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Abstract: Many practical situations can be modelled with multiple-input multiple-output (MIMO) models. If the input 
sources are mutually orthogonal, several blind source separation methods can be used to reconstruct the 
sources and model transfer channels. In this paper, we derive a new approach of this kind, which is based on 
the compensation of the model convolution kernel. It detects the triggering instants of individual sources, 
and tolerates their non-orthogonalities and high amount of additive noise, which qualifies the method in 
several signal and image analysis applications where other approaches fail.. We explain how to implement 
the convolution kernel compensation (CKC) method both in 1D and 2D cases. This unified approach made 
us able to demonstrate its performance in two different experiments. A 1D application was introduced to the 
decomposition of surface electromyograms (SEMG). Nine healthy males participated in the tests with 5% 
and 10% maximum voluntary isometric contractions (MVC) of biceps brachii muscle. We identified 3.4 ± 
1.3 (mean ± standard deviation) and 6.2 ± 2.2 motor units (MUs) at 5% and 10% MVC, respectively. At the 
same time, we applied the 2D version of CKC to range imaging. Dealing with the Middlebury Stereo Vision 
referential set of images, our method found correct matches of 91.3± 12.1% of all pixels, while the obtained 
RMS disparity difference was 3.4 ± 2.5 pixels. This results are comparable to other ranging approaches, but 
our solution exhibits better robustness and reliability. 

1 INTRODUCTION 

Blind source separation (BSS) has matured to a very 
well established theory which has given a fresh im-
petus to several applications in different research 
fields. If a problem can be modelled in multiple-
input multiple-output sense (MIMO) and the input 
excitations of such a model can be considered or-
thogonal sources, many BSS techniques are available 
to separate those sources. Robust and useful solu-
tions have been reported for telecommunications 
(Madhow, 1998), seismic and radar signals (Desodt, 
1994), speech processing (Gribonval, 2002), bioelec-
tric signals (Barros, 1999), image processing (Hy-
värinen, 2002), etc. 

The majority of BSS-based approaches take ad-
vantage of the sources’ orthogonality. Several obser-
vations, i.e. the output signals of the presumed 
MIMO model, are taken into account referring to 
their mutual information contents, such as covariance. 

The covariance-based techniques build a covariance 
matrix which comprises the information on the model 
transfer channels, i.e. the model convolution kernel, 
and the covariance of sources. Actually, the source 
covariance matrix appears to be diagonal, which un-
veils the convolution kernel. The information on the 
convolution kernel is, afterwards, used to deconvolve 
also the original source signals (Cardoso, 1998), (Be-
louchrani, 1997). 

However, there are two major drawbacks that 
degrade the success of BSS in certain cases, which is 
when the number of observations is lower than the 
number of sources and when the sources lack the 
orthogonality. The both drawbacks prevent a proper 
identification of the convolution kernel, which hin-
ders applications in the biomedical field, for example. 
The obtained shapes of source signals and modelled 
channel responses are distorted because they are pro-
jected into an orthogonal space, in underdetermined 
cases also with lower number of dimensions as 
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needed. So, the obtained results equal unknown linear 
combinations of the original sources and channel 
responses. 

Recently, a novel approach was proposed which 
successfully separates the contributions of sources 
even if they are only close-to-orthogonal and if the 
number of observations is underdetermined (Holobar, 
2004). It is based on the fact that there is variety of 
situations where sources produce only a limited num-
ber of finite symbols (source activity). Being sent 
through the transfer channel, those symbols are con-
volved with the channel responses and they appear in 
the observations as the contributions of symbols. If, 
for example, bioelectric signals are considered, elec-
trocardiograms (ECG) can be modelled with fully 
orthogonal sources (there is no overlap possible be-
tween different types of heart beats, such as normal 
systoles and extrasystoles), while electromyograms 
(EMG) lose orthogonality with increasing contraction 
forces (motor-unit action potentials exhibit more 
overlapping) (De Luca, 1996). On the other hand, 
observing certain types of communications, such as 
CDMA (Madhow, 1998), orthogonality of sources 
may be supposed as well. Moreover, we are not con-
strained to 1D; similar reasoning may be extended to 
2D images. If an image is taken as a MIMO output 
observation, it can also be considered the result of 
some source activities transferred through the model 
channels. In this case, sources produce symbols in the 
form of 2D regions (subimages that contribute to the 
observed image), and are expected to be orthogonal 
(subimages do not overlap). 

