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Abstract: In a virtual sculpture project, we represent the material to be sculpted as a set of volume elements (voxels). 
Sculpture operations of subtraction and addition are applied on these voxels with tools with various shapes 
and sizes. A major advantage of our system is that sculpted objects can then be used as new tools, because 
the same model is used for both objects and tools. This is a multiresolution model based on a 3D wavelet 
transform. We take advantage of the levels of detail to speed up display and sculpture. However, using 
discrete models for objects and tools leads to three problems: important computation time, aliasing when 
tools are rotated, and how to perform sculpture operations between discrete objects and tools with different 
orientations and sizes. In this paper, we describe our model and then propose solutions to these problems 
that allow real-time performance. 

1 INTRODUCTION 

1.1 Presentation 

We present in this paper a multiresolution model 
based on 3D wavelets to represent a 3D objects as a 
discrete set of volume elements (voxels).  Such a 
discrete representation is of great use in a virtual 
sculpture context as it allows to simulate easily 
sculpture operations such as subtraction or addition 
of material by simply adding or removing voxels. A 
great improvement of our model is its 
multiresolution nature given by the use of wavelets, 
that allows to accelerate display, interaction and 
sculpture operations by the use of levels of detail. 
Another major advantage of our system is that we 
use this model to represent both objects and tools, so 
we can let the user design his or her own tools, by 
sculpting them from basic objects. This is an original 
approach to virtual sculpture, where most of other 
approaches use different models for objects and 
tools. However, if other approaches generally use 
implicit tools (such as ellipsoids), it is because the 
use of discrete tools is a difficult topic, due to three 
problems: 

− First, this is computationally expensive, 
especially when the tool has to be rotated in its 
discrete grid of voxels when the tool orientation 
is changed. 

− Second, there is a degradation of the shape of 

the tool due to aliasing if angles of rotation are 
not multiple of 90 degrees. 

− Third, it is unclear how to perform sculpture 
operations such as subtraction or addition 
between discrete objects and tools with different 
orientations and sizes. 

1.2 Previous Works 

In this paper, we tackle the problem of virtual 
sculpture of 3D objects with tools, both represented 
with spatial enumerations. Such a spatial 
enumeration is a set of volume elements called 
voxels, obtained by sampling the volume of a 3D 
object. It can be seen as a 3D image composed of 
voxels, where a 2D image is an array composed of 
pixels. To make a spatial enumeration from a 3D 
object, several methods have already been 
suggested. The simplest way is a uniform spatial 
enumeration, by regularly sampling the 3D object 
into voxels with the same size. However, a major 
drawback of this representation is the large number 
of voxels needed to represent large objects with 
detailed features. This entails three main problems. 
The first one is the important memory cost to store 
this uniform spatial enumeration. The second one is 
that the display of these objects becomes slower. 
Finally, operations on these objects such as sculpture 
actions or displacements become less and less 
interactive. 
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To prevent these inconveniences, adaptive 
sampling methods have been developed. Libes 
(Libes, 1991) uses an octree to gather groups of 
adjacent voxels having same values to reduce the 
number of elements stored in memory. It’s very 
simple to use and to implement this method. Ferley 
(Ferley, 2002) also works on a n-tree where each 
cell can be divided in 27 ones. This method looks 
like an octree and allows to reach a high level of 
detail. However, for an object with small details, the 
subdivision level of an octree or n-tree will be very 
high. So the processes (construction and use) will be 
slow. 

Several other sampling methods used in collision 
detection propose to modify properties of the voxels, 
such as the size, the orientation or even the shape. 

With the AABB method (Axis Aligned 
Bounding Boxes), Bergen (Bergen, 1997) suggests 
to use voxels with different sizes. Gottschalk 
(Gottschalk, 1996) proposes to modify not only the 
size of the voxels but also their orientation, with the 
OBB method (Oriented Bounding Boxes). Thanks to 
these two methods, the object rendering is optimized 
because the original object shape can be approached 
with less voxels than with a simple uniform spatial 
enumeration. The modeling is finer with OBB tree 
than AABB tree for a same number of bounding 
volumes. However, AABB tree uses less memory 
storage than OBB tree for a same number of 
bounding volumes. Indeed, an OBB is represented 
by using 15 scalars (9 scalars for the orientation, 6 
scalars for position and extent), whereas an AABB 
only requires 6 scalars (for position and extent). 
Moreover, to optimize the modeling of the 3D 
object, these two methods suggest to reduce overlaps 
between bounding boxes and to increase their filling 
by the object, with the less possible boxes. This 
optimization is expensive in processing time, so we 
prefer using a uniform spatial enumeration or an 
octree, because they are faster than AABB and OBB 
methods. 

