A GENERIC MODEL FOR CO
A MULTILEVEL MODELLI

Jan Petters
Agder Univers

NNECTING MODELS IN
NG FRAMEWORK

en Nytun
ity College

Faculty of Engineering, Agder University College
Grooseveien 36, N-4876 Grimstad, Norway

Keywords: Megamodel, multilevel modeling, metamodelin

g, model weaving, model border.

Abstract: In science and elsewhere models are weaved together forming complex knowledge structures. This article

presents a generic way of connecting models
tilevel modelling framework. One model can

with model borders both vertically and horizontally in a mul-
be connected vertically to several models allowing a model

element to be an instance of several metaclasses and different views can then be managed in an integrated
way. Models at the same level can also be connected by defining the correspondence between model elements.
The idea behind the approach is to break model architectures down to elementary building blocks so that all
parts that might be of interest become explicit and accessible.

1 INTRODUCTION

In this article some of the ideas behind a metamod-
elling framework called Semantic Integration World
Animation (Siwa) is presented; this framework is un-
der development at Agder University College and it
is meant for learning and experimentation; it is an
offspring of the SMILE project (Nytun et al., 2004)
which is more directed towards integration of exist-
ing language technologies.

MOF metamodel (OMG Editor, 2003) architec-
tures have a pyramid structure, while a Siwa architec-
ture is like a directed graph with models as nodes. The
graph is not cyclic except maybe for the top models
(e.g. levelVB in the UML metamodel architecture).

OMG has issued a request for revision of MOF
2.0 (OMG Editor, 2006a), some of MOFs restrictions
are becoming increasingly burdensome. MOF does
not allow properties to have an independent existence
and multiple classification is not possible - Siwa can
be used without these restrictions. It will also be pos-
sible to specify architectures that are not complete,
e.g. that a metamodel is missing; this opens up for

but they are not the main issue in this article.

A model is to a large extent defined by the role it
plays in relation to what it models; two basic roles are
defined by Thomas #hne (Kuhne, 2005)tokenand
type. A token model captures the singular aspects,
while a type model captures the universal aspects of
what it models. A clasBui | di ng might capture the
universal property that buildings have owners. An ob-
ject that models one specific building is a token model
for this building, e.g. it might capture the name of the
owner. The focus of this article is a technique for con-
necting models, the followingnodel configurations
are to be supported:

Vertical (type model) This is the type model role

which spans two model levels (some would call this
thei nst anceOr -relation). Several models can
be type models for the same model instance; this is
not supported by MOF.
There are variations of this relationship, e.g. a
model instance might actually have been instanti-
ated from the model or the model is describing only
some aspects of the model instances.

Horizontal (token model) We see the need for a

data analysis, reasoning about models and in some model-to-model relationship which do not span a

cases the framework might automatically suggest a
metamodel.

Some models are static structures and some are ex
ecutable models. We call the executable models
mantic engines, some sematic engines are presente

302

Pettersen Nytun J. (2006).
A GENERIC MODEL FOR CONNECTING MODELS IN A MULTILEVEL MODEL

level border, but is between two models that are

considered to be on the same level. Several mod-
- els can in different way and with different level of

granularity and detail model the same thing; these
d models are related with this relationship.

LING FRAMEWORK.

In Proceedings of the First International Conference on Software and Data Technologies, pages 302-311

DOI: 10.5220/0001322303020311
Copyright © SciTePress

A GENERIC MODEL FOR CONNECTING MODELS IN A MULTILEVEL MODELLING FRAMEWORK

that all parts that might be of interest become explicit
and accessible; the framework should of course allow
the user to view an architecture at different levels of

Building Concept

Topographic maplﬁ Building registerﬁ g_ranularity and_ with differe_nt concrete syntaxes that
: hide the underling complexity.
— token- : Using the example in Fig. 1: objecBui | di ng is
TMBuilding ™/ e 1For Building a structure that contains a slot called with value
id id "bl" and a slot callecddwner with value" Tont';
shape owner we consideBui | di ng, i d andowner to be sym-
token- bols that forms arupper borderto the type model
ModelFor Jevel Na 1 containing clasBui | di ng; we actually have two

borders (or border sides), one for each models being

type- type- level N connected, this allows different number of symbols
ModelFor type- ModelFor at the borders and it allows symbols to have different
ModelFor names.

