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Abstract: A new approach to solve the object tracking problem is proposed using a Swarm Intelligence metaphor. It is 
based on a prey-predator scheme with a swarm of predator particles defined to track a herd of prey pixels 
using the intensity of its flavours. The method is described, including the definition of predator particles’ 
behaviour as a set of rules in a Boids fashion. Object tracking behaviour emerges from the interaction of 
individual particles. The paper includes experimental evaluations with video streams that illustrate the 
robustness and efficiency for real-time vision based tasks using a general purpose computer. 

1 INTRODUCTION 

Tracking moving objects is a critical task in 
computer vision, with many practical applications 
such as vision based interface tasks (Turk, 2004), 
visual surveillance (Sánchez-Nielsen, 2005a) or 
perceptual intelligence applications (Pentland, 
2000). 
 Template based approaches track a target through 
a video by following one o more exemplars 
(templates) of the visual appearance of the object.  
 The template tracking problem has been 
classically formulated as a search problem of a 
pattern in the current frame of the video stream that 
matches the exemplars as closely as possible. 
Several solutions have been proposed in this sense to 
deal with the problem. At present, there are still 
obstacles in achieving all-purpose and robust 
tracking systems. Different issues must be addressed 
in order to carry out an effective tracking approach: 
(1) Dynamic appearance of deformable or 
articulated targets, (2) Dynamic backgrounds, (3) 
Following different target motions without 
restriction, (4) Changing lighting conditions, (5) 
Camera motion and (5) Real-time performance. 
 In this paper, a new approach is proposed. The 
solution is based on a Swarm Intelligence paradigm 
and, particularly, on focusing the tracking problem 
under the eyes of a predator-prey metaphor. In our 

tracking context the template is a sample of prey 
pixels that supply the scent of preys to be tracked to 
a swarm of predator particles. Then, using a prey 
scent similarity principle, each predator particle will 
track its prey. As a result, the tracking of the object 
will be an emergent property of the Swarm of 
Particles, where tracking behaviour appears thanks 
to a set of individual and group behaviour rules. 
 In the next section, a review of the tracking 
problem is included. In section 3, a presentation of 
Swarm Intelligence is detailed. Sections 4 and 5 
describe the proposed method. Section 6 includes 
experimental evaluations of the proposal with video 
streams in different contexts and finally, section 7 
discusses the conclusions of this work. 

2 PREVIOUS WORK 

Traditional tracking approaches are based on the use 
of models or templates that represent the target 
features in the spatial-temporal domain. These 
templates can be explicitly constructed by “hand”, 
learned from example sequences or dynamically 
acquired from the moving target. These template 
based approaches are focused on the use of two main 
processes: (i) matching and (ii) updating. 
 Template matching corresponds to the process in 
which a reference template is searched for in an 

221
Antón-Canalís L., Sánchez-Nielsen E. and Hernández-Tejera M. (2006).
SWARMTRACK: A PARTICLE SWARM APPROACH TO VISUAL TRACKING.
In Proceedings of the First International Conference on Computer Vision Theory and Applications, pages 221-228
DOI: 10.5220/0001372002210228
Copyright c© SciTePress



 

input image to determine its location and 
occurrence. Over the last decade, different 
approaches based on searching the space of 
transformations using a measurement similarity have 
been proposed for template based matching. Some 
of them establish point correspondences between 
two shapes and subsequently find a transformation 
that aligns these shapes. The iteration of these two 
steps involves the use of algorithms such as iterated 
closest points (ICP) (Besh et al., 1992), (Chen et al., 
1992) or shape context matching (Belongie et al., 
2002). However, these methods require a good 
initial alignment in order to converge; particularly 
whether the image contains a cluttered background. 
Other approaches, in order to compute the 
transformation that best matches the template into 
the image, are based on searching the space of 
transformations using exhaustive search based 
methods (Rucklidge, 1996). A reduction of the 
computational cost has been introduced by means of 
the use of heuristic algorithms (Sánchez-Nielsen, 
2005b). 
 Template updating is related to the process of 
update of the template that represents the target. The 
underlying assumption behind several template 
tracking approaches is that the appearance of the 
object remains the same through the entire video 
(Tyng-Luh, 2004), (Comaniciu, 2000). This 
assumption is generally reasonable for a certain 
period of time and a naïve solution to this problem is 
updating the template every frame (Parra et al., 
1999) or every n frames (Reynolds, 1998) with a 
new template extracted from the current image. 
However, small errors can be introduced in the 
location of the template each time the template is 
updated and this situation entails that the template 
gradually drifts away from the object (Matthews et 
al., 2004). Matthews, Ishikawa and Baker in 
(Matthews et al., 2004) propose a solution to this 
problem. However, their approach only addresses 
the issue related to objects whose visibility does not 
change while they are being tracked. An 
improvement of the update problem for this situation 
using a second order isomorphism based method has 
been recently proposed by (Guerra, 2005). 
 Other approaches based on deformable templates 
(Yuille et al., 1992) minimize, for each frame, an 
energy function which is specific to the geometry of 
the tracked object. Elastic snakes (Kass et al., 1987) 
minimize a more general energy function, which has 
terms representing elastic and tensile energy to 
ensure that the snake is smooth, and an image-
dependent term that pushes the snake towards the 
feature of interest. The Kalman tracker (Blake et al., 