Liu (Liu, 1988) and Hubbard (Hubbard, 1995) 
propose to replace cubes by spheres in an octree to 
form a spheres tree, because spheres accelerate 
collision detection between objects. Later, Hubbard 
(Hubbard, 1995) (Hubbard, 1996) and Bradshaw 
(Bradshaw, 2004) suggest a finer modeling using 
spheres tree thanks to an approximated medial-axis 
of the 3D object, but this method is slower and more 
complicated than an octree. 

To further improve the use of spatial 
enumeration, several methods of multiresolution 
representations have been proposed. So, processing 
and display times are adapted with the desired level 

of detail. Among these methods, there are octree and 
wavelet decomposition. 

An octree can also be seen as a hierarchical 
representation of 3D object. The maximum level of 
subdivision of the octree defines the maximum level 
of detail of a multiresolution representation. Boada 
(Boada, 2001) defines a section in an octree that 
determines the displayed nodes for a defined level of 
detail. This method is extended to a n-tree by Ferley 
(Ferley, 2002). 

The second multiresolution method uses wavelet 
decomposition. Wavelets are a mathematical tool for 
representing functions hierarchically. In our case, 
these functions are discrete 3D functions that define 
a set of voxels. More information about wavelets 
will be given in the section 2.1. Muraki (Muraki, 
1992) (Muraki, 1993) shows the use of 3D Haar 
wavelets to represent a 3D object. Pinnamaneni 
(Pinnamaneni, 2002) builds a 3D Haar wavelet 
decomposition from a sequence of 1D Haar wavelet 
decomposition in each direction of the 3D voxels 
grid. Wavelet decomposition allows to display a 3D 
object faster according to the level of detail. It also 
permits to drastically cut down the memory cost, 
because high compression ratio can be achieved on 
wavelets coefficients, especially if lossy 
compression schemes are used. 

 
The previously cited methods are about discrete 

representation of 3D objects. Different methods have 
already been proposed to sculpt these kinds of 
objects. 

Ayasse (Ayasse, 2001) performs sculpture 
operations by the use of CSG (Constructive Solid 
Geometry). Complex objects are created by 
successive modifications of the material with a tool 
according to simple operations such as difference, 
union or intersection. However, the object and the 
tool are represented by simple uniform spatial 
enumerations. Moreover, voxels are limited to 
binary values (full or empty). Ayasse proposes to 
reduce the computation time for each sculpture 
operation by using only the effective voxels of a 
movement. This method can be useful because the 
computation times are reduced. However, it doesn’t 
use a multiresolution representation that could 
improve the display performance or computation. 

In the Kizamu project, Frisken (Frisken, 2001) 
uses ADFs (Adaptively sampled Distance Fields) to 
model and to sculpt the material. A 3D object is 
sampled adaptively with a 3D grid according to the 
details of the object. Each grid cell contains a scalar 
specifying the minimum distance to the object 
shape. This distance is signed to distinguish between 
the inside and outside of the shape. 
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To represent an object to be sculpted, Ferley 
(Ferley, 2002) also uses distance fields, stored in a 
“n-tree” hierarchical representation where the 
sampling rate depends on object’s details. The tool is 
an ellipsoid defined by an implicit function that is 
discretized to perform sculpture actions on the 
object. 

Bærentzen (Bærentzen, 2002) proposes the 
Level-Set method to deform the material. This 
method stores distance fields around the exterior of a 
3D object.  The tool is a blob represented by an 
implicit function. 

Raffin (Raffin, 2004) proposes a model of virtual 
sculpture based on a multiresolution representation: 
the octree. The tools are defined as voxels sets, but 
they remain parallel to the axis. 