Given a number of observations of some sources, 
the contributions produced by the transferred source 
symbols may be characterized by their shape and 
appearance (triggering) instants. Stationarity is also 
supposed both for the sources and for the model 
channels. We have developed a method which makes 
use of the abovementioned facts and detects the trig-
gering instants of the same symbols as they appear in 
the observation. Our method actually compensates 
the detected shape of the observed source contribu-
tions. The approach turned out to be Bayesian opti-
mal (Kay, 1993). 

The paper continues as follows: Section 2 reveals 
the novel method called convolution kernel compen-
sation (CKC) and extends it from 1D to 2D, Section 3 
explains its application to surface EMG signals, while 
section 4 shows the method’s efficiency when applied 
to range imaging in stereo vision. The paper is con-
cluded by Section 5. 

2 DETECTION OF SOURCE-
SYMBOL TRIGGERING 
INSTANTS 

Consider the following data model: 
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where yi(n) stands for the i-th observation, cij(l) cor-
responds to the contribution of length L of the j-th 
source symbol in the i-th observation, and tj(n-l) 
denotes a sequence of triggering instants for this 
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pulses placed at Tj(l) lags, while vi(n) is considered 
i.i.d. white noise independent from the sources. 

It has been shown 0 that Eq. (1) can be trans-
formed into a multiplicative vector form as follows: 
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where subscript e designates extended vectors and 
matrices, Ce contains the observed contributions of 
source symbols,:  
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ye(n) stands for the extended vector of observations, 
and te(n) for the vector of triggering pulses, both at 
lag n:  
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Extended noise vector ve(n) is considered constructed 
in the same way. 

Me from Eqs. (5) means an extension factor. If it 
fulfils the following inequality 

)1( −+≥⋅ ee MLKMM , (6) 
then for K different observed symbols of length L and 
M observations the matrix Ce is of full column rank. 
This condition warranties a successful elimination of 
contributions of Ce, as we are going to show in the 
next subsection. 
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2.1 Convolution Kernel  
Compensation 

Recall Eq. (2). It has a typical MIMO structure. From 
this point of view, Ce is a convolution kernel convolv-
ing te(n) to observations ye(n). Given ye, if we can get 
rid of Ce the triggering instants of unknown source 
symbols, te, would result. We called this process 
“convolution kernel compensation (CKC)”. 

Observe the following expression: 
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where 
eyR  stands for the sample correlation matrix: 
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with 

etR  denoting sample correlation matrix of 
source triggering trains of pulses, and the expression 
σ2I stands for the correlation matrix of noise ve. 

For easier comprehension of derivation, continue 
with the noise-free case. By substituting (8) into (7), 
we see that convolution kernel is eliminated: 
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The expression from (7) is known as Mahalanobius 
distance, which, as it is clear from Eq. (9), yields only 
the information on source triggering instants. Actu-
ally, its value depends on the number of sources ac-
tive in given time instant n. This is why we call it 
activity index. 

Suppose we deal with orthogonal sources and n0 
indicates the time instant where one of them gener-
ates a symbol (its contribution appears in the observa-
tion). Then vector te(n0) is all zero except the element 
which belongs to the generated symbol, say the i-th, 
and equals 1. Besides, matrix 

etR  is diagonal, and so 

is 1−
etR . It is then straightforward that 
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where ri,I denotes the i-th diagonal element of 1−

etR , 
and te,i(n) stands for the train value at lag n for the i-th 
source symbol. Evidently, in Eq. (10) we have ob-
tained a sequence in ,0

p  whose values equal the i-th 
source-symbol triggering pulse train to a constant 
amplitude factor, ri,i. So, all repetitions of that symbol 
are detected. 

