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Abstract: We discuss in this paper a framework for simple and fast ray tracing of point-based geometry. Our solution 
requires neither implicit surface definition nor the use of non-simple rays. Points are simply treated as disk 
primitives. To prevent shading artifacts due to the use of disk representation, each ray is intersected with a 
few disks, and the intersection results interpolated. Further, to speed up the ray-object search, we adapt the 
KD-tree with bounding spheres structure applied in the QSplat point splatting system (Rusinkiewicz and 
Levoy 2000). Our prototype implementation is generally competitive compared to previous point set ray 
tracers. Further it demonstrates considerable speedup over a point set ray tracer based on a conventional 
KD-tree, while producing images with acceptable ray-traced quality. 

1 INTRODUCTION 

A point-based geometry is a geometric model 
represented as a set of discrete points. Each point 
stores information such as color, position and 
normal value. Unlike in a triangle mesh, there is no 
connectivity information stored together with the 
points. Recent advances in 3D scanning 
technologies, as evident in the Digital Michelangelo 
project (Levoy et al 2000), have led to the creation 
of models each represented by millions to hundreds 
of millions of points. Due to the size, it is nontrivial 
to convert such data set to polygon-based or other 
geometric representation schemes. Hence, directly 
using the sampled point set for rendering and 
modeling purposes is an alternative pursued by 
several research groups in recent years. 

The approach more commonly used to directly 
view a point-based geometry is splatting (Pfister et 
al 2000, Zwicker et al 2001). In splatting, the basic 
idea is to iterate through the points in the point set 
and compute its projection onto the screen. A 
splatting-based point set viewer, examples of which 
include QSplat (Rusinkiewicz and Levoy 2000) and 
Pointshop (Zwicker et al 2002), can typically run at 
an interactive frame rate on a computer system with 

more recent consumer graphics hardware. While, it 
is fast and easy to view a point-sampled geometry 
using splatting, it is nontrivial and expensive, using 
the technique, to create advanced accurate lighting 
effects such as shadows and self-shadowing, 
reflection, and global illumination. On the other 
hand, ray tracing, being based on the simulation of 
light rays through a 3D environment, can quite 
easily model such effects. Further, ray tracing is 
easy to parallelize and has been shown to scale well 
with increasing data size (Wald et al 2001). Such 
scalability is not true for splatting. 

However, there is a fundamental issue in 
applying ray tracing to a point set. A point, 
mathematically, has neither volume nor area. A ray 
is thin. Hence, the chance of a thin ray hitting a 
mathematical point is practically nil. To the best of 
our knowledge, there have been four major works 
that investigate the ray tracing of point-based 
geometry and dealt with this problem. Adamson et al 
(2003) and Wald and Seidel (2005) blend individual 
points within a small neighborhood to form local 
implicit surfaces. Wand et al (2003) use cone ray 
instead of thin ray. Schaufler and Jensen (2000) 
trace cylinders (instead of thin ray), and compute the 
intersection depending on the local density of the 
points along the "ray". We do not use local implicit 
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surface as this would be a sort of conversion from 
points to another data structure. In other words, the 
data structure and the intersection process would not 
be simple anymore. Also, we choose not to use cone 
rays and cylindrical rays as they are both more 
expensive than thin rays. Further, the outcome of 
cylindrical-ray intersection test with a point set to 
some extent depends on the ray direction.  

Another issue in applying ray tracing to a point-
based geometry is the sheer size of typical point-
based data set. A spatial data structure needs to be 
imposed on the point set. Schaufler and Jensen 
(2000) reported on the use of octree for their ray 
tracing of point-based geometry. Wand et al (2003) 
discuss on a multiresolution hierarchy that contains 
both points and triangles. Wald and Seidel (2005) go 
in depth into the KD-tree data structure that they use 
for their own work. The advantage of using KD-tree, 
as noted by Havran (2001), is that it adapts 
particularly well to a scene that contains large 
sections of empty space, such as one composed of 
surface-represented or point-sampled objects. 
Hence, it is natural to consider this data structure for 
our work here. 

Given the issues involved in applying ray tracing 
to point-based geometry, the research questions we 
wish to address in this paper can be formulated as 
follows: 

 
- Is there a better method for intersecting a 

ray with point primitives? Such a method 
would have these properties: simple to 
implement, and fast. 

- Can KD-Tree, being the data structure we 
consider most appropriate for our work 
here, be adapted for faster ray traversal of 
point set?  

