
MODEL-DRIVEN HMI DEVELOPMENT –
CAN META-CASE TOOLS RELIEVE THE PAIN?

Carsten Bock
Dr. Ing. h.c. F. Porsche AG

Stuttgart, Germany

Detlef Zuehlke
German Research Center for Artificial Intelligence DFKI GmbH

Center for Human Machine Interaction
PO Box 3049, Kaiserslautern 67653, Germany

Keywords: Model-driven useware engineering, electronic specification, model-driven HMI development.

Abstract: Today metamodeling and domain-specific languages represent many promising beginnings to create non-
generic tool support for individual modelling tasks. Due to the inherent complexity and numerous variants
of human-machine interfaces (HMIs) model-driven development becomes increasingly interesting for man-
ufacturers and suppliers in the automtive industry. Particularly, the development of powerful user interfaces
requires appropriate development processes as well as easy-to-use software tools. Since suitable tool kits are
missing in the field of HMI development this paper describes the utilization of visual domain-specific lan-
guages for model-driven useware engineering in general and model-based specification of automotive HMIs
in special. Moreover, results from a survey among developers are presented revealing the requirements for
HMI specific tool support. Additionally, experiences with using current meta-CASE tools as well as standard
office applications for creating a visual domain-specific language are presented. Based on these experiences
requirements for future meta-CASE tools are derived.

1 INTRODUCTION

In the past decade the field of control systems rapidly
changed with the continuous advancement of micro-
processors and software technology. The increasing
functionality of human-machine interfaces (HMIs)
coming along with the rapid development of compu-
tational power can be perfectly retraced by the ex-
ample of the automotive industry. In the 1960s av-
erage passenger cars were equipped with an odome-
ter while upmarket cars provided a radio. Soon
tachometers, displays for cooling water temperature
as well as warning messages and further informa-
tion were established in instrument clusters and dash-
boards. Nowadays premium cars feature powerful
driver information systems including e.g. AM/FM
tuners, compact disks, iPods, mobile phones, SMS
message and e-mail support as well as navigation sys-
tems. Moreover, assistance systems can increase pas-
senger safety with the aid of lane departure warning,
blind spot detection and adaptive cruise control.

The list of available features could be easily contin-
ued. However, the central challenge becomes appar-
ent by the examples mentioned above: all function-

ality must be easily accessible for users by means of
intuitive HMIs. Especially in the automotive industry
the development of appropriate HMIs deserves spe-
cial attention since road safety must never be endan-
gered by using HMIs (Rudin-Brown, 2005). There-
fore, within the scope of operating concept develop-
ment both hard- and software engineering play a key
role for user acceptance and market success of inter-
active dialog systems.

In the following section 2 the characteristics of in-
terdisciplinary development processes are outlined.
Moreover, the benefits of model-driven engineering
for complex and networked development processes
are revealed. In section 3 the demand for adequate
computer-based tool support is derived. Furthermore,
the essential requirements for tool support in the field
of HMI development are described. Consequently, in
section 4 the development of tailored tool support is
illustrated. Experiences and lessons learned from a
pilot project as well as the results of a survey among
HMI developers are unveiled in chapter 5. Addition-
ally, the maturity of selected current meta-CASE tools
is discussed. Finally, in section 6 conclusions are
drawn from the outlined experiences.

312
Bock C. and Zuehlke D. (2006).
MODEL-DRIVEN HMI DEVELOPMENT – CAN META-CASE TOOLS RELIEVE THE PAIN?.
In Proceedings of the First International Conference on Software and Data Technologies, pages 312-319
DOI: 10.5220/0001322403120319
Copyright c© SciTePress



2 EFFICIENT DEVELOPMENT
PROCESSES FOR POWERFUL
HUMAN-MACHINE-
INTERFACES

When successfully developing useware1 (Oberquelle,
2002; Zuehlke, 2002a) manufacturers usually have to
face the challenges of ambitious development tasks.
So as to meet these challenges the expertise of on-site
developers as well as the competence of experienced
suppliers is essential. In such heterogeneous process
environments all members of interdisciplinary devel-
opment teams at manufacturers and suppliers must
be able to communicate in an effective as much as
efficient way. Therefore, the precise documentation
of results is crucial for successful cooperation. This
challenge is especially aggravated since developers
from different fields of activity with different knowl-
edge and experience typically use different methods
and tools. Consequently, intuitive notations for all
kinds of information must be established in order to
achieve a common understanding among team mem-
bers. Furthermore, to meet the requirements of in-
terdisciplinary and networked development processes
information must be easily accessible to all develop-
ers involved.