The values of activity index indicate those lags ni 
where individual sources contribute their symbols. If 
we select such ni’s that cover all different source con-
tributions, a thorough decomposition is done and all 
source-symbol triggering pulse trains, ti; i∈[1,K], are 
separated. 

Let’s also briefly discuss nonideal conditions. In 
ideal condition with orthogonal source-symbol con-
tributions, no noise and the number of observations 
exceeding the number of different source-symbol 
contributions, the convolution kernel Ce is completely 
eliminated. If any of the ideal conditions cannot be 
met, Ce is not eliminated but only compensated to a 
certain extent. Consequently, the resulting decompo-
sition of source-symbol triggering instants, Eq. (10), 
move off the ideal binary valued pulse train (sample 
values either 0 or ri,i). Hence, the ideal Bernoulli dis-
tribution of any jni ,p  tends to “smear”, so the prob-
ability distribution of “no trigger” values may start 
overlapping the distribution of “trigger” values. A 
more detailed explanation goes beyond the scope of 
this paper, so we only stress here that even in far non-
ideal cases, such as with the signal-to-noise ratio as 
low as 0 dB, confidence level for the detection of 
source-symbol triggering instants remain above 98 %. 
Some additional results are given in the experimental 
part, Sections 3 and 4. 

2.2 Extension to 2D Cases 

As we have pointed out, analogy between source con-
tributions in 1D and 2D observations can be found. 
2D observations, i.e. images, can be interpreted as a 
compositum of several subimages appearing at differ-
ent image co-ordinates. Thus, an image may be seen 
as a convolution of different regions and the corre-
sponding “triggering” unit-samples whose positions 
in 2D determine the region placements within the 
image frame. 

The most obvious way to implement CKC also 
in 2D is vectorization of images. Assume we have set 
of images Ik; k∈[1,M], and that Ik(i,j) denotes the 
value of the k-th image pixel at (i,j) co-ordinates. 
Then 

yk=vec(Ik) (11) 
is a vector whose elements correspond to the con-
catenated rows of image Ik, so that 
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where N1 and N2 stand for image dimensions. Every 
row of pixels is padded by Me zeros (denoted by vec-
tor 0), where Me means the extension factor from 
inequality (6). 

The extension of vector yk from Eq. (11) is per-
formed the same way as for 1D case in Eq. (5). Also 
the other decomposition steps explained in Eqs. (7) to 
(10) can be implemented without modifications. A 
selected n0 now determines location of a certain 
subimage region, with its 2D co-ordinates being 
transformed into n0 by vectorization. The resulting 
sequence in ,0

p  comprises pulses at the positions indi-
cating the repetitions of the subimage from location 
n0. For optimal decomposition results, the number of 
observations, M, meaning different images of the 
same scene here, must exceed the number of different 
subimages. 

It has to be emphasized that in Eq. (12) proposed 
image vectorization leads to a one-row vector, which 
limits the decomposition to subimages of one-row 
width only. At the same time, these subimages can 
extend at most across Me image columns, because the 
CKC extension introduced in Eq. (5) “joins” the in-
formation of Me subsequent samples. If the subimage 
regions of interest span larger areas, images have to 
be vectorized differently. They have to be segmented 
in such a way that the number of rows in every seg-
ment corresponds to the vertical dimension of the 
regions looked for. Every segment row is then taken 
as a separate observation entering the CKC-based 
decomposition. Consequently, only a single image 
segment is decomposed at a time, with no correlation 
to other segments. However, it is also possible for 
several image segments to be included into the same 
decomposition run. In this case, those segments have 
to be padded by Me zeros and concatenated.  

3 APPLICATION OF CKC TO  
THE SURFACE 
ELECTROMIOGRAM 
DECOMPOSITION 

Human body contains different kinds of electrically 
excitable tissues, such as nerves and muscle fibres, 
which, when active, conduct measurable biopoten-
tials, typically of length of several ms. These biop-
tentials can be detected either by inserting invasive 
needle electrodes into the tissue or by placing pick-
up electrodes on the skin surface, above the investi-
gated organ. Although being more selective, the in-
vasive needle electrodes impose several restrictions 

to everyday clinical investigations. Firstly, measure-
ments must be taken in a sterile environment and 
under supervision of trained physicians. Secondly, in 
order to reduce the tissue damage, there is a constant 
need for miniaturization of needle electrodes. This 
significantly increases the costs of manufacturing. 
Finally, the invasive recoding techniques put a lot of 
stress on an investigated subject and increase the fear 
from preventive clinical investigations (Merletti, 
1994).  

