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Abstract: Stream adaptation is a key technology for enabling communication between heterogeneous multimedia de-
vices and applications, possibly located in heterogeneous wired or wireless networks. Converting already
compressed multimedia streams into a format suitable for a certain receiver terminal and network can be
achieved by transcoding or by filtering of media streams. Transcoding allows more flexible adaptation opera-
tions but is in general a very CPU-intensive process. Therefore, scalable media formats have been developed,
which allow more efficient adaptation of media streams through media filtering. Several filter techniques for
specific media formats have been proposed and implemented during the last decade. Recently, the MPEG-21
Digital Item Adaptation standard has defined a set of new tools for multimedia adaptation. In this paper, we
provide a comparative study of several adaptation techniques for scalable multimedia streams. We compare
generic MPEG-21-based adaptation techniques with filter mechanisms for specific media formats with respect
to the required processing resources and scalability. We also compare filter techniques with stream adaptation
through transcoding. Moreover, we compare how adaptation of multiple media streams performs on systems
with single-core and with multi-core processors.

1 INTRODUCTION

During the last two decades, enormous advances have
been achieved in the area of multimedia data com-
pression as well as in (wireless) network technolo-
gies. Accompanied by a clear trend towards all-over-
IP multimedia communication, these advances enable
real-time multimedia streaming applications, such
as voice-over-IP (VoIP), video-on-demand (VoD) or
video-conferencing (VC). On the other hand, there
exist many different devices with different hardware
and software capabilities as well as a variety of het-
erogeneous networks with different properties. If
communicating applications do not support the same
media formats, or whenever the datarate of a media
stream does not match the bandwidth constraints of a
certain network, adaptation can be used as a means to
bridge the heterogeneity gap.

In this paper, we focus on media adaptation tech-
niques that can be performed in real-time during an
ongoing streaming session from the media source to
one or several receivers. Such an adaptation can
be performed at the source or at the sink of a me-
dia stream or somewhere in between (Kassler and

Schorr, 2003), and it can be achieved by transcoding
or by filtering of media streams or by a number of
other techniques that we will shortly discuss in Chap-
ter 2. Transcoding allows flexible adaptation opera-
tions but is in general a very CPU-intensive process.
Therefore, scalable media formats have been devel-
oped, which allow more efficient adaptation of me-
dia streams through media filtering, e.g., MPEG-2
(ISO/IEC, 1994), MPEG-4 (ISO/IEC, 2000), Wave-
Video (Fankhauser et al., 1999). Several filter tech-
niques for specific media formats have been proposed
and implemented during the last decade (Yeadon
et al., 1996b; Yeadon et al., 1996a; Keller et al., 2000;
Kassler et al., 2001). Recently, the MPEG-21 Digi-
tal Item Adaptation (DIA) standard (ISO/IEC, 2004)
has defined a set of new tools for multimedia adap-
tation. These tools make it possible to build generic
adaptation engines which can handle arbitrary media
formats.

Several researchers have proposed architectures for
video gateways (Amir et al., 1995) or content adapta-
tion nodes (Kassler and Schorr, 2003), which are lo-
cated in the network between sender and receiver(s)
of a media stream and provide stream adaptation ser-
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vices. Such adaptation nodes must be able to adapt
large numbers of streams in parallel for being prof-
itable. Whereas commercially distributed media gate-
ways already support real-time transcoding of limited
numbers of audio streams, little effort has been spent
so far on integrating media filter techniques for scal-
able media streams into such products. An important
question is how well filter techniques perform with re-
spect to required processing resources. In Chapter 3,
we compare several state-of-the-art adaptation mech-
anisms. We compare MPEG-21 DIA based adapta-
tion techniques with media filters for specific media
formats and with transcoding techniques. Whereas
other performance studies usually concentrate on the
quality degradation caused by adaptation operations,
our study analyses the scalability of the adapatation
algorithms, i.e., how many media streams can be pro-
cessed on an adaptation node in parallel. Vendors and
operators of media gateways might be particularly in-
terested in how currently emerging MPEG-21 DIA
based adaptation techniques perform in comparison
to other filter and transcoding mechanisms. We also
compare how adaptation of multiple media streams
performs on systems with single-core and with multi-
core processors.

