on the number of
traitorsp.

Clearly the FT2 algorithm achieves the best con-
vergence time. However, this is at the expense of an

RANDOMISED DYNAMIC TRAITOR TRACING

329



Table 1: Worst case bound on the dynamic algorithms and the performance of the deterministic algorithms vs the randomised
algorithms when run on simulated data.

Scheme Convergence Time Number of Variants Deterministic Randomised
FT1 Algorithm

(

n

p

)

+2 ×
∑p−1

t=0

(

n

t

)

p + 1 100% 4.1%

FT2 Algorithm O(p log n) 2p + 1 100% 4.7%
FT3 Algorithm O(3pp log n) p + 1 100% 3.2%

Clique Algorithm O(p3 log n) p + 1 100% 4.5%

increased number of variants. The FT1 algorithm is
exponential and therefore not practical. Neither is the
FT3 algorithm. The clique algorithm usesp + 1 vari-
ants and is an improvement over FT1 and FT3. (Berk-
manet al, 2000) use the clique algorithm to create an
‘optimal’ algorithm that runs in polynomial time with
the minimum number of variants. However, this al-
gorithm is extremely complicated and is outside the
scope of this paper. We believe that while it is desir-
able to use the optimal number of variants, the results
of the FT2 algorithm seem to indicate that it may be
more practical to use a slightly higher number of vari-
ants in the interests of improving convergence time.

In order to test the average efficiency of our ran-
domised amendments, both deterministic and ran-
domised algorithms were implemented. Each algo-
rithm was run250 times and the effectiveness of the
pirate in terms of the convergence time was recorded.
(see right side of Table 1.) Our results show that
the pirate consistently forced each deterministic algo-
rithm to run at its worst case bound for100% of the
tests. However, the randomised algorithms only run in
their worst case bound on average for4.125% of the
tests. Clearly this indicates that there is a definitive se-
curity advantage in performing simple randomisation
tasks in dynamic traitor tracing schemes.

We also found that a reduction in overhead for dy-
namic traitor tracing schemes could be attained via
the following means:

1. Keys do not necessarily have to be changed be-
tween segments for all users. Key updates are re-
ally only required for the users who are in a set
which is split. Using this approach the FT2 algo-
rithm, which typically uses2p + 1 variants, can
achieveO(np) individual transmissions for all seg-
ments.

2. Not all of a session needs to be protected. Thresh-
old traitor tracing schemes (see (Naor and Pinkas,
1998)) only require a small percentage of the movie
to be protected to enable tracing. It is assumed that
if a pirate copy misses even part of the session, then
is not very valuable.

6 RESULTS/CONCLUSIONS

Dynamic traitor tracing schemes are used to trace the
source of piracy in broadcast environments such as
cable TV. Dynamic schemes divide content into a se-
ries of watermarked segments that are then broadcast.
The broadcast provider can adapt the watermarks ac-
cording to the pirate’s response and eventually trace
him/her. As dynamic algorithms are deterministic, for
a given set of inputs, the tracing algorithm will exe-
cute exactly the same way each time. An adversary
can use this knowledge to ensure that the tracing algo-
rithm is forced into executing at its worst case bound.

In this paper we review dynamic traitor tracing
schemes and describe why determinism is a prob-
lem. Using the Quicksort algorithm as an example,
we show how an adversary can order the input data
and can cause a similar problem to that faced by a
dynamic tracing algorithm. We also show how pre-
vious literature thwarted the Quicksort’s problem by
introducing random decisions at critical points in the
algorithm.

We amend several existing dynamic tracing algo-
rithms by incorporating randomised decisions. This
eliminates any advantage an adversary has in terms of
the aforementioned attack, as s/he no longer knows
exactly how the tracing algorithm will execute. Sim-
ulations show that the randomised amendments were
successfully able to force a dynamic algorithm to run
at its average case complexity.

Existing dynamic traitor tracing schemes strive to
achieve the best convergence time using the mini-
mal number of variants. Whilep + 1 is the the-
oretical minimum, it may be possible to design a
quicker algorithm if these constraints are somewhat
relaxed. Although (Berkmanet al, 2000) provide
bounds for gains in convergence time through increas-
ing the number of variants, this is done in terms of
their somewhat complicated optimal algorithm. Fu-
ture work involves constructing a conceptually simple
tracing algorithm that achieves a better convergence
time than existing tracing algorithms. Ideally the al-
gorithm will aspire to use a number of variants that is
betweenp + 1 and2p + 1.
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