The aforementioned problems can be avoided by 
using less selective surface electrodes, providing 
signal processing techniques exists, which are capa-
ble of extracting clinically relevant information out 
of recorded data. Unfortunately, this is not a trivial 
task. Namely, the supportive tissues separating the 
investigated biological sources from the pick-up 
electrodes acts as a low pass filter and hinder the 
information in the detected signals. In addition, ac-
quiring surface signals, contributions of different 
biological sources are detected. When electrical ac-
tivity of skeletal muscles is observed, for example, 
we deal with several tens of sources (so called motor 
units, MU), simultaneously contributing their biopo-
tentials (so called action potentials, AP) to the de-
tected EMG interference pattern (Merletti, 1994). 
The decomposition of the surface EMG into the con-
tributions of different MUs is, hence, a highly com-
plex problem whose solution has been addressed 
with a many different methods. Unfortunately, most 
methods suffer from a drop of performance in case of 
significant superposition of MU action potentials.  

Surface EMG signals can always be modeled 
by Eq. (1), provided they have been acquired during 
an isometric muscle contraction (De Luca, 1996). In 
such a model, observations yi(n) correspond to 
measured surface signals, cij(n) corresponds to the 
action potential of the j-th MU, as detected by the i-
th pick-up electrode, while tj(n) stands for a pulse 
sequence carrying the information about triggering 
times of APs. The length of detected APs, L, de-
pends on the sampling frequency, but typically 
ranges from 15 to 25 samples when the Nyquist 
frequency is made equal to the bandwidth of the 
surface signals. At low contraction levels, different 
MUs discharge in relatively regular but random time 
instants, independently of each other. At higher con-
traction levels, the MUs start exhibiting weak ten-
dency to synchronize, but this synchronization 
hardly exceeds the 5 % of its maximal possible 
value. As a result, tj(n) can be modelled as close-to-
orthogonal random pulse sequences and the theory 
of 1D CKC method can be readily applied to the 
SEMG signals. This is further demonstrated by the 
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experimental results described in the next subsec-
tion. 

3.1 Experimental Protocol 

Nine healthy male subjects (age 26.8 ± 2.2 years, 
height 179 ± 7 cm, weight of 72.1 ± 8.3 kg) partici-
pated to our experiment. Surface EMG signals were 
acquired during isometric, constant-force contractions 
of the dominant biceps brachii muscle. In order to 
provide sufficient number of measurements, M, a 
matrix of 55 pick-up electrodes arranged in five col-
umns and 11 lines (without the four corner electrodes) 
was used while all the contractions were performed at 
5% and 10% of the maximum voluntary contraction 
(MVC) force. The EMG signals were recorded in 
longitudinal single differential configuration, ampli-
fied (gain set to 5000), band-pass filtered (3 dB 
bandwidth, 10 –500 Hz), and sampled at 2500 Hz by 
a 12 bit A/D converter. During signal acquisition, the 
noise and movement artefacts were visually con-
trolled and reduced by applying water to the skin sur-
face. Before any further processing, all the measure-
ments were digitally filtered to suppress the power-
line interference. Recorded signals are exemplified in 
Fig. 1. 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

3

Time [s]

M
ea

su
re

m
en

ts

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

3

Time [s]

M
ea

su
re

m
en

ts

 
Figure 1: Real surface EMG signals recorded during isomet-
ric, low-level (10% MVC) contraction of dominant biceps 
brachii muscle. 