1993) requires a learned linear stochastic dynamical 
model which describes the evolution of the contour 
to be tracked, assuming that the observation of the 
contour has been corrupted by Gaussian noise. The 
condensation tracker (Isard, 1998) also assumes a 
dynamical model describing contour motion, which 
requires training using the object moving over an 
uncluttered background to learn the motion model 
parameters before it can be applied to the real scene. 
 Currently, computing all the possible 
transformations that best match a template into an 
image and updating the new appearance of the target 
without drifting the tracked object for tracking 
arbitrary shapes with fast and vast movements under 
unrestricted environments for real-time tasks are 
open problems. 
 On the other hand, the main issue of deformable 
template based approaches is that for any given 
application, hand- crafting is required; that is, if it is 
desired to track the motion of lips, a specific energy 
function that is appropriate for lips must be 
designed. Kalman trackers solve this problem, but 
are not adequate to track moving objects with the 
presence of clutter. This problem is addressed by the 
condensation tracker. However, this tracker requires 
a dynamical model of the object to be tracked.  
 In this paper, a new approach is proposed to solve 
the problem of visual tracking of objects with 
arbitrary shapes in cluttered moving scenes for 
different visual applications under unrestricted 
environments. As a result, instead of using region 
template tracking or using salient features in the 
image, or minimizing energy functions, we propose 
to use a Swarm Intelligence metaphor based on a 
prey-predator scheme with a particle swarm of 
predators defined to track a herd of prey pixels using 
the intensity of its scent. Neither complete aspect 
based-templates of the visual target nor dynamical 
model of the motion of the object are required. 

3 SWARM INTELLIGENCE 

Swarm intelligence (SI) (Bonabeau, 2000) is an 
innovative computational and behavioral metaphor 
that takes its inspiration from biological examples 
provided by social insects and by swarming, 
flocking, herding and shoaling phenomena in 
vertebrates (Parrish et al., 1997). SI is an artificial 
intelligence technique based on the study of 
collective behaviour in decentralized, self-organized 
systems.  SI systems are typically made up of a 
population of simple individuals interacting locally 
with one another and with their environment. 
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Although there is no centralized control structure 
dictating how individuals should behave, the main 
characteristic of this approach is that the collective 
behaviour is an emergent phenomen resulting from 
the interaction of the local behaviour of each 
independent individual. Thus, the abilities of such 
natural systems transcend those of individuals. The 
advantages of this metaphor are related, on one 
hand, by the robustness and sophistication of the 
obtained group behaviour and, on the other hand, 
with the simplicity and low computational costs of 
the individual computational elements. 
 Many successful SI techniques have been 
developed during last years, including Ant Colony 
Optimization (ACO), (Dorigo, 1996), or Particle 
Swarm Optimization (PSO) (Eberhart, 1995) as 
metaheuristic optimization techniques. SI simulation 
techniques of animal group behaviour have been 
used in artificial life, computer graphics and picture 
animation. 
  Among artificial life simulations, Boids 
(Reynolds, 1987) is an example of emergent 
behaviour; the complexity of Boids arises from the 
interaction of individual agents (boids, in this case) 
adhering to a set of simple rules. The rules applied in 
the simplest Boids world are: (1) separation, (2) 
alignment and (3) cohesion. This framework, related 
to Steering Behaviours, is often used in computer 
graphics, providing realistic-looking representations 
of flocks, shoals, herds or crowds. 
 In the following two sections, the proposed 
method, using the Swarm Intelligence paradigm, is 
described. 