 
Our contribution in this paper is a framework for 

ray tracing of point-based geometry that addresses 
both of the above research questions. The 
framework attempts to answer the first question by 
refining the approach adopted by Schaufler and 
Jensen (2000). Specifically, it eliminates the need 
for cylindrical rays, but follows much of the rest of 
their approach. Further, the framework attempts to 
answer the second research question by adapting the 
KD-tree with bounding spheres as applied in the 
QSplat point-splatting system. In all, our framework 
maintains the discrete nature of point-based 
geometry, is easy to implement, and has a 
performance competitive with that reported in 
previous works. 

2 APPROACH 

We start with the assumption that we have only a 
few point primitives, P1..P4, to intersect the ray with. 
When many more points are actually available to 
intersect with, we use a spatial data structure to 
reduce the number of intersection tests required. 
Each point, being derived from a scanning process, 
actually represents a small area. Hence, we consider 
each point, Pi,  to be a disk, the center of which is at 
position pi. The disk has a certain radius, ri, and a 
certain normal, Ni. Typically this normal is acquired 
from the scanning process. It could also be 
computed as described in (Pauly 2002). 

2.1 Ray-Point Intersection 

A disk representing a point P has a certain plane 
associated with it. The equation of a plane is given 
by: 
 

0=+++ DzNyNxN zyx  
The parametric form of a ray r is given by: 
 

η≤≤+= ttdotr 0,)(  
 
where o is the ray's origin,  d the direction   
vector, and t the parameter 
The standard ray-plane intersection calculation 

computes t as follows: 
 

η≤≤+= ttdotr 0,)(  
 
Substituting t into the parametric form of the ray, 

we obtain a positional value, I. We check the 
distance, s, between I and pi.  If s > ri, there is no 
intersection with the disk representing the point P. 

If we stop at the first disk that the ray hit, we’ll 
have the same problem encountered by Wald and 
Seidel (2005). They reported that their first attempt 
has been to intersect a thin ray with disk-represented 
point primitives. Disks were seen sticking out, 
especially at curved area.  We note that the cause of 
this problem is that the area representing each point 
actually overlaps, as shown in Figure 1. 

Figure 1: Points as overlapping disks. 
 
To solve the problem, we intersect the ray with 

each of the point primitives, P1…P4. We then 
interpolate the intersection results (eg. position, 
normal) according to the following weighing scheme 
used by Schaufler and Jensen (2000): 
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Our intersection algorithm can successfully 
display a point-sampled geometry such that it  
appears to comprise of continuous surfaces. Two 
example images are shown in Figure 2. More images 
are in Figure 9. 

Of course, a point-sampled geometry typically 
consists of millions of points, not just a few. In this 
paper, we use a tree data structure to cut down on 
the number of points a ray actually needed to be 
tested against. 

Figure 2: Ray Tracing of Point-Sampled Dragon and 
Statue. 

2.2 Ray Traversal 

For efficient ray traversal, we adapt the bounding 
sphere hierarchy used in Rusinkiewicz and Levoy 
(2000). This data structure is basically just a KD-
tree; the fundamental distinction from the usual KD-
tree being that a bounding sphere is computed at 
each node in the tree and used for backface culling 
and level of detail (LoD) selection in the context of 
point splatting. 

There has been other works on multiresolution 
point representations, notably that by Chen and 
Nguyen (2001) and (Wand et al 2003). However, the 
approach in QSplat is closest to the approach 
presented in this paper. 

We use the same algorithm as used in QSplat to 
build up the bounding sphere hierarchy. As the tree 
is built up, properties at interior nodes are set to the 
average of these properties in the subtrees. As in 
QSplat, in our current implementation, tree 
construction is based on axis-aligned bisections; 
hence currently the resulting tree is not guaranteed 
to be complete and balanced. 

Our tree-traversal algorithm has a structure 
similar to that used in the QSplat. Figure 3 shows 
both algorithms. However, there is a fundamental 
difference in the detail; when the projection of a 
bounding sphere onto an image plane is small 
enough, we intersect our ray not against a single 
splat or disk centered at the current node. Instead, to  

Figure 3 : a) QSplat's traversal algorithm, b) our traversal 
algorithm. 

 
avoid disk-related rendering artifacts, we intersect it 
against the children in the node and interpolate the 
intersection results as discussed in section 2.1. 