The measured signals were extended according to 
Eq. (5) with extension factor, Me, set to 10. In order to 
reconstruct the MU triggering pulses (Fig. 2), 1D 
CKC decomposition method was applied to the 
measured signals. The identified triggering pulses 
were then used by spike triggering sliding window 
averaging technique (Disselhorst-Klug, 1999) to re-
construct the MU APs as detected by different pick-
up electrodes (Fig. 3 depicts the first decomposed AP 
as it contributes to each of 51 electrodes). Finally, 

convolving the estimated AP shapes with the identi-
fied sequence of MU triggering pulses, the MU AP 
trains were reconstructed and compared to the origi-
nal measurements (Figs. 4.a and 4.b). Rows 1 to 10 in 
Fig. 4 correspond to the ten decomposed MU APs 
depicted in the time instants when they trigger and 
contribute to the measured SEMGs. They are 
summed up in row 4.b). 
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Figure 2: A part of MU triggering pulses (i.e. time instants 
in which the contributions of different MUs appeared in 
observations) reconstructed by the 1D CKC method from 30 
s long real SEMG signals of dominant biceps brachii muscle 
(subject 3, 10% MVC measurement). 
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Figure 3: APs of MU 1 reconstructed by the spike triggered 
sliding window averaging technique (293 averages accord-
ing to the train depicted in Fig. 2, bottom) from given 30 s 
long SEMG observations.  

On average, 3.4 ± 1.3 (mean ± standard deviation) 
and 6.2 ± 2.2 MUs were identified during the contrac-
tions at 5% and 10% MVC, respectively. The exact 
number of active MUs is, of course, unknown. Never-
theless, comparing the energies of the identified MU 
action potentials with the energy of the original signal 
we can approximately estimate the percentage of the 
information that was extracted from the surface EMG 
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signals. The average ratio yielded 71 ± 15%, proving 
that the largest SEMG components were identified 
(Fig. 4). Most of the identified MUs showed decreas-
ing firing frequency over time (presumably due to 
fatigue).  
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Figure 4: Contributions of different MUs identified by the 
1D CKC method from 30 s long real SEMG signals re-
corded during isometric, 10% MVC measurement of the 
dominant biceps brachii (subject 8); a) the originally ob-
served SEMG signal, b) sum of the identified MU contribu-
tions. 

Finally, the shapes of the MU action potentials as 
detected by the different electrodes were stable over 
time and indicated anatomical and physiological MU 
properties, such as location of innervation zones, 
length of the fibres, and muscle fibre conduction ve-
locity (Fig. 3). 

4 APPLICATION OF CKC TO 
RANGE IMAGING 

Human beings depend on stereo vision for observing 
their surroundings. Slight displacement of images 
enables them to reliably detect range information, 
which can be used to their advantage. In computer 
vision, the same effect is used to reconstruct the 
range or depth image of a scene based on two or 
more input images. Range reconstruction can be 
formulated as a matching problem between pixels of 
the left and right stereo image. In general, the prob-
lem doesn't have a unique solution due to lack of 
image texture, occlusions, periodic image structures 
and noise (Šara, 2002). Early algorithms avoided 
those problems by reconstructing only sparse range 
images (Sonka, 1994). Modern applications, such as 
image-based modelling, texture mapping of 3D ob-
jects and similar, require dense range images, where 
disparity of almost all image pixels is known. To 

alleviate this problem, several constraints are com-
monly used. All the surfaces in the scene are sup-
posed to be Lambertian, the geometry of the stereo-
system should be known (calibrated camera) and 
range values are expected to change smoothly, with-
out sharp jumps (Gutierrez, 2003).  

Using the geometric properties of the stereosys-
tem, it can be shown that the matching space can be 
reduced to two epipolar image rows (Jain, 1995). 
Each image row can easily be represented as an ob-
servation yk, extended and decomposed by the CKC 
method, referring to the extension introduced in Sub-
section 2.2. In order to detect disparity of every 
pixel, its position in the left image row is described 
by index n0 and the pulse train in ,0

p  is calculated 
according to Eq. (10) along the right epipolar image 
row. Ideally, the sequence in ,0

p  contains only one 
sharp impulse. This pulse indicate the most probable 
location n1 of the subimage which best corresponds 
in the right stereo image to that selected by index n0 
in the left image (Fig. 5). Disparity of pixel n0 is, 
therefore, calculated as  

Disp(n0) = n0 – n1. (13) 
In order to achieve more reliable and robust re-

sults, the matching is repeated using the right stereo 
image as a starting point. Only pixels with consistent 
left-to-right and right-to-left matches are assigned the 
final disparity value.  