4 PREDATOR SWARM BASED 
MODEL 

The tracking process is formulated in terms of a 
predator-prey scheme where pixels in a video 
sequence are considered preys and a particle swarm 
cooperates to hunt them.  
 A set of prey samples (pixels) is selected in an 
initial image of the video sequence. Preys are 
characterized by their scent intensity, which is an 
abstraction of their pixel image information: colour 
and gradient magnitude. In order to follow them, a 
swarm with the same number of predator particles is 
generated. Each predator particle will be fed with a 
single sample, and it will adapt its taste preference to 
that prey’s features. During the video sequence, each 
predator will try to satisfy its taste hunting similar 
preys, following their scent. However, as preys may 

disappear due to pixel attributes changing over time, 
predators will be able to adapt their sense of smell in 
order to hunt different preys. This way, each image 
in the video sequence may be understood as a herd 
where each pixel is a potential prey for the swarm, 
depending on its colour and gradient value. 
 Predators are designed as described in the 
following subsections. 

4.1 Swarm Structure 

In order to be able to hunt its favourite preys, each 
particle stores the following information: 

1) Position in the search space. 

2) Unitary velocity in the previous iteration, initially 
zero. 

3) Speed, the amount of pixels that a particle is able 
to travel between two iterations. Speed varies in time 
depending on a particle’s comfortness (Pcf) (see 
below). 

4) Colour bank list (Pcbl), a list of recently seen 
colours that is a representative subset of the colours 
that are similar to the colour of the presented prey 
pixel at initial time. Bank colours are represented by 
CIE L*a*b colour space. Thus, a certain light 
intensity independence may be obtained weighting 
each L*a*b colour vector when two colours (0.1*L, 
1.0*a, 1.0*b) are compared. 

A particle’s comfortness (Pcf) is a measurement of 
its similarity with its neighbour image pixel’s 
colour, given by: 

 PcblmNnmnsimPcf ∈∀∈∀= ,)),(min(  (1) 

Where N is the particle’s neighbourhood, Pcbl is the 
particle’s colour bank list and sim is a similarity 
measurement given by: 

 e
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||
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−
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Where |nc – mc| is the Euclidean distance between 
the two colours in CIE L*a*b* colour space. This 
coefficient measures the quality of prey tracking as 
it is carried out by the predator particle.   
 In order for each particle to keep contact with the 
swarm, three global values are computed using a 
weighted average of each particle’s information. 
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1) Swarm centroid: 
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Where Pi corresponds to the particle’s position and 
Pcfi  represents the particle’s comfortness. 

2) Swarm velocity:  
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Where Pvi  is the particle’s velocity. 

3) Predicted centroid: given the current swarm 
centroid and velocity, the swarm predicts where its 
centroid may lay in the following iteration. 

Using Pcf as a weighting factor, we assure that those 
predator particles that are closer to their objective 
prey are much more relevant to the swarm’s global 
behaviour than those particles that may have lost 
their target. 

4.2 Swarm Behaviour  

The swarm follows a Boid-like movement 
(Reynolds, 1987), preying those high gradient areas 
that best suit its particles Pcbl colours. Each particle 
follows four movement rules, each of which returns 
a velocity vector, where the weighted sum of them 
will characterize the final particle velocity and 
speed. 

4.3 Particle Movement Rules 

Swarm movement and preying behaviour emerges 
from the interaction of each particle’s movement, 
which is defined by the following rules: 
 
Rule 1) Colour & Topography: A particle analyzes 
its closest preys (image pixels in the neighbourhood 
of its initial location) obtaining a vector towards the 
area with higher gradient magnitude and colour 
similarity with the particle’s colour bank.  
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where Pi represents a prey’s position,  P corresponds 
to the current particle’s position, sim(Pci, Pcbl) is 
given by expression (2) for each value stored in the 
particle’s Pcbl, and ∇ Ii is the gradient magnitude at 
pixel i. This element introduces a topographical-
related weight in the equation, giving priority to 
significant image points (high gradient magnitude 
pixels) in the particle movement.  