< :Building Sec. 2 presents our multilevel (meta-)modelling
id = “b1” framework and explains how models are connected.
“Tom’s perception owner = “Tom” In Sec. 3 we mention some related work. Sec. 4
of the Building” presents an example of how Siwa can be used to do
testing of data consistency. We summarize and de-
Figure 1: Example of token and type model. scribe some research directions in Sec. 5.

Fig. 1 demonstrates, as we understand it, both to-
ken and type model roles (the UML notation has been
used in an ad hoc fashion). 2 THE SIWA APPROACH

The transitive property of the token model role can
also be seen in Fig. 1: thEMBui | di ng classisa Lately the term megamodel has been used to name
token model for clas8ui | di ng which is a token a model of MDE itself, e.g. by &ivin and
model for "the concept of a building”, consequently Favre (J. Bzivin, 2004; Favre, 2005). Such a mega-
TMBUI | di ng is also a token model for "the con- model describes the concepts of MDE - concepts like
cept of a building”. It seems to be a growing agree- model, metamodel and transformation. Fig. 2 shows
ment (Kitlhne, 2005; Favre, 2004a) that a metamodel our preliminary megamodel which has been inspired
is a type model for another model which again is a by Favre (Favre, 2005).
type model for its model instance. These models are
forming a stack structure where you don’t have the
same transitivity as for the token model role. Sub-
classing is a transitive relation and should not span a
level border (Kihne, 2005; Favre, 2004a).

UML has no diagram type that truly spans sev-

elements

elementOf

eral (metamodel) levels; UMLobject diagrams | PhysicalSystem | | AbstractSystem |

showsinstance specificationgnstances of metaclass

I nst anceSpeci fi cati on) and also classes are sets

allowed; an object diagram is placed on the model | Digitaisystem | | Set -
£

level (ML). As the name indicates, an instance speci-
fication is a specification and it might in fact specify
properties of several instances at the model instance

&

level (VD). According to this understanding, an object | SiwaWorld |0%| SiwaModel |
diagram is correctly placed dviL because an instance system- | #| model
specification is not "truly” in a horizontal relation to UnderStudy (sus)
an instance oM. In our view, if a model is in a hor- !
izontal relation to another model, then both models | modetoy |
are modelling "exactly the same specific thing” even
if the number of details and precision might be differ-
ent; the modgls should consequently be placed on the | horizontal | | vertical ‘
same level since they model the same thing.

The idea behind our approach is to break model)
architectures down to elementary building blocks so Figure 2: Megamodel.

303

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

As we can see from Fig. 2 basically everything is sets; since there is no reference tBescri pt or,
a system In (Marcos Didonet Del Fabro, 2005b) a instantiation of these associations might in some cases
system is described as a group of interacting, interre- lead to ambiguous situations when it comes to finding
lated, or interdependent elements that form a complextheir description on the level above. Fig. 3 has two
whole. types of symbols:

Abstract systemsan only be described since they are pescriptor This symbol type is used to indicate clas-
not to be found in theoncrete physical systemare sification and it is used to establish a vertical rela-
concrete and manifested "in reality”. We consider a tjon, e.g. structure describing a building callet
computer systerto be a special type gfhysical sys- might have a descriptor call&ui | di ng.
temsince they are manifested in computer hardware. Identifier An instance of dent i fi er is labelin