2 ADAPTATION TECHNIQUES

The main focus of our performance study lies on
media filter techniques for scalable media formats
that can be applied on an intermediary network node
between the sender and the receiver(s) of a media
stream. Nevertheless, there exist a number of other
adaptation techniques for multimedia sessions. These
are shortly discussed in Section 2.1. Transcoding and
filter techniques are introduced in Section 2.2 and in
Section 2.3.

2.1 Sender and Receiver Based
Adaptation

Some VoD servers store multiple representations of
the same movie clip in their database using differ-
ent media formats or data rates. When adaptation
of an ongoing streaming session is required,stream
switching can be applied to adapt the multimedia
stream (Amon and Pandel, 2003). A drawback of
this sender-driven adaptation technique is that more
storage capacity is needed for each additional pre-
encoded stream representation stored on the video
server. Therefore, the number of different formats and
data rates that can be offered is limited. For broadcast
services, multiple versions of the same multimedia
content can be transmitted simultaneously in several

separate broadcast channels using different media for-
mats or data rates. This technique is calledsimulcast
(Amon and Pandel, 2003). Receiver-driven adapta-
tion of such a streaming session can be achieved by
simply switching to another broadcast channel. The
drawback of this approach is that a lot of network
bandwidth is required (and possibly wasted) if many
different media formats shall be supported. A more
efficient approach isReceiver-Driven Layered Multi-
cast (RLM)(McCanne et al., 1997). Here, different
layers of a scalable media source are streamed to dif-
ferent multicast addresses, and receivers decide about
the quality by joining or leaving respective multicast
groups. The bandwidth requirements for the RLM ap-
proach are lower than for simulcast, but if the num-
ber of layers is high, the overhead caused by packet
headers becomes worse. Newer scalable media for-
mats like fine granularity scalability (FGS) (ISO/IEC,
2000) do not create a discrete number of layers pro-
portional to the number of quality levels. Instead, an
FGS-encoded bitstream can be truncated at any arbi-
trary byte position. This kind of scalability can not
be supported by the RLM approach; media filters (see
Section 2.3) are better suitable for reducing the data
rate of an FGS-encoded media stream.

The above mentioned adaptation techniques have
their raison d’̂etre in certain application scenarios, but
content adaptation nodes inside the network must of-
fer complementary media filtering or transcoding ser-
vices if arbitrary terminals, networks and users with
their respective requirements on media formats and
data rates shall be supported. Nevertheless, it should
be mentioned that stream switching, simulcast and
RLM all perform excellently with respect to process-
ing resources (neglecting bandwidth and storage re-
sources). In the case of stream switching and simul-
cast, no additional processing resources are required
for adaptation. Using RLM, only a small amount of
additional processing power is required for managing
multiple parallel multicast sessions and reassembly of
the media stream.

2.2 Transcoding

Transcoding denotes the process of changing the for-
mat of a media stream by decoding and re-encoding.
Input format and target format may both be com-
pressed formats, or either of them may be an uncom-
pressed format. The codec of the input format may
either be the same as the target codec, or it may be
a different one. In case input codec and target codec
are the same, other properties of the media format are
changed (e.g., frame size, data rate). A simple video
transcoder, for instance, works as follows: a com-
pressed frame is decoded; intermediate operations are
applied on the uncompressed data (e.g., scaling the
frame size); the video frame is re-encoded. In the lit-
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Figure 1: A spatial domain cascaded transcoder.

erature, this kind of transcoder is called aspatial do-
main cascaded transcoder(SDCT) (Sun et al., 2005).
Although this approach is very straightforward, the
computational complexity of such a transcoder can be
very high, especially for video transcoding.

The majority of current video codecs use a block-
based video coding scheme, which applies discrete
cosine transform (DCT) on a block of video pixels,
quantizes the DCT coefficients followed by variable
length coding (VLC) of the quantized values. Further-
more, motion-compensated predictive coding is often
used for reducing the temporal redundancies between
video frames. Thus, the main processing steps inside
an SDCT (as depicted in Figure 1) are: inverse VLC,
inverse quantization, inverse DCT and motion com-
pensation (MC), followed by DCT, quantization (Q),
and finally VLC. Furthermore, the re-encoding step
requires additional Q−1 and DCT−1 operations to al-
low proper motion estimation (ME) and motion com-
pensation.