The particle’s speed is computed by the following 
expression:  
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Where MINS and MAXS are predefined minimum 
and maximum speeds for a given particle. The sum 
is related to a measurement of how well a particle’s 
colour fits in its neighbourhood. The higher the 
value (worse fitting) the faster it will move. 
Increasing its speed, a particle will likely escape 
faster that part of the image, hopefully finding better 
preys guided by the rest of rules.  
 
Rule 2) Grouping: Computes a vector from the 
particle’s position towards the current swarm 
centroid. This rule will avoid scattering, keeping the 
swarm together. A particle uses the swarm centroid 
instead of it closest neighbours positions like Boids 
do, because group splitting is not desirable. It is 
obtained as follow: 
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Where Sc comes from (3). 
 
Rule 3) Alignment: Computes the sum of the 
particle’s current velocity and the swarm velocity. 
With this rule a particle will adapt its movement to 
head towards where the rest of the swarm is heading 
to. Once again, instead of its closest neighbours the 
whole swarm is considered. This rule acts like a 
voting system where the majority decides where the 
swarm will move. 
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where Sv comes from (4) 

Rule 4) Prediction: This rule will direct the 
particle’s movement towards the position where the 
swarm’s centroid will most probably be at the 
following iteration. 
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Where Spc corresponds to the swarm predicted 
centroid position. This way, a particle is able to 
guess the group position in future iterations. 
 
The classic Boids separation behaviour (Reynolds, 
1987) was not included in our swarm model because 
each particle has its own colour information, its own 
prey, so even if two particles share the same spatial 
position they do not have to necessarily move 
towards the same point. 
 Finally, the four resultant velocities are weighted 
and added to a portion of the previous iteration 
velocity for each particle, Pst-1 and multiplied by the 
current particle speed. 

( ) tt PsPswvwvwvwvV ..... 144332211 −++++=   (10) 

5 TRACKING 

The cooperative social interaction leads the swarm 
towards those areas in the image which are similar to 
that where the swarm was created, emerging a non-
structural pattern tracking behaviour where the 
swarm centroid, velocity and speed will respectively 
indicate the tracked object position and relative 
movement information, as seen in figure 1.  
 

 
Figure 1: Object being tracked (preyed) by a swarm. 
White dots represent particles, while the white line shows 
current swarm velocity. 

 Tracking is enhanced using two key ideas: (i) 
individual comfortness optimization and (ii) swarm 
adaptation.  
 Individual comfortness optimization is related to 
a direct application of Particle Swarm optimization 
theory (Eberhardt, 1995); where each particle tries to 
minimize a certain error using local and global 
information based on colour matching and gradient’s 
magnitude. As a result, each particle will move 
towards those prey pixels that best match the tracked 
scent (colour). Note that prey pixel scent intensities 
are proportional to image gradient magnitudes, so 
predators will be attracted to interest points in 
images that match their scent track. 

Figure 2 shows a detail of those points that seem 
to be most interesting to a swarm that is tracking a 
white road line in an automated vehicle based 
context. 
  

 
Figure 2: Swarm perception. A swarm created in a white 
region will be attracted by white colours on high gradient 
magnitude pixels, shown brighter on the image on the 
right. 

 In order to avoid the introduction of small errors 
in the location of the swarm, the swarm is updated 
using a colour bank for each particle. This colour 
bank will allocate a list of similar prey scents, 
avoiding any kind of false averaged values when a 
particle is comparing itself with its neighbourhood 
as seen in section 4.1, using rule 1. 

6 RESULTS 

In order to test the proposed tracking approach, 
different indoor and outdoor video streams related to 
different visual tasks have been used for 
experimental evaluations. Each one of these 
sequences contains frames of 320 x 200 pixels that 
were acquired at 25 fps. All experimental results 
were computed on a P-IV 1.4 Ghz. 
 Prey samples are initialized defining a rectangular 
area on the first image of the sequence. This process 
can be automated, e.g. using cascade classifiers for 
face or hand detection (Anonymous). The swarm, 
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once created and fed with sample prey pixels, is able 
to follow them on a varied number of non-cluttered 
backgrounds and light conditions, as seen in Figure 
3, 4, 5, 6 and 7. 
 The parameters used for the swarm (100 
particles) have been initialized with the following 
values:  W1 (colour & topography) = 1.0, W2 
(grouping) = 0.3, W3 (alignment) = 0.5, W4 
(prediction) = 0.2, W5 (Particle’s velocity at time t-1) 
= 0.1, δ= 10.0, neighbourhood size = 15, minspeed 
= 5.0, maxspeed = 10.0 and colour bank list size = 3.  
 The achieved processing rate is around 15fps. 
Note no optimizations have been implemented.  
In order to evaluate the robustness of the proposed 
approach, we manually annotate the centroid point 
to be tracked and then we measure the Euclidean 
distance from the annotated hand-tracked point and 
the swarm’s centroid to the origin (0, 0) through 
time. Values were measured every ten frames. 
Graphics in figure 3, 4, 5, 6 and 7 illustrate the 
results obtained.  