1.3 Original Contribution 

The main contribution of this paper is to propose a 
discrete multiresolution model for virtual sculpture. 
We take benefit of levels of detail to accelerate 
display, interaction and sculpture operations. As the 
same model is used to represent both objects and 
tools, a major advantage of our system over existing 
methods is that the user can create his or her own 
tools from a previous sculpture. Furthermore, we 
provide solutions to problems inherent to the use of 
discrete objects, such as computation cost, aliasing 
and operations between discrete tools and objects. 
 

The remainder of the paper is organized as 
follows: in section 2, we describe our discrete 
multiresolution model. In section 3, we present the 
tools, with original solutions for computation cost, 
aliasing and sculpture operations. Then, we conclude 
in section 4 and present future work in section 5. 

2 OUR MODEL 

In a virtual sculpture project, we represent the 3D 
objects to be sculpted as a discrete set of voxels to 
easily handle subtraction or addition of material by 
tools. However, a uniform spatial enumeration is 
expensive in processing and display times. Thus, we 
propose a multiresolution model based on 3D Haar 
wavelets. 

2.1 About Wavelets 

On the following example, we explain Haar wavelet 
decomposition on a 1D case. First, consider a 

sequence of p values, where p is a power of two 
(here, p = 4 = 22): 

[ ]0 9, 7, 3, 5X =  
 
Then, by applying Haar wavelet transform, we 

can represent this sequence in terms of a low-
resolution sequence X1 and a set of detail 
coefficients Y1: 

 

[ ]1 9 7 3 5
, 8, 4

2 2
X

+ +
= =⎡ ⎤
⎢ ⎥⎣ ⎦

 

[ ]1 9 7 3 5
, 1, 1

2 2
Y

− −
= = −⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
So, by repeating these operations, we obtain 

several sets of coefficients corresponding to 
different levels of detail, as shown on the following 
decomposition table: 

level of detail 
# 

low-resolution 
coefficients 

 detail 
coefficients 

0 [ 9 7 3 5 ]   
1 [ 8 4 ]  [ 1 -1 ] 
2 [ 6 ]  [ 2 ] 

Thus, the higher the number of the level of 
detail, the less detailed the sequence. The sequence 
obtained by Haar wavelet decomposition has the 
same size as the original sequence. Its coefficients 
are the low-resolution coefficients of the last level of 
detail and the different detail coefficients: 

Original sequence: [ 9 7 3 5 ] 
Final sequence: [6 2 1 -1] 

The extraction of the original sequence from the 
final sequence uses the inverse wavelet transform: 

[ ] [ ]1 6 2, 6 2 8, 4X = + − =  
( ) ( )[ ] [ ]0 8 1,8 1, 4 1 , 4 1 9, 7, 3, 5X = + − + − − − =  

2.2 Definition of our Model 

Similarly, we can use this wavelet transform in a 3D 
case. First, the 3D discrete object is defined by a 
uniform spatial enumeration. Then, by using the 
wavelet transform we build a hierarchical structure 
that stores the coefficients of each level of detail of 
this 3D object. 

We use the hierarchical structure proposed by 
Pinnamaneni [Pin02]. For each level of detail, the 
1D Haar Wavelet transformation is applied in x-, y- 
and z-direction successively (figure 1). 
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Figure 1: 3D Haar wavelet decomposition. 

For each transformation step, we obtain a bloc 
‘L’ with low-resolution coefficients obtained by a 
low-pass filter, and a bloc ‘H’ with detail 
coefficients obtained by a high-pass filter. 

The figure 2 shows a 3D Haar wavelet 
decomposition for a sphere with 6 levels of detail. 
Each voxel contains a density value coded on one 
byte (from 0 for an empty voxel to 255 for a full 
one). 

 
Figure 2: 3D wavelet enumeration for a sphere in 
128x128x128 with 6 levels of detail (from 0 to 5, from left 
to right, and from top to bottom). 