2.2.1 Optimizing using LoD and Backface 
Culling 

QSplat bases tree recursion decision on projected 
sphere size of current node. A node is subdivided if 
the area of its bounding sphere when projected onto 
the image plane is greater than a threshold. Hence, 
Level of Detail (LoD) generation is automatic with 
different viewpoint. We adapt this idea for our ray 
tracer. Key to efficient implementation of this 
optimization technique is fast computation of the 
projected size of a sphere on the image plane. To do 
this computation, we assume the viewing setup as 
shown in Figure 4 for our ray tracer. 

a) TraverseHierarchy(node) { 
      if (node not visible) 
           skip this branch of the tree 
      else if (node has no grandchildren) 
           draw all primitives in node as splats 
      else if (benefit of recursing further is 

low) 
           draw a splat 
      else  
      for each child in children (node) 
              TraverseHierarchy(child) 
      } 
b) TraverseHierarchy(node) { 
    if (node not visible) 
        skip this branch of the tree 
    else if (node has no grandchildren) 
        intersect ray against point primitives  
        in the node 
    else if (benefit of recursing further is 

low) 
        intersect ray against children of  
        current node  
    else  
        for each child in children (node) 
              TraverseHierarchy(child) 
      } 
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Figure 4: Viewing setup. 

 
We compute the projected size of a bounding 

sphere as follows: For a given ray, we first intersect 
it with the image plane to find t1, the ray parameter 
at the intersection. Next, when we reach a node in 
our tree data structure, we compute the projection, t2, 
of the bounding sphere center onto the ray. Let the 
diameter of the sphere be L. Using similar triangle, 
we then compute the projection size, L1, of the 
sphere on the image plane as follows: 

L1 is then scaled according to the resolution of 
the screen device, and is used to determine whether 
a bounding sphere is far enough so as not to warrant 
further recursion. 

As in QSplat, we use the normal and normal 
cone information stored in a node in our tree to 
determine whether the entire subtree represented by 
the node can be eliminated. If cone faces entirely 
away from the viewer, the node and its subtree are 
discarded. And if for a node, its cone points entirely 
towards the viewer, there is no need to test its 
children for backface culling. 

2.2.2 Optimizing by Using Bounding Box 
Instead of Using Bounding Sphere 

A sphere-shaped bounding volume is natural for 
point set rendering with LoD. But we would only 
process a bounding sphere directly as a terminating 
node when the sphere projection is small enough. 
This would only happen, for camera-object distances 
below a certain limit, when we are low enough in the 
tree. Generally, however, a bounding box is tighter. 
The intuition here, is hence, to use a tighter 
bounding volume closer to the top of the tree. A 
simple informal analysis strengthens the basis of this 
intuition.         

Consider a binary tree. Let A be an interior node. 
Let the children nodes be B and C. Let the children 
nodes of B be D and E, and that of C be F and G. 

The overall cost, tA, of intersecting a ray against the 
node A is 

where cA is the cost of traversing node A, and tB 
and tC are the cost of processing node B and C 
respectively and pB and pC are the probabilities that 
the ray passes through the nodes B and C 
respectively. 

From geometric probability, since a sphere is a 
convex volume, 

where sA, sB, and sC are surface areas of sphere 
A, B and C respectively. 

Let NB and NC are the number of children in B 
and in C respectively.  Expanding (1), 

What we can intuitively infer after a few lines of 
expansion is that the ray shooting cost is dominated 
by the cost of shooting the ray against higher-level 
nodes of the tree. Hence, it suffices to use bounding 
boxes at higher levels in the tree. This should lead to 
better performance. In fact, we confirm on this in the 
next section. 

3 IMPLEMENTATION AND 
RESULTS 

We implemented our code in C++ as a plug-in for a 
modified PBRT, an educational freeware ray tracer 
(Pharr and Humphreys 2004). Compilation was on a 
Pentium PC running on Linux with the O2 flag used. 
However, our actual coding stands to be further 
optimized, especially to take advantage of memory 
cache optimization or CPU-specific SIMD 
instructions as has been done by Wald and Seidel 
(2005).  

The primary point-sampled models that we play 
with for the data in this section are the dragon and 
statue shown in Figure 1.  The dragon comprises of 
3,609,600, while the statue comprises of 4,999,996 
points. It takes 700 ms to build the hierarchy for the  
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dragon model, and 1,022 ms for the statue model. 
The resulting hierarchy data structure comprises of 
5,365,234 points for the dragon, and 7,468,783 
points for the statue, implying a nodes-to-points 
ratio of approximately 1.4. The maximum depth in 
both trees is 17. 