The dotted line represents the hand-tracked point 
and the continuous line corresponds to the swarm’s 
centroid. It is important to point out that the swarm 
floats freely over tracked objects, so both lines will 
not necessarily coincide. However, they evolve 
similarly when the swarm follows successfully the 
tracked object. 
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Figure 3: The swarm is created over a face, and follows it 
while it moves around. 
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Figure 4: The swarm is created over a girl’s face, and 
follows it while she makes faces and moves around. The 
swarm loses its target when it is hidden almost at the end 
of the sequence. 
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Figure 5: This time, our swarm follows a continuously 
gesture changing hand. It has no problems even when the 
hand meets the face on its movement. 
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Figure 6: The swarm follows a skier, who moves in a fast 
wavy course. Sudden changes in speed (acceleration) and 
direction confuses the swarm, but it is able to follow the 
skier. 
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Figure 7: A car is followed by the swarm while it drives 
away, until it becomes too small for the swarm to follow 
it.  

On Figure 7 the car is lost when the shape that 
characterizes the car is too small and the colour and 
gradient magnitude are not significant for the 
swarm. Background areas with high magnitude 
gradient and significant colours for the swarm may 
also attract it. 
 A swarm, however, may deal with occlusion as 
long as it has tracked an object for some frames and 
it does not alter its movement during occlusion. 
When this happens, rule 1’s resultant vector will not 
be significant. The swarm’s acquired velocity (rule 
3) will allow it to surpass the occlusion. However, if 
the occluding object’s features satisfy the swarm’s 
taste, it may decide to follow it and lose its original 
target. In general, swarms may be confused by those 

areas with high gradient magnitudes and colours 
similar to what the swarm expects. This could be 
solved creating leaders in the swarm, able to follow 
feature points in the tracked object, which would 
have a higher influence over the swarm’s movement. 
 The amount of weights and parameters could be 
seen as a drawback of the proposed method. 
However, once a good set of parameters have been 
computed, the proposal works for a wide range of 
visual applications and arbitrary shape with a vast 
range of movements such those illustrated in Figure 
3, 4, 5, 6 and 7. 

7 CONCLUSIONS AND FUTURE 
WORK 

In this paper, a new tracking method based on a 
Swarm Intelligence Metaphor has been described.  
The main idea of the proposal consists on a prey-
predator scheme, where a swarm of predator 
particles follows pixel scents (colours) similar to 
those that where presented to predators at initial 
tracking time. Image gradient is used as a feature 
regulator, defining the scent intensity, which is 
proportional to the value of the gradient. Thus, 
matching colours located in high interest pixels are 
much more interesting for a given predator. Each 
predator particle’s movement is governed by four 
basic rules. Tracking behaviour emerges from the 
interaction of each particle, where the tracked 
object’s position is defined by the swarms’ centroid.  
    Because our swarms do not follow shapes but 
light intensity independent colours, the resulting 
tracking method is robust under deformations of the 
tracked object, cluttered images and ligh changes, 
being computationally a low cost solution. 

Experimental results show that, with unrestricted 
images, and using general purpose hardware, almost 
real time tracking is obtained (~20fps, tracking with 
100 particles, using 320*200 pixels images in a P-IV 
1.4 Ghz).  Due to its computational simplicity the 
proposed solution is very efficient and highly 
parallelizable. 
 The method’s accuracy is based on the size of the 
tracked object. With a good area to track, as e.g, 
sequences in Figures 3 and 4, accuracy is maximum, 
decreasing  proportionally to the size of the region to 
be tracked, such as in the last frames of the sequence 
corresponding to Figure 7. Future work will include 
comparisons with classic tracking methods. 
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