The building time (for wavelet decomposition of 
the 3D image) and the extracting time (for extraction 
of a level of detail from wavelet enumeration) do not 
depend on the kind of 3D object. These times only 
depend on the number of voxels of the initial 
uniform spatial enumeration and on the desired 
levels of detail of wavelet enumeration. Measured 
times are reported on Table 1. Note that an 
improvement will be described in section 2.3 to 
reduce these times. The results given in this paper 
have been obtained on a PC with an AMD 3GHz, 
1GB of RAM and a NVIDIA Geforce FX 5200 with 
128MB video memory. 

Table 1: Building and extracting times for a 3D Haar 
wavelet enumeration with a most detailed level of 
128x128x128 voxels. 

Extracting Building 
(5 levels) Level 0 

(1283) 
Level 1 

(643) 
Level 2 

(323) 
Level 3 

(163) 

0.6975 s 0.7529 s 0.0627 s 0.0019 s 0.0002 s 

2.3 Display 

We display this discrete object with the marching 
cubes algorithm (Lorensen, 1987) that provides a 
smooth surface instead of a set of blocky voxels. 
During display, we take advantage of the 
multiresolution nature of our model given by the 3D 
wavelets to display the more appropriate level of 
detail according to the situation (Distance between 
the object and the point of view, needed frame rate). 
Moreover, we implemented a data cache that 
improves performances by managing the triangles 
generated for each level of detail by the marching 
cubes. Thus, there are two big advantages. First, it is 
not necessary to extract a level of detail from the 
wavelets if it is already present in the cache, thus 
alleviating the computation times presented in 
Table 1. Second, during sculpture actions, it is only 
necessary to recompute the surface for the parts of 
the object modified by the tool. 

In our virtual sculpture system, we use this same 
model to represent both objects and tools. 

3 THE TOOLS 

As stated in the introduction of this paper, the use of 
discrete objects and discrete tools leads to problems 
of computation time, aliasing and sculpture 
operations. We will provide solutions to these three 
problems in the following points. 

3.1 Tools Orientation 

In order to allow any orientation of a tool over the 
object to be sculpted, we have to face the problem of 
discrete rotation of the tool in its 3D matrix of 
voxels. Note that we always apply the rotation to a 
reference object, not to a previously rotated object, 
because it would result in more and more 
deteriorated object.  

3.1.1 Computation of the Rotated Tool 
Bounding Box 

Before performing the rotation of this 3D image of 
voxels, we have to determine its size after rotation. 
We first compute the rotation of its 8 corners. The 
bounding box of the 8 rotated corners gives the final 
size of the image after rotation. Thus, we ensure that 
the rotated tool will be totally enclosed in the final 
bounding box. 
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3.1.2 Direct Method 

In order to perform the rotation of the 3D image of 
voxels, the first idea would be to apply the rotation 
to the voxels of the source image to fill the 
destination image. Thus, for each voxel of the source 
image, we multiply its position by the rotation 
matrix, thus obtaining a rotated position. As the 
coordinates of this position are real numbers, they 
are then truncated to integers. The value of the 
source voxel is then affected to the voxel at this 
rotated position in the destination image. 

However, as we can see on figure 3, this results 
in holes in the final image as many voxels from the 
source can be projected to the same voxel in the 
destination due to truncation error to integers. 
Consequently, a direct rotation of the source image 
is inadequate. 

Initial Image

Final Image

Rotation
Matrix

 
Figure 3: The use of the direct method to compute the 
rotation of a discrete image results in holes in the final 
image. 

3.1.3 Inverse Method 

The solution is to perform the inverse mapping. We 
consider each voxel in the final image and map 
backwards to find the closest voxel in the initial 
image by applying the inverse rotation matrix. In 
this way, every voxel in the final image is found, 
without hole (figure 4). 

However, there are still two problems: 

− First, the computation time of this “brute force” 
rotation is high, as we multiply each voxel 
position of the final image by the inverse 
rotation matrix (Of course, this one is only 
computed once). Computation time increases 
with the size of the 3D image, i.e. with the 
number of voxels. 

− Second, there is important aliasing in the final 
image.zasing. 

 
The aliasing problem will be tackled in the 

following section. In order to reduce computation 
time to allow real-time tool rotation, we propose  an 
optimised rotation method with three improvements 
over the “brute force” method. 