As a result today’s development processes are pre-
dominantly paper-based. Moreover, the diversity of
tools for creating requirement specifications corre-
sponds to the number of methods and interfaces in
development processes. Hence, besides requirement
specifications regularly further documents need to be
exchanged which are created with standard office ap-
plications or imaging software. Even though these
tools can help to increase the productivity in many
fields of application their usage is associated with sig-
nificant problems. In particular such heterogeneous
tool landscapes inevitably result in myriad media dis-
ruptions. These can only be overcome by transform-
ing formats with the help of conversion tools.

Besides transformation related difficulties the most
important consequence is room for interpretations.
Frequently, these interpretations lead to misunder-
standings and cause unrecognized need for action in
late project phases. Moreover, significant effort is
required for transforming paper-based specifications
into virtual prototypes or even the final product. For
instance, the specification of a high-end driver infor-
mation system easily comprises more than 1000 pages
and has to be implemented manually. As a result of

1Useware includes all hard- and software components of
a technical system, which are required for its usage. The ex-
pression useware has been created to demonstrate the equal
importance of human-machine-systems compared to hard-
and software (Zuehlke, 2002b).

this manual work ideas and concepts can only be eval-
uated with simulations or prototypes in relatively late
project phases of the development process.

Experience shows that this is typically insufficient
for an early comparison with customers’ and deci-
sion makers’ expectations (Fitton et al., 2005). More-
over, updating cycles of specifications take so much
time that adjustments to rapidly changing require-
ments can only be accomplished with great efforts.
Since changes can only be incorporated into the prod-
uct in a rush without updating the specification paper-
based documentation typically becomes less impor-
tant in the final phases of development projects. Fi-
nally, this leads to product features whose origin can
hardly be retraced after product launch.

One approach to overcome the above-mentioned
obstacles is a consistently tool- and model-based de-
velopment process. In the field of HMI development
such a process can bridge the gap between require-
ment specifications and virtual prototypes and the fi-
nal product as well. Simultaneously, model-based
concepts allow for increased flexibility, reduced re-
action times and significantly shorter development
times.

3 TOOL SUPPORT FOR
COMPLEX NETWORKED
DEVELOPMENT PROCESSES

Although in the 1980s and 1990s powerful Computer
Aided Software Engineering (CASE-) tools were de-
veloped for the field of software development their
use is still limited to few application areas. This is
mainly a consequence of the UML’s ’one-size-fits-
all’ approach as well as the generic graphical repre-
sentation of its modelling constructs (Schmidt, 2006).
Especially in the field of HMI development CASE-
tools could not establish their market position because
the UML particularly lacks adequate instruments for
specifying Graphical User Interface (GUI) (Blanken-
horn and Jeckle, 2004). Obviously, sophisticated and
established tools like Simulink or LabView are avail-
able in specific fields of application like electronic
control unit (ECU) development.

However, appropriate tool support for HMI de-
velopers is still missing. This is due to the rela-
tively small market volume of this business seg-
ment (Ledeczi et al., 2001). Hence, manufactur-
ers are forced to develop non-generic computer-aided
tools – and toolchains respectively – on their own.
These software tools shall provide support for spe-
cific domains such as HMI development. By means
of non-generic CASE-tools developers shall prefer-
ably be assisted in all phases of a model-driven and
user-centered development process with using spe-

MODEL-DRIVEN HMI DEVELOPMENT - CAN META-CASE TOOLS RELIEVE THE PAIN?

313



Figure 1: Illustrated state chart for HMI specification of an automotive instrument cluster in POWERPOINT.

cific methods and tools such as illustrated state charts
(Hamberger et al., 2003) (Fig. 1).