Several optimized transcoding techniques have
been proposed that allow faster transcoding. For in-
stance, motion vectors of the input stream can often
be re-used for the output stream. Thus, it is not nec-
essary to perform new motion estimation. If the spa-
tial resolution of the picture shall be reduced, motion
vectors must to be down-scaled, which can still be
performed much faster than a new motion estimation
search. Other optimization techniques perform con-
version operations in the frequency domain instead of
transforming the video data into the spatial domain
first. This way, DCT and DCT−1 operations can be
skipped. Vetro et al. provide a quite comprehen-
sive survey of such optimized transcoding techniques
(Vetro et al., 2003).

Sun et al. declare that optimized video transcoders
achieve temporal performance gains of up to 70 per-
cent over simple spatial domain cascaded transcoders
(Sun et al., 2005) (possibly at the cost of reduced
video quality). Even when using such an optimized
video transcoder, the computational complexity is
high in comparison to filter techniques, which are dis-
cussed in the next section. A few video codecs exist
which use wavelet transform instead of block-based
DCT (Fankhauser et al., 1999), but the computational

complexity of these compression algorithms is sim-
ilar to the complexity of codecs using DCT. Many
audio codecs require substantially less processing re-
sources than video codecs, but the requirements for
more complex audio codecs like MP3 or AAC are also
quite high in comparison to filter techniques.

2.3 Media Filtering

Media filtering denotes the process of removing in-
formation from a media stream. Filtering media data
compressed with a conventional coding format is dif-
ficult and may require costly decoding and encod-
ing operations. Scalable media formats like MPEG-4
(ISO/IEC, 2000), or WaveVideo (Fankhauser et al.,
1999) have been developed which allow more effi-
cient filtering without decoding the media stream. To-
day, two techniques are common for creating scalable
media formats:layered codingand fine granularity
scalability coding(FGS). In layered coding schemes,
frame data is spread over several media layers. The
first layer is calledbase layer, the others are calleden-
hancement layers. The base layer is always decodable
without the enhancement layers, but the quality of the
media stream will be low if only the base layer is used
for decoding. The more enhancement layers are avail-
able at the decoder, the better the quality of the me-
dia stream will be. In the FGS encoding scheme, the
media stream is also split into a base layer and an en-
hancement layer. Additionally, the information in the
enhancement layer can be truncated at any arbitrary
byte position while still being decodable.

A media filter removes certain enhancement lay-
ers from a layered bit stream or truncates an FGS en-
coded bit stream, thus reducing the data rate of the
stream. Data rate reduction can also be achieved by
transcoding, but the computational complexity of a
simple filter operation is much lower. A filter only
has to identify where the data belonging to each layer
is located inside the bitstream and to remove some of
the identified parts.SNR (signal-to-noise ratio) filters
allow to scale the quantization accuracy. For video
data, there exist alsospatialandtemporal filtersthat
allow to scale the spatial and temporal resolution of
the video. Furthermore, some scalable video formats
like WaveVideo encode luminance and chrominance
pixel information in different layers, thus allowing to
reduce the SNR of luminance and chrominance inde-
pendently or to remove the chrominance information
completely (Kassler et al., 2001).

MPEG-21 part 7 also known asDigital Item Adap-
tation introduces a novel approach for the adaptation
of media resources. As a basis, the model of aDigital
Itemis chosen, which is composed of structured meta-
data and binary resources. The XML based metadata
is normatively defined using XML Schema and allows
to combine metadata describing the resources itself
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as well as metadata describing user preferences, us-
age environment, usage constraints, quality of service
information and other descriptions with the media re-
sources. A generic adaptation model is specified, that
applies a normative processor as part of a digital item
adaptation engine. Following this model, it is possible
to adapt media encoded with scalable codecs without
the need of codec specific processors. The idea be-
hind that model is the introduction of a management
layer fully based on XML. A certain number of de-
scriptions is needed to manage the resource adapta-
tion, one of them is the so-calledBitstream Syntax
Description(BSD). In principle, this BSD describes
a media resource as a sequence of units and can be
transformed using e.g., XSLT (other transformation
languages like STX are possible as well). The trans-
formed BSD is then fed into the normativeBSDto-
Bin processor, which applies the changes to the me-
dia resource. This normative processor applies only
simple operations like truncation or update controlled
by the BSD. The transformation logic is placed into
the transformation stylesheet, that becomes part of the
metadata of a digital item. Nevertheless, a BSD-based
adaptation engine still needs to know a codec specific
bitstream syntax schema. Therefore, MPEG-21 DIA
also defines the so-calledgeneric BSD (gBSD), which
can be used to describe any binary resource in a codec
independent manner and no codec specific schema is
required for adapting the bitstream.