 
Figure 5: An example of a pulse train in ,0

p , as obtained for 

a selected row in the right image. The location of the pulse 
determines the location of a suitable subimage region. 

As we have explained in Subsection 2.2, the 
shape of image regions being matched by our CKC 
approach is determined by the number of image rows 
included in one decomposition run, and by the exten-
sion factor Me. The quality of left-right stereo-image 
matching depends on the appearance of the same im-
age regions in both left and right images. This ap-
pearance may not be equally good for smaller or lar-
ger sections of an image object. So, it can be expected 
that its depth may be misinterpreted owing to inferior 
quality of matching. However, if we observe a part of 
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an object in different sizes, so with different size of 
regions inserted in the CKC-based matching, the in-
formation of best fit can be compared for different 
region sizes. Thus, the most probable disparity can be 
estimated, which is the idea followed by our 2D CKC 
range imaging, as exemplified in the next subsection.  

4.1 Experiments with CKC-based 
range imaging 

All experiments were performed on the test images 
from the Middlebury Stereo Vision Page (Scharstein, 
2002). This test set provides reliable reference data 
and is very popular in the research community, ena-
bling the comparison of different range reconstruction 
techniques. The results of our CKC-based approach 
are depicted in Fig. 6.  

 
a) 

 
b) 

 
c) 

Figure 6: An example of reconstructed range image on the 
SAWTOOTH stereo test set: (a) left input image, (b) refer-
ence range image, and (c) the resulting CKC-based range 
image.  

In Table 1, they are compared to results of the 
standard correlation-based approach using the follow-
ing performance metrics: 

o percentage of image pixels with consistent 
left-to-right and right-to-left matches, 

o percentage of matched pixels whose disparity 
differs from the reference value by more than 
1 pixel, 

o RMS of disparity difference between matched 
pixels and the reference image. 

Table 1: Comparison of disparity values, obtained the 2D 
CKC method and a typical correlation-based approach 
(SSD, 5×5 window). Mean values for four test images 
(MAP, TSUKUBA, VENUS, SAWTOOTH) are shown. 
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Matches 
found 
(%) 

Bad 
matches 

(%) 

RMS dis-
parity 

difference 
(pixels) 

CK
C 91.3 ± 

12.1 1.6 ± 0.4 3.4 ± 2.5 

SS
D

 

78.2 ± 
14.2 2.0 ± 0.5 7.9 ± 4.5 

5 CONCLUSIONS 

We derived a novel method for statistical signal 
processing which blindly separates source 
contributions superimposed in one or more available 
observations. It is based on the correlation of 
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observations, so that the inverse of correlation matrix 
is used to compensate the convolution kernel 
influence. The method tolerates moderate declines of 
sources from the orthogonality, and copes with 
considerable amount of additive random noise. 

1D version of our CKC approach was applied to 
the decomposition of real surface EMG signals. The 
reported results demonstrate the CKC method is not 
sensitive to superimpositions of MU action potentials 
and has high potential in clinical applications for the 
non-invasive analysis of single MU properties. 

In this paper we also derived a 2D version of 
CKC. It makes use of all the benefits mentioned 
above also for image processing. One of possible 
applications is searching equivalent regions in more 
images, whereas the matching on a pair of stereo im-
ages directly imposes a new range imaging technique. 
We exemplified it by constructing range images for a 
set of reference images. The obtained results are 
comparable with other known approaches, but be-
cause of the CKC being rather noise resistant, the 
new way of range imaging obtains a better robust-
ness. 

Recent investigations prove that the CKC per-
formance can be improved by combining it with non-
linear modifications of observations and by non-
linear modelling instead of present MIMO scheme. 
Our research continues in this direction. 
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