Despite the apparent demand for domain-specific
tool support and its benefits tenacious obstacles seem
to exist. Especially the high cost of proprietary soft-
ware development and a considerable development
risk hinder the broad acceptance and employment
of domain-specific CASE-tools (Spinellis, 2001).
Therefore, in the following an approach for imple-
menting a CASE-tool for model-driven HMI develop-
ment is presented. This approach shall allow for over-
coming the problem of missing tool support while si-
multaneously enabling manufacturers to face the chal-
lenges of the inherent complexity (Myers, 1993) of
user interface development. Furthermore, opportuni-
ties are provided to meet the requirements stemming
from the multidisciplinarity and the close cooperation
in networked development processes. Metamodelling
offers promising possibilities for the development of
non-generic modelling languages which are tailored
for the individual requirements of a specific problem
domain. In this way the typical problems of misusing
tools in application areas significantly differing from
the originally intended domain can be avoided: huge
effort for adaptation and missing support for famil-
iar development methods including the corresponding
notations (Bock and Zuehlke, 2006).

4 DEVELOPING A
MODEL-DRIVEN TOOLCHAIN
FOR HMI SPECIFICATION

In order to evaluate the applicability of metamod-
elling in HMI development this approach was used
in a pilot project. The aim was to develop specific
CASE-tools supporting developers in the HMI devel-
opment process. For the development of an appro-
priate tool support the following requirements were
particularly important:

• High problem orientation: Tool support must
be extremely problem-oriented so that even non-
experts can read specifications and work with the
specific CASE-tools.

• High abstraction level: The specific CASE-tools
shall make system specification possible on an ap-
propriate abstraction level. This should hide imple-
mentation details from developers such as the hard-
and software architecture of a target platform or the
operating system.

• Intuitive notation: The use of graphical tools shall
allow developers to specify a system by means of a
familiar graphical representation such as illustrated
state charts.

• Formal specification:Developers shall be enabled
to create formal specifications. These shall allow

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

314



for the automated generation of simulations for in-
process evaluation.

Finally, electronic specifications shall be used as a
central communication instrument for manufacturers’
in-house developers and moreover for the communi-
cation with suppliers. The overall aim is to estab-
lish formal specifications as the central backbone of
a model-driven development process.

Define

constraints

Domain-specific 

language
4

Identify 

domain concepts

1 32

Create code

generator/framework

Add graphical

notation

Figure 2: Development process for domain-specific lan-
guages.

At the beginning a small team of domain experts
consisting of experienced HMI developers identified
the essential concepts of the problem domain (Fig. 2).
In this step existing requirements documents such as
specifications and style guides and particularly the
terminology used in daily project work were ana-
lyzed. Thus in the case of driver information systems
single menu screens of the GUI and controls like ro-
tary knobs and pushbuttons represent main concepts
of the problem domain. These concepts could quickly
be identified by the domain experts since they are fre-
quently used for product specification. Additionally,
the events a system should react to were included, e.g.
turning and pressing a rotary knob or pressing and
holding a pushbutton. Thereby all properties of every
single domain concept were defined. Afterwards con-
straints were added to the metamodel in order to re-
strict the degrees of freedom for developers in a rea-
sonable way. Amongst others, the use of some con-
trols was limited to special conditions. For instance,
constraints were defined for limiting the number of
subsequent menu screens after selecting a menu item
to at most one. Additional constraints prescribe a
fixed pushbutton for return actions. In a final step
meaningful pictograms were defined for domain con-
cepts. These pictograms shall enable developers to
intuitively identify domain concepts when using the
visual DSL at model time. The specification of tex-
tual content (e.g. menuitems) and behavior of a user
interface for an instrument cluster with the DSL is il-
lustrated in Fig. 3.

In the pilot project a simulation framework was im-
plemented in JAVA containing a state machine and
base widgets to cover the static parts of simulations.
Consequently, only the dynamic parts, i.e. textual
content and behavior, must be linked to the frame-

work to bring automatically generated simulations to
life. For transforming the platform independent mod-
els created with the visual DSL into platform specific
models or source code a code generator was built.
Thereby the gap between domain models and source
code necessary for simulations or the final product
can be bridged. The main challenge when building
a code generator is to define how information can be
extracted from models and how domain concepts are
mapped onto code.

Consequently, careful metamodelling of domain
concepts allows for full code generation of simulation
code’s dynamic parts. Although thereby error-prone
manual programming cannot be completely elimi-
nated in any case at least a significant reduction is
likely to be accomplished. Finally, executable simu-
lations can be created without any further activities of
developers or programmers by calling functions pro-
vided by a static domain framework.

Figure 3: Visual domain-specific language for GUI content
and behavior.