3 MEASUREMENTS

In next generation networks, content adaptation nodes
(CANs) belonging to the network infrastructure will
offer adaptation services for multimedia streams. The
purpose of the following performance measurements
is twofold. If real-time media streams shall be
adapted on such a CAN inside the network, it is im-
portant to know how much delay is added to the end-
to-end latency of the data transport. Furthermore, we
study the scalability of adaptation services. We are in-
terested in how many streams can be adapted in par-
allel on a single CAN. In the latter context, we also
look at the performance gains that can be achieved
by building such an adaptation service with multi-
processor or multi-core processor technology.

3.1 Test Environment

The examined adaptation mechanisms were imple-
mented as software plug-ins for a generic content
adaptation node and tested on two different hard-
ware platforms. Test system 1 (TS1) used the fol-
lowing hardware configuration: Pentium-4 processor
with 1,8 MHz clock rate, 1 GB RAM, 100 Mbit/s net-

work interface. Test system 2 (TS2) was configured
as follows: Athlon-64 X2 Dual-Core 3800+ proces-
sor, 1 GB RAM, 100 Mbit/s network interface.

We examined codec-specific filter mechanisms for
MPEG-4 BSAC audio and WaveVideo streams, a
gBSD-based MPEG-21 DIA filter for audio streams,
and video and audio transcoders. The gBSD-based
adaptation engine was implemented using the C/C++
based Expat XML parser library (libexpat) and the
Sablotron XSL transformation library (sablot) — both
are developed in open source projects. As a design de-
cision, the event based Simple API for XML (SAX)
was chosen due to performance advantages over the
more complex Document Object Model (DOM) API.
The examined filter mechanisms for WaveVideo were
proposed by (Kassler et al., 2001). Transcoding is an
adaptation operation not explicitly dealing with scal-
able media streams. Nevertheless, transcoding can of
course be applied on scalable and on non-scalable me-
dia streams alike, so it is interesting to know whether
filter mechanisms perform much better than transco-
ding or not. We evaluated a proprietary cascaded au-
dio transcoder and a proprietary spatial domain cas-
caded video transcoder. For encoding and decoding,
the cascaded audio transcoder makes use of standard
audio codecs installed on the Windows XP platform
as well as of the well-known LAME MP3 encoder.
The cascaded video transcoder uses the well-known
XVID codec for MPEG-4 encoding.

3.2 Measurement Results

In this section, we present the results of our perfor-
mance measurements. The following diagrams de-
pict the processing time (measured in microseconds)
per audio/video frame. Each diagram (except Fig-
ure 3 and 7) shows four measurements: two curves
depict the processing time for a single media stream
on TS1 and TS2, respectively. The third and fourth
curve show the total processing time for parallel adap-
tation of multiple media streams on TS1 and TS2,
respectively. In all four cases, the same adapta-
tion operations are applied on each media stream,
and in each test sequence, the adaptation parameters
are changed over time as depicted in the respective
diagram. Please note that for better readability of
the diagrams the depicted processing time values are
smoothed average values (over the last ten frames).

Note also that the measurement includes only the
processing time inside the content adaptation node.
For determining the total delay added to the end-to-
end latency, you have to add the time required for re-
ceiving and sending the data through the CAN’s net-
work interface and the time for which the incoming
data is stored inside the CAN’s jitter buffer. The time
needed for receiving and sending can be easily calcu-
lated for constant bitrate media streams. For instance,

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

84



0

1000

2000

3000

4000

5000

6000

7000

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

frame number

p
ro

ce
ss

in
g

 t
im

e 
(m

ic
ro

se
co

n
d

s)

1 stream, TS1

1 stream, TS2

10 streams, TS1

10 streams, TS2

no filter bandwidth filter (32 kbps) bandwidth filter (16 kbps)