Matrix
Initial Image

Final Image

Inverse
Rotation

 
Figure 4: With the inverse rotation method, no hole is 
obtained in the final image. 

First, we do not compute the inverse 
transformation for all the voxels of the final image, 
but only for 4 voxels defining 3 orthogonal axes. 
Positions of all other voxels are computed by simple 
interpolations from these 4 positions (algorithm 1). 
Computation times have been reported on table 2. 
Moreover, comparisons between computation times 
with brute force method and optimised method have 
been reported on graph 1, for a tool in 16x16x16. 
We can see that with this optimisation the rotation 
time is cut down by 75% compared to the “brute 
force” method. We can see that the computation 
times depend on angle of rotation because the 
number of voxels needed to store the rotated tool 
changes with the angle. 

Second, we drastically cut down the computation 
time by only performing the rotation for the voxels 
of the tool that are in contact with the object to be 
sculpted. Indeed, this rotation is only required for 
internal needs to perform sculpture operations. For 
the display of the tool, we do not compute the 
discrete rotation of the voxels, but we simply use 
OpenGL rotation capabilities with the 
glRotate() function. Thus, we can display tools 
with good rendering quality, without distortion due 
to discrete rotation. 

Third, in order to reduce furthermore the 
computation times, we store the already rotated 

Table 2: Computation times obtained with different methods for rotation of a discrete tool for different resolutions 
(averaged times for various rotation angles). 

 8x8x8 16x16x16 32x32x32 64x64x64 
Brute force 0.1826 ms 1.321 ms 10.17 ms 82.3 ms 
Optimised 0.0456 ms 0.322 ms 2.49 ms 18.1 ms 

Brute force with antialiasing 0.2303 ms 1.628 ms 12.45 ms 102.1 ms 
Optimised with antialiasing 0.0494 ms 0.351 ms 2.55 ms 18.7 ms 
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voxels in a cache structure. Thus, we avoid to 
compute them again when the contact area between 
the tool and the object has changed. We only 
compute the rotation of the voxels of the tool newly 
entered in the area. 

 
Algorithm 1: Discrete rotation of the tool. 

P = voxel in final image 
M = point in initial image 
M = Inverse_Rotation(P) 
 
b = (i,j,k) = final basis 
B = (I,J,K) = initial basis 
B = Inverse_Rotation(b) 
 
dim = voxels number along an axis 
in final image 
 
FOR P.x=0 TO dim.X DO 
  FOR P.y=0 TO dim.Y DO 
    FOR P.z=0 TO dim.Z DO 
      // Get the value of the  
      // voxel M in initial image 
      P = GetValue(M) 
 
      // Next point M 
      M.x = M.x + K.x 
      M.y = M.y + K.y 
      M.z = M.z + K.z 
    END FOR 
 
    // Return along axis K in 
    // initial basis. 
    // M is incremented with J 
    M.x = -dim.Z * K.x + J.x 
    M.y = -dim.Z * K.y + J.y 
    M.z = -dim.Z * K.z + J.z 
  END FOR 
 
  // Return along axis J in 
  // initial basis. 
  // M is incremented with I 
  M.x = -dim.Y * J.x + I.x 
  M.y = -dim.Y * J.y + I.y 
  M.z = -dim.Y * J.z + I.z 
END FOR 

 
Please note that the computation times reported 

on table 2, graph 1 and graph 2 are the times 
observed in the worst cases, when all the voxels of 
the tool have to be rotated (all voxels of the tool in 
contact with the object and no voxel present in the 
cache). In practical cases, the times are much lower. 
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Graph 1: Comparison between computation times for 
brute force method (dashed line) and optimised method 
(solid line) for various rotation angles.  

3.2 Antialiasing 

 
Figure 5: A rotated cube without (a) and with antialiasing 
by trilinear interpolation (b). 
 
A major drawback of the rotation of a discrete image 
is aliasing. The lower the image resolution, the more 
important the aliasing (figure 5a).  
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Graph 2: Comparison between computation times for 
brute force method (dashed line) and optimised method 
(solid line) with antialiasing for various rotation angles. 
  