Subsequently, the potentials of metamodelling and
the efficiency of current meta-CASE tools are dis-
cussed. Furthermore, experiences with building a
toolchain for model-driven HMI development are pre-
sented.

5 META-CASE TOOLS VERSUS
STANDARD OFFICE
APPLICATIONS

In the pilot project the development of non-generic
CASE-tools has proven that metamodelling must be

MODEL-DRIVEN HMI DEVELOPMENT - CAN META-CASE TOOLS RELIEVE THE PAIN?

315



Table 1: Structure of questionnaire for HMI toolchain requirements.

Category Criterion Description

Functionality Flexibility Easy adaptation for other development projects
Modelling course of actions Specification of course of action with illustrated state charts
Familiar notation Developers can specify HMIs with well-known graphical symbols
Usability Usability of modelling tool(s)
Model reuse Possibility to use models in different HMI projects
Model validation Check for deadlocks, basic rules from HMI style guide
Collaboration Developers can work simultaneously on a common database
Role concept Different view on specification data dependent on developer’s role
Layout menu screens Possibility to chance GUI details

Automatic
processing

Specification transformation Transform HMI specification into supplier specific, machine-readable
format

Export standard formats Export HMI specification to WORD, POWERPOINT, PDF etc.
Test automation Automated model-based HMI testing
Usability tests Support for usability tests (e.g. usage frequency analysis)
Simulation Easy creation of virtual prototypes

Infrastructure Process stability Maturity of tools used in toolchain
Use of standards Non-proprietary programming/scripting languages,machine-readable

export formats
Interfaces Possibility to exchange specification data in toolchain via API
Documentation & Support Availability of documentation and support for tools used in toolchain

considered as a promising approach for building tai-
lormade tool support for model-driven development
processes at affordable cost. Therefore, HMI devel-
opers’ requirements for a toolchain were in the fo-
cus of the pilot project. The following discussion on
metamodelling tools – namely the meta-CASE tools
METAEDIT+ 4.0 (MetaCase) and GENERAL MOD-
ELLING ENVIRONMENT (GME) 5 (Vanderbilt Uni-
versity) and in addition the standard office application
V ISIO 2003 (Microsoft) – is based on the general re-
sults of a survey among HMI developers at Porsche.
Moreover, experiences with the development of vi-
sual DSLs for automotive HMI development are pre-
sented.

5.1 Survey Results

The examination of developers’ requirements was the
starting point for building a toolchain which is capa-
ble of supporting HMI developers in all phases of the
development process. In order to develop a deep un-
derstanding of developers’ demands structured inter-
views were conducted by means of a questionnaire
(Tab. 1). Developers had to assess 18 criteria on an or-
dinal scale with the attribute values ”very important”,
”important” and ”less important”. Table 2 shows the
overall result and a prioritization of the criteria.

Most notably the criterion usability was not among
developers’ top priorities. At first glance this result
was surprising, since the development of usable au-
tomotive HMIs is the daily business for developers.
Hence, a strong demand for usable tool support was

Table 2: Prioritized requirements for HMI toolchain.

Priority Feature

Very important Model reuse
Modelling course of actions
Familiar notation
Usability tests
Simulation
Collaboration
Process stability

Important Flexibility
Usability
Model validation
Use of standards
Interfaces
Export standard formats

Less important Specification transformation
Documentation & Support
Layout menu screens
Test automation
Role concept

expected. Nevertheless, this antilogy can be clarified
by stating that developers intuitively assumed POW-
ERPOINT and VISIO as a benchmark. During the in-
terviews developers pointed out repeatedly that every
tool with POWERPOINT’s or VISIO’s look and feel
and interaction patterns would be suitable to be used
in a toolchain. Thus, it has to be concluded that us-
ability is not explicitly claimed as a desired attribute,
but nonetheless stipulated in advance as an essen-
tial and inherent feature of appropriate tool support.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

316



Therefore, usability was explicitely chosen to derive
the taxonomy presented in the following section.