For the actual rendering, we look for 
performance advantage from the use of the bounding 
sphere hierarchy. We employ for each run a total of 
665,911 and we use an image resolution of 400 by 
400 pixels to generate the images as shown in Figure 
1. As shown in Figure 5, with a conventional KD-
tree, tree traversals takes approximately 420 s for the 
statue model, and 110 s for the dragon model. With 
the inclusion of codes for LoD, traversal time for the 
statue drops to about 220 s, while that for the dragon 
drops to about 60 s. With inclusion of backface 
culling, traversal time for the statue drops to about 
200 s, while that for the dragon drops to about 50 s.  
Finally with the inclusion of box-shape bounding 
volume higher in the tree, the traversal time for the 
statue drops to 160s and that for the dragon drops to 
about 32s. Hence, the overall improvement from a 
standard KD-tree, for the data set that we experiment 
with, is in the range between 60% and 70%. Note 
that due to the limited number of data set that we 
experimented with, this number is only rough. 
However, it does indicate the performance 
improvement that one can expect from the bounding  

Figure 5: Ray traversal time. 
 

sphere hierarchy algorithm outlined in this paper. 
The drop in traversal time follows the drop in the 

average number of nodes visited, average number of 
disk-ray intersections and the average maximum 
depth traversed by a ray. The decrease in these 
numbers are shown in Figure 6. Overall drop in 
average number of node visited by a ray is between 
60% and 70%. The drop in the average number of 
ray-disk intersections is about 70%, while the drop 
in the average maximum depth traversed by a ray is 
in the range between 50% and 60%. 

Figure 6: Graphs showing drop in avg # nodes visited, 
avg. # disk-ray intersection and max depth visited. 

 
Taking our experimentation further, we perform 

a sequence of rendering of the dragon model with 
increasing distance from the camera. We do the 
rendering sequence twice, once with LoD on and  
once with LoD off. As shown in Figure 7, the result 
using our hierarchy structure is consistently better 
compared to that using just a KD-tree. 

Distanc
e 

Time (s) 
with No LoD 

Time (s) 
with LoD 

350 158.1 126 
550 146.0 69.4 
750 103.2 45.1 

1500 80.1 20.1 
Figure 7: Traversal time for dragon with varying distance. 

 
We note, however, despite the drop in traversal 

time, traversal still takes up about 85% of the 
rendering time. Hence, more work should be done to 
further improve the performance of the algorithm. 

The performance data reported in this paper is, 
of course, not entirely comparable with that reported 
in other papers; there are differences in coding, 
camera viewpoint, CPU, data sets, ray generation 
policy, image resolution, etc. We can however make 
a (very) rough comparison. Schaulfler and Jensen 
(2000) ray traced a 543,652-points Buddha model in 
36 s. Anderson and Alexa (2003) takes “several 
hours” even for a 150,000-points data set. We render 
a 3,609,600-points Dragon model in full view in 
under 32 s. Still then, Wald and Seidel (2005), 
however, using highly-tuned SIMD memory-
optimized code and dual processors, achieve 5 
frames per second for a 1,309,059 Dragon model. 
Hence, one conclusion that we can make here is that 
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our implementation performance is competitive 
compared to that of other single-CPU 
implementations. 

Apart from performance aspects, we consider as 
well rendering quality. Despite the discrete nature of 
the surface representation, rendering quality is quite 
high. Artifacts where visible along the silhouette are 
due primarily to the multisampling code that we use 
in our program, rather than due to the representation 
or the algorithm that we use. Figure 8 shows 2 
images of the dragon model, one with LoD on and 
the other off. 

Figure 8: Rendering with and without LoD. 

4 CONCLUSION 

We have discussed a framework for ray tracing of 
point-based geometry. The framework addresses two 
issues: how to intersect a ray with a point set, and 
how to accelerate the ray-object search. Our solution 
is simple to implement, as it requires neither 
conversion to implicit surfaces nor tracing of non-
simple ray. Further, it shows a performance 
competitive with that of other point-set ray tracer, 
and produces images with acceptable ray-traced 
quality. 

Of course, more work remains to be done to 
strengthen the research presented in this paper. We 
would like to do more analysis on the optimizations 
that we have presented in this paper. One particular 
question we would like to have answered is: how to 
determine the level in the hierarchy starting from 
which we should use sphere-shape bounding volume 
(rather than box-shape volume). We would also like 
to investigate ways to improve memory usage and 
memory cache performance, and to investigate 
alternative ways, apart from looking at projected 
sphere size, to decide on whether or not to recurse 
further in the ray traversal of the hierarchy structure.  
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