In order to reduce aliasing, we compute the value 
of a rotated voxel from a trilinear interpolation of its 
8 neighbours in the original image. Much better 
results are obtained (figure 5b) to the price of 
slightly higher computation times (On average, 
+25% for the brute force rotation, +5% for the 
optimised rotation as reported on Table 2). As for 
graph1, we can see on graph 2 that the computation 
times depend on angle of rotation. 
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3.3 Sculpture Operations 

Thanks to the representation of the material to be 
sculpted as a set of volume elements, we can easily 
handle sculpture actions such as subtraction or 
addition of material. Other sculpture actions will be 
studied in future work. A major advantage of our 
method is that the tool used for virtual sculpture has 
the same representation than the material. So, the 
user can create his or her own tools to sculpt another 
3D object. 
 

 
Figure 6: Adding or subtracting material to an object with 
a tool. 

 
During the sculpture operations, a collision test is 

first made between the bounding boxes of the tool 
and the material. If there is a collision, the following 
operations are performed: 

− Find the voxels of the material and the tool 
which are in the collision zone. 

− Extract the value of each voxel of the tool in the 
collision zone by using the discrete rotation. 

− Find which voxel of the tool intersects which 
voxel of the material in this zone. 

If there is intersection between voxels of the 
material and the tool in the collision zone, we 
compute the filling percentage of the voxel of the 
material by the one of the tool. The values of the 
voxels of the material are then modified according to 
the sculpture mode (illustrated in 2D on figure 6): 

− In the “Adding material” mode, if the voxel of 
the tool isn’t null, the filling percentage is added 
to the value of the voxel of the material. If this 
value becomes greater than 255, it is put to 255. 

− In the “Subtracting material” mode, if the voxel 
of the tool isn’t null, the filling percentage is 
subtracted to the value of the voxel of the 
material. If this value becomes negative, it is put 
to 0. 

 
For each level of detail, the triangulated surface 

is rebuilt by marching cubes only for the modified 
parts of the 3D object to improve the computation 
time. 
Examples of sculptures produced by our system are 
shown on figures 7 and 8. 

 

 
Figure 7: Chain with a ball, in 256x256x256, sculpted 
with a spherical tool, a cubic tool and a ring tool in less 
than 10 minutes. 
 

 
Figure 8: Design of a new tool (a) using a ring tool and a 
spherical tool. A more complicated object (b) sculpted in 
less than 5 minutes using the previously designed tool. 

4 CONCLUSION 

We have presented in this paper a model for virtual 
sculpture of 3D objects with tools. Both objects and 
tools are represented by 3D Haar wavelets. This 
multiresolution model permits to avoid speed and 
memory issues inherent to a representation based on 
voxels. The discrete representation as volume 
elements allows to handle easily sculpture 
operations such as subtraction or addition of 
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material. Unlike other existing virtual sculpture 
methods, a major advantage of our model is that the 
tools can freely be created by the user. 

In order to allow any orientation of a tool over 
the object to be sculpted, we have developed an 
algorithm of discrete rotation of the tool in its 3D 
matrix of voxels. In order to enhance real-time 
performance, this algorithm is applied only for the 
voxels of the tool that are in contact with the object 
to be sculpted. Aliasing problems inherent to 
discrete rotation are reduced thanks to a trilinear 
interpolation to the cost of slightly higher 
computation time. 

To verify the applicability of our sculpting 
system, we have conducted many sculpting sessions 
which have resulted in numerous interesting 
sculptures. Some sculptures examples are shown on 
figures 7 and 8, and several other examples can be 
seen on http://www.iut-arles.up.univ-mrs.fr/thon/. 

5 FUTURE WORK 

Many improvements of our sculpture system are 
possible, by investigating open issues such as 
interaction with the object or computation time. 

Concerning interaction, we plan to improve the 
realism of sculpture actions, by adding parameters to 
the voxels to imitate physical behaviour. Enhanced 
sculpture actions will then be possible. 

Interactive computation times will always be a 
challenging issue. In order to accelerate the 
sculpture actions, we plan to take more advantage of 
the levels of detail of the 3D Haar wavelet. We will 
also investigate the use of graphics hardware to 
speed up many parts of our system, such as voxels 
rotation or sculpture actions. 
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