5.2 Experiences

The following discussion is split into the dimensions
expressiveness and usability. Whereas the first di-
mension refers to the amount of problem knowledge
embodied in a domain model the latter incorporates
the effectiveness, efficiency, and satisfaction (Interna-
tional Organization for Standardization, 1998) with
which users can fulfil a task. The evaluation of the
selected meta-CASE tools shows that in general de-
signing graphical DSLs and thus developing specific
tool support is reasonably straightforward in com-
parison to building a CASE-tool from scratch. At
the beginning of this process experienced domain ex-
perts together with a programmer have to identify
and abstract the essential domain concepts result-
ing in a domain metamodel. This process is sup-
ported by the meta-CASE tools METAEDIT+ and
GME respectively. With respect to the expressive-
ness dimension both tools were comparably power-
ful within the scope of the pilot project. The tools’
meta-metamodelling languages MetaGME (Emerson,
2004) (GME) and GOPRR (Smolander et al., 1991)
(METAEDIT+) provide mechanisms for describing
entities, attributes and relationships. Moreover, con-
cepts for information reuse (e.g. modularization and
inheritance) are provided. With these mechanisms
and concepts both meta-CASE tools were capable to
create metamodels that completely reflect the identi-
fied domain concepts. Nevertheless, there is evidence
that further refinement could be advisable. For in-
stance, in METAEDIT+ the possibilities for defining
complex constraints are limited. Thus it was impossi-
ble to define a minimum of connections between enti-
ties ensuring that a certain object is at least connected
with a minimal number of corresponding instances.
Furthermore, it was not possible to define constraints
prescribing that relationships between entities should
depend on specific values of particular object proper-
ties. In this respect GME offers more flexibility due
to the implementation of the UML’s object constraint
language (OCL) (Alanen et al., 2005).

Regarding usability aspects the evaluated meta-
CASE tools reveal potentials for further enhance-
ments both on the metamodelling and the modelling
level. Thus in METAEDIT+ metamodelling must be
carried out textually by means of numerous dialogs.
In contrast GME allows for metamodelling via direct
manipulation of graphical objects using the drag-and-
drop paradigm. Nevertheless, constraints also have to
be defined textually by specifying OCL expressions.
Therefore, integrated graphical support for building
OCL expressions as proposed in the VISUALOCL
project (Fish et al., 2005), (TFS, 2004) would be

beneficial.
Concerning modelling issues – that is to say the

instantiation of metamodels – the evaluation in daily
project work has proven that the graphical represen-
tation of domain concepts was of major impact to
the decrease of HMI developers’ reservation against
the unfamiliar paradigms of DSLs and model-driven
specifications. In particular, the direct manipulation
of objects relevant to their current task context gives
developers the impression of operating with real ob-
jects. Moreover, by means of visual DSLs developers
are enabled to create specifications in an intuitive way
by using objects corresponding to their anticipated
mental model (Jacob, 1986). Consequently, due to
the close semantic distance between domain concepts
and their graphical representation in the DSL the ac-
ceptance of this new approach could significantly be
increased.

Besides the graphical representation of a DSL the
support for established and familiar workflow was im-
portant for acceptance among developers. Thus it
soon became apparent that developers were hardly
willing to resign functionality of traditional specifi-
cation tools. For instance, a frequently used speci-
fication instrument is the insertion of comments and
memos. While on the metamodelling level it is ob-
viously possible to provide a DSL with textual notes
and an appropriate graphical representation the eval-
uated meta-CASE tools did not possess means for
adding graphical comments such as rough sketches
which do not possess any semantic meaning. Unfor-
tunately, developers make heavy use of this feature in
current projects. Experience has shown that in daily
work such tool flexibility is vitally important. There-
fore, tool flexibility can hardly be offset by the indis-
putable advantages of more formal specifications, if
these have to be created with less easy-to-use tools.

Furthermore, developers strongly demanded the
implementation of the widespread operating philos-
ophy of standard office applications. Among other
things this includes object inspectors, tree views for
object hierarchy or discretely colored grids for align-
ment. Moreover also powerful auto layout for com-
plex diagrams would be desirable. While GME meets
the two last-mentioned requirements an editor for the
definition of domain concepts’ graphical representa-
tion is missing. Although GME supports the assign-
ment of bitmap files to abstracted domain concepts
METAEDIT+ with its integrated symbol editor was
considered superior in this respect. But, the features
of this rudimental symbol editor are limited to only
elementary geometric and freeform shapes. Unfor-
tunately, this implementation appears to be too cum-
bersome at first glance. Even at closer inspection
support for complex constraints and dependencies or
nested graphical objects is missing. Finally, besides
GUI related topics also enhanced features for model

MODEL-DRIVEN HMI DEVELOPMENT - CAN META-CASE TOOLS RELIEVE THE PAIN?