Figure 2: Simple filter for MPEG-4 BSAC audio.

when processing a 64 kBit/s audio stream, the time
required for sending and receiving a frame of 40 mil-
liseconds length through a 100 MBit/s network inter-
face is (64 kBit/s / 25 frames/s) / 100 MBit/s = 25,6
µs. The time for which the incoming data packets are
stored in the jitter buffer is variable. Setting it to zero
will result in loss of information if the network jitter
is more than zero and temporal dependencies between
consecutive frames exist, because adaptation modules
like transcoders must processes such media units in
the correct temporal order. So you usually have to set
the length of the jitter buffer to a value corresponding
to the currently monitored network jitter.

3.2.1 Test Sequence 1: Codec-specific Audio
Filter

In a first test sequence, we evaluate the perfor-
mance of a proprietary codec-specific media filter for
MPEG-4 BSAC audio streams (Figure 2). The orig-
inal stream has a data rate of 64 kBit/s. The test se-
quence has a length of 45 seconds. During the first
15 seconds, the stream is not modified by the CAN.
During the next 15 seconds, the media filter reduces
the data rate of the audio stream to 32 kBit/s. During
the third period, the data rate is reduced to 16 kBit/s.
The average processing time for a single audio frame
(40 ms of audio data) is quite low (290µs on TS1
and 175µs on TS2). Since the filter operation is quite
simple, there is no visible difference (in processing
time) during the first period, where no adaptation was
performed, when compared to the second and third
period. You can also see that each time the filter set-
tings are changed, a short peek occurs which is due to
the fact that the filter has to be re-initialised. A few
additional peeks occur randomly, which are probably
caused by interrupt routines executed by the operating
system.

Moreover, Figure 2 shows that the audio filter has
good scalability properties. We can see that pro-
cessing time is linearly increasing with the num-
ber of audio streams. For instance, filtering ten au-
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Figure 3: Maximum number of adaptation sessions.

dio streams requires 2.8 milliseconds total processing
time on TS1, which is about ten times more than the
processing time per audio frame for a single stream
on TS1. On TS2, processing ten audio streams re-
quires about 950µs, which is 5.5 times the process-
ing time for a single audio stream on TS2. The perfor-
mance gain achieved by using a dual-core processor is
10/5.5−1 = 81%. This performance gain is less than
100 percent, because the total processing time inside
the CAN is not only determined by the CPU, but also
by other hardware components, such as main memory
and PCI bus.

Just for the purpose of demonstrating the maximum
number of adaptation sessions that can be executed in
parallel, Figure 3 shows an additional measurement
with 200 adaptation session on TS2. The average total
processing time per frame is now about 20 ms, which
is 114 times the processing time per audio frame for
a single stream on TS2. Assuming that a single-core
system would require 200 times the processing time
for a single stream, the performance gain through the
dual-core technologie is200/114− 1 = 75%. In Fig-
ure 3, a relatively long and high peek occurs when the
filter is activated because this is done for 200 sessions
at the same time. In a real-life scenario, it is very un-
likely that this happens at the same time for all adap-
tation sessions. Furthermore, we can see that the peek
is not always so high. At the transition from period
two to period three, there is almost no peak visible.

3.2.2 Test Sequence 2: gBSD-based Audio Filter

In the second test sequence, the same audio stream is
adapted in the same way as in test sequence one. But
this time, a generic MPEG-21 DIA adaptation engine
performs the adaptation operation using gBSD meta-
data that is transmitted together with the audio stream.
The result is depicted in Figure 4.

It is not possible to filter more than three streams
in realtime on TS1 because of the high CPU demands
of the gBSD engine. Therefore, we cannot directly
compare the processing times for ten parallel ses-
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Figure 4: gBSD filter for MPEG-4 BSAC audio.

sions on TS1 and TS2. The processing time needed
by this gBSD-based adaptation engine is obviously
much higher than the processing time needed by the
codec-specific filter used in test sequence 1. Actually,
about 90% of the processing time is required for the
XML transformation, whereas the actual filter oper-
ation is quite simple and fast. Furthermore, an obvi-
ous weakness of the current implementation is that the
gBSD processing (including XSL transformation) is
performed even when no filtering is necessary. A fu-
ture version of this implementation may be enhanced
with a fast test at the beginning of the filter operation
to determine whether filtering is necessary at all, thus
reducing the processing time during periods where no
adaptation is required.