317



checking could be desirable. While METAEDIT+
validates at modelling time (online) this has to be
explicitly triggered in GME. None the less, further
features such as deadlock verification for state ma-
chines would provide additional benefits. Although
such functionality could be implemented by leverag-
ing scripting languages or application programming
interfaces integrated solutions would be more com-
fortable.

Moreover, the assessed tools offered no support
for round-trip engineering from models to source and
vice versa. The selected tools also provide only very
limited support for debugging at the model level.
This is a straightforward requirement when aiming
for increasing the abstraction level of product devel-
opment processes. Finally, for a seamless integration
of model-based approaches in real-life projects solu-
tions for version control at the model level is badly
needed.

Meta-modelling

usability

Modelling

usability

GME

MetaEdit+

Visio

appli-

cable

applicable

insufficient

satisfactory

insuffi-

cient

satis-

factory

PowerPoint

Expressiveness

applicableinsufficient satisfactory

Figure 4: Evaluation of metamodelling tools by means of
expressiveness and usability.

Due to the usability restrictions mentioned above
V ISIO was considered as an alternative to specialized
meta-CASE tools. This standard office application
was chosen because its operating philosophy comes
very close to POWERPOINT’s – with its outstanding
usability as stated by HMI developers – while at the
same time offering the possibility to save diagrams
in a XML format. Since serialization is crucial for
the use of machine-readable specifications along a
model-driven development process it is also an impor-
tant criterion for the selection of a suitable modelling
environment. Although VISIO’s limited expressive-
ness began to show almost immediately on the meta-
modelling level developers nevertheless got obviously
used to this modelling tool much faster than to one of

the alternative meta-CASE tools. Figure 4 shows the
results of a survey among developers and program-
mers on the basis of the above-mentioned dimensions.

Accordingly, it must be stated that in the pilot
project none of the evaluated tools could fully meet
the requirements for tool support in our model-driven
HMI development process regarding expressiveness
and usability. While on the one hand METAEDIT+
and GME have proven to be sufficiently powerful for
mapping domain concepts of complex problem do-
mains limitations on the definition of constraints and
graphical representations as well as numerous usabil-
ity issues still remain. On the other hand the stan-
dard office application VISIO fails to meet the ex-
pressiveness demands while in contrast clearly satis-
fying developers’ usability requirements. Although
these findings must be treated carefully – since partic-
ularly VISIO’s strong acceptance might be superposed
by its familiarity in consequence of frequent use in
daily work – the overall conclusion is on the horizon:
for metamodelling to gain broader acceptance meta-
CASE tools need to provide sufficient expressiveness
while simultaneously offering satisfying easy-of-use.

6 CONCLUSION

The aim of the outlined pilot project was to evalu-
ate the applicability of model-based approaches for a
model-driven HMI development process. Experience
shows that metamodelling can provide valuable bene-
fit for improving processes and tool support. The key
factors for possible process improvements are:

• Abstraction: The development problem has to be
solved only once on a high level of abstraction.

• Focus on problem domain:Developers can work
on the development task with the concepts of the
problem domain. Thereby, complexity can be hid-
den – although not necessarily reduced – and de-
velopers can use their familiar terminology.

• Transparency: The knowledge of domain experts
is explicitly kept in the domain-specific language.
Thus, the DSL enables new members of a develop-
ment team to become acquainted with the concepts
and constraints of a specific domain more easily.

In addition to these process-oriented improvements
metamodelling provides manufacturers opportunities
for building individual tool support at arguable cost.
Particularly, when building CASE-tools for well-
defined problem domains productivity gains can be
achieved compared to conventional programming.

Despite these promising beginnings the evaluation
of the selected meta-CASE tools reveals that further
enhancements are possible. While the assessed meta-
CASE tools meet the expressiveness requirements of

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

318



the HMI problem domains better usability for meta-
modellers and modelers in particular is inevitable.
Apart from effectiveness and efficiency the ease-of-
use is most crucial for the acceptance of tools among
developers. Consequently, usability issues deserve
special attention. Hence, the additional incorpora-
tion of carefully selected interaction patterns and the
look-and-feel of standard office applications could be
an important step for achieving the right balance be-
tween expressive power and usability.

Finally, such tool kits would allow developers to
utilize the obvious advantages of model-driven ap-
proaches in their daily development work. This would
enable manufacturers and suppliers to overcome to-
day’s urgent problems with complex and networked
development processes.

REFERENCES

Alanen, M., Lundkvist, T., and Porres, I. (2005). GXL
and MOF: A Comparison of XML Applications
for Information Interchange. Available from:
http://www.tucs.fi/publications/
attachment.php?fname=inpAlLuPo05a.
pdf [cited 11.7.2006].

Blankenhorn, K. and Jeckle, M. (2004). A UML profile for
GUI layout. In Weske, M. and Liggesmeyer, P., ed-
itors, Object-Oriented and Internet-Based Technolo-
gies, Net.ObjectDays 2004, Erfurt, Germany, Septem-
ber 27-30, 2004, pages 110–121. Springer.

Bock, C. and Zuehlke, D. (2006). Non-generic tools support
for model-driven product development.atp – Automa-
tisierungstechnische Praxis, 48(7):42–48.

Emerson, M. (2004). GME-MOF: The MOF-
based GME Metamodeling Environment. In
Model-Integrated Computing Workshop. Avail-
able from: http://www.omg.org/news/
meetings/workshops/MIC 2004 Manual/
03-1 Emerson etal.pdf [cited 13.5.2006].

Fish, A., Howse, J., Taentzer, G., and Winkelmann, J.
(2005). Two visualizations of OCL: A comparison.
Available from:http://www.cmis.brighton.
ac.uk/research/vmg/VOCLTR.html [cited
27.6.2006].

Fitton, D., Cheverst, K., Kray, C., Dix, A., Rouncefield, M.,
and Saslis-Lagoudakis, G. (2005). Rapid prototyping
and user-centered design of interactive display-based
systems.IEEE Pervasive Computing, 4(4):58–66.

Hamberger, W., Deutler, P., and Bouaziz, T. (2003).Audi
Multi Media Interface (MMI) – Von der Idee zum Pro-
dukt: Interdisziplin̈ar – Prozessorientiert – Modellrei-
hen̈ubergreifend, volume 1789 ofVDI-Berichte, pages
1175–1191. VDI.

International Organization for Standardization (1998). ISO
9241-11:1998 : Ergonomic requirements for office
work with visual display terminals (VDTs) – Part 11:
Guidance on usability.

Jacob, R. J. K. (1986). A specification language for direct-
manipulation user interfaces.ACM Trans. Graph.,
5(4):283–317.

Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nord-
strom, G., Sprinkle, J., and Karsai, G. (2001). Com-
posing domain-specific design environments.Com-
puter, IEEE, 34(11):44–51.

Myers, B. A. (1993). Why are human-computer inter-
faces difficult to design and implement? Techni-
cal Report CMU-CS-93-183, Computer Science De-
partment, Carnegie Mellon University, Pittsburgh, PA,
USA.

Oberquelle, H. (2002). Useware Design and Evolution:
Bridging Social Thinking and Software Construction,
pages 391–408. MIT-Press, Cambridge, London.

Rudin-Brown, C. (2005). Strategies for reducing driver dis-
traction from in-vehicle telematics devices: Report on
industry and public consultations. Research Report
TP 14409 E, Transport Canada, Road Safety and Mo-
tor Vehicle Regulation Directorate.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering.Computer, 39(2):25–31.

Smolander, K., Lyytinen, K., Tahvanainen, V.-P., and Mart-
tiin, P. (1991). MetaEdit: A flexible graphical environ-
ment for methodology modelling. InCAiSE ’91: Pro-
ceedings of the third international conference on Ad-
vanced information systems engineering, pages 168–
193, New York, NY, USA. Springer.

Spinellis, D. (2001). Notable design patterns for domain-
specific languages.J. Syst. Softw., 56(1):91–99.

TFS (2004). VisualOCL – Editor plugin for Eclipse. Avail-
able from: http://tfs.cs.tu-berlin.de/
vocl/ [cited 25.7.2006].

Zuehlke, D. (2002a). USEWARE – Herausforderung der
Zukunft. atp – Automatisierungstechnische Praxis,
44(9):73–77.

Zuehlke, D. (2002b). Useware forum. Available
from: http://www.useware-forum.de [cited
13.6.2006].

MODEL-DRIVEN HMI DEVELOPMENT - CAN META-CASE TOOLS RELIEVE THE PAIN?

319