Figure 4 shows as well the performance gain
achieved by using a dual-core CPU. Whereas filtering
a single stream on TS2 requires about 6 ms per frame,
the total processing time for ten parallel streams is
only about 24 ms, which is four times the process-
ing time for a single stream on TS2. The process-
ing time for three streams on TS1 (also about 24 ms)
is exactly three times more than the processing time
for one stream on TS1 (about 8 ms). Assuming that
a single-core system with enough processing power
would require ten times the processing time for a sin-
gle stream, a performance gain of10/4 − 1 = 150%

is achieved. A performance gain of more than 100%
may occur if the activities of one processor core lead
to a higher cache hit ratio for the other core. The
Athlon X2 uses the MOESI cache coherency proto-
col (Sweazey and Smith, 1986) which allows a pro-
cessor core to access modifications of shared data in
the other core’s level two cache without accessing the
main memory. The hard disk cache may be another
source of the improved performance. Actually, we
observed that much more paging activity occurs when
applying the gBSD adaptation engine as compared to
the other examined adaptation mechanisms.
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Figure 5: Audio Transcoding.

3.2.3 Test Sequence 3: Audio Transcoding

In a third test sequence, we study the performance of
audio transcoding performed on a content adaptation
node. Here, the CAN receives an audio stream en-
coded with linear pulse code modulation (PCM) at
44.1 kHz, 16 bit per sample, stereo quality. During the
first measurement period, no adaptation is performed.
During the second period, sampling rate and quanti-
zation resolution are reduced. Then we transcode the
stream into G.711, GSM 6.1 and MP3 format, respec-
tively. The required processing time per audio frame
is depicted in Figure 5. Notice that the processing
time in the second and third period is even lower than
the processing time in the first period, during which
no adaptation is performed. This is due to the fact,
that the total size of the audio data is reduced when re-
ducing the sampling rate, so subsequent operations on
this small amount of audio data are performed faster.

An interesting observation is that the transcoding
time for all target formats is lower than the process-
ing time needed by the MPEG-21 DIA filter that was
examined in test sequence two. This is a bit disap-
pointing, since one of the original goals of MPEG-21
DIA was to achieve very fast adaptation through sim-
ple and efficient editing-style operations (ISO/IEC,
2004). However, it can be expected that a higher ben-
efit might be achieved when video scaling based on
MPEG-21 DIA is applied.

Since we had no BSAC encoder plug-in for the
content adaptation node, we cannot directly compare
measurements for BSAC transcoding and BSAC fil-
tering. BSAC encoding requires even more process-
ing resources than encoding MP3. BSAC is based
on the MPEG AAC codec (Advanced Audio Coding).
Only the stage in the codec that encodes and decodes
the already quantized spectral coefficent is different.
The BSAC uses arithmetic coding in a way that the
coeffiecients are represented in a sliced form. By
this means the bitrate can be adapted by removing the
slices partly. The transcoding requires cascaded AAC
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decoder and encoder. The AAC encoder is much more
complex than the decoder, because the encoder usu-
ally contains a powerful spectral analysis to adapt the
quantisation noise to the auditory perception. Scaling
with BSAC does not need complete audio decoding
and re-encoding. Only the bit sliced arithmetic decod-
ing has to be processed to get the exact boundaries for
removing parts of the bitstream. This arithmethic de-
coding makes up about 10% of the total decoding pro-
cess. From these facts, one can estimate the advantage
of filtering (with processing gBSD) over transcoding.
The AAC and the BSAC decoder have similar com-
plexity. The AAC encoder has at least a complexity
that is twice the decoder complexity. Consequently
the transoding requires more than 30 times of the pro-
cessing power than the scaling of the bitrate.

Regarding scalability of the transcoding opera-
tions, we can see that the processing time is again
linearly increasing with the number of audio streams.
For instance, during the fourth period when transco-
ding to GSM 6.1 is applied, the processing time for
a single stream is about 800µs on TS1 and about
450 µs on TS2. Transcoding 10 audio streams into
the GSM 6.1 format requires about 7.5 ms (9.5 times
more) processing time on TS1 and about 2.5 ms (5.5
times more) on TS2. We achieve a performance gain
of 9.5/5.5−1 = 72% by using the dual-core technol-
ogy.

3.2.4 Test Sequence 4: Codec-specific Video
Filter

In a fourth test sequence, we analysed the per-
formance of a media filter for WaveVideo streams
(Kassler et al., 2001). This filter is again a codec-
dependent filter not using MPEG-21 DIA mecha-
nisms. The results of this test sequence are depicted
in Figure 6. Again, no adaptation is performed during
the first period of the test sequence. During the sec-
ond period, the chrominance information is removed
from the stream, and during the third period the data
rate (originally> 1 MBit/s) is reduced to 200 kBit/s.

As in test sequence one, the filter itself does not
require noteworthy processing resources. Simply for-
warding the stream requires about 1 ms per frame (be-
cause of the high data rate), but when adaptation is
actually switched on, the processing time does not in-
crease. Instead, it decreases because of the decreased
frame size. Again, the total processing time is in-
creasing linearily with the number of parallel ses-
sions. For instance, during the second period when
applying the screyscale filter, the processing time for
a single stream on TS1 is about 1.25 ms on TS1 and
about 1 ms on TS2. Filtering ten video streams in par-
allel requires about 14 ms (11 times more) processing
time on TS1 and about 8 ms (8 times more) on TS2.
The performance gain through the dual-core technol-
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Figure 7: Video transcoding.

ogy is11/8 − 1 = 38%.

3.2.5 Test Sequence 5: Video Transcoding

In a last test sequence, we study the performance of
video transcoding. We used a simple spatial domain
cascaded video transcoder implementation (see Sec-
tion 2.2), which decodes the compressed video data
completely and re-encodes the uncompressed data us-
ing the target format. Figure 7 depicts only the pro-
cessing time for a single video stream on TS2. The
video sequence is encoded with the WaveVideo codec
at 20 fps, frame size CIF (Common Intermediate For-
mat = 352∗ 288 pixel). On the CAN, the stream
is transcoded into MPEG-4 format using the XVID
video codec. A maximum of two such streams can
be transcoded in parallel on TS2. TS1 does not have
enough processing power for transcoding multiple
video streams in parallel and in realtime. Even when
transcoding one stream, TS1 does not match the fram-
erate of 20 fps. The processing time per video frame
is about 50 milliseconds per frame on TS2. When us-
ing the smaller QCIF format (Quarter CIF = 176∗ 144
pixel), it is possible to transcode up to five streams in
realtime on TS2 and up to two streams on TS1.

As described in Section 2.2, performance gains can
be achieved by using an optimized video transcoder
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instead of the cascaded video transcoder that is used
by the current CAN prototype. Sun et al. (Sun et al.,
2005) state that highly optimized video transcoders
can achieve 70% faster adaptation than a cascaded
video transcoder, at the cost of reduced SNR. Nev-
ertheless, even a transcoder that is able to perform the
adaptation 70% faster can support only a small num-
ber of parallel video transcoding sessions.

4 CONCLUSION

We have seen that many filter techniques are effi-
cient enough to enable real-time adaptation of multi-
ple media streams in parallel on a content adaptation
node. We have also seen that content adaptation ser-
vices benefit from multi-processor or multi-core pro-
cessor architectures. In general, the gBSD approach
requires more processing resources than media filters
for specific codecs which do not process gBSD meta-
data. Even audio transcoding performs slightly better
than the implemented gBSD filter. Nevertheless, the
MPEG-21 DIA approach has the big advantage that a
gBSD adaptation engine can handle any abitrary me-
dia format (even not yet developed ones) as long as an
appropriate bitstream syntax description of the media
stream is available.

For video streams, the temporal performance delta
between media filters and transcoders is enormous.
In the future, we plan to study the performance of
other video transcoders using optimized video trans-
coding techniques and hardware-supported transco-
ding. Nevertheless, although noticable performance
gains can be achieved by optimized transcoders, it
seems very unlikely that in the near future a media
gateway will be able to transcode high numbers of
high quality video streams in parallel. Video filters
will presumably play a more important role in real-
time video adaptation than transcoding in the near fu-
ture.
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