The Siwa framework supports the notion of levels € £ th del beina defined and f ng
like you find it in metamodelling architectures defined :np?(;:agti%e? '];g(r) tﬁis iltrr]l?ctuerclanee ;n a#ri]gggtriﬁearls
%&';A%V'zﬂggﬁi%? iggd}{;pzetém(;glz(\)/gIanrlgtgm)ed— bl might refer'ence structure that describes a build-
elling, we prefer the terrmultilevel modelling frame- !39 V‘.’]!Fh tha_tll(é._ Anott;er example would behan
work since an arbitrary number of levels will be sup- Id:snctlrillferngl cIaéBnu? Ir((ajie;egncggvaerztlnijgéwtﬁ‘iérst
ported including metamodel levels. We call a mul- . 3 F
tilevel metamodel architecture defined in the frame- ~ Might reference the same structure; in some cases
work for a Siwa world Fig. 2 defines a Siwa world this means that there are synonyms.
as a special type of digital system. A Siwa world is
composed of Siwa models which also are considered :
to be special types of digital systems. Tiedel Of Descriptor
relation comes in the two generic types: vertical and name:String
horizontal.

A Si wa nodel can be a model for an abstract or |
a physical system which is not part of a Siwa world.
This possible relation is not depicted in Fig. 2 since it /1N owner \L* %

*
Structure |

can not be explicitly represented in the framework. -, property
Favre presents briefly the notion sfiatic and dy-

namic systerm (Favre, 2005), a Siwa world also has |

these two aspects which we call: Model All Types +/Mtarget 1 Nident-

with Extent Realization (MATER) and Play Activa- b {ordered) Tified

&

Slot |

tions and Transformations with Extent Realizations *
(PATER). The focus of this article is MATER and in Identifier
the following subsections MATER is presented with :
the help of UML notation and examples. PATER is name:String
touched in Sec. 4 when some sematic engines are de- {ordered} [, = %7
scribed.

In Subsec. 2.1 we present how to represent the in- | Value
ternal structure of a Siwa model, in Subsec. 2.2 we
describe how Siwa models can be connected to con- N 4

stitute a Siwa world (a multilevel model architecture). |
Link DataValue

2.1 Representing One Model val:String

1..*

Instance

Fig. 3 presents the part of MATER that is used

when one model is to be represented, it is meant Figure 3: Part of MATER: the internals of a Siwa model.
to be used on all the levels of a Siwa world.

There are several similarities between this part of For us as humans the symbols are typically telling
MATER and MOF (OMG Editor, 2003) as aninstance what a model is about, from the "framework point of
model, e.g. an object can be represented as an in-view” only what has been formalized and represented
stance ofSt r uct ur e containing instances @&l ot in MATER "does matter”.

with values representing properties of the object and An example of how an object of typgaui | di ng
Descri pt or can be used for type information as can be represented is given in Fig. 5. In Fig. 5(a)
described later. Links between objects can be repre-the object is shown in UML notation, Fig. 5(b)
sented as instances lof nk. The property/owner as- shows how MATER can be instantiated to represent
sociations can be used to represent relations betweerthe same. Fig. 5(c) is showing an overview of the

304

A GENERIC MODEL FOR CONNECTING MODELS IN A MULTILEVEL MODELLING FRAMEWORK

ModelElement

/\
| :Building
_‘>| Relationship |<|— Association id = “bl
owner = “Tom”
name
a
1 | association @
a_e . . .
Generalization 5 |end :Descriptor :Descriptor :Descriptor
generalization | * AssociationEnd name = name= name="Building:
bR M M :' 99 99 . : 9 Owner”
) e e Navigable Building:id Building
specific ¢! isComposite
:Structure
Class %7
general

name
I Property [— :DataValue
isAbstract 1 c.p 5 [oame :Identifier aavay

c p | multiplicity name ="b1” owner ="Tom

(b)
Figure 4: The top metamodel of the examples.

LI
(e}

— | Building:id || Building || Building:owner |
Bui | di ng-object in an ad hoc notation where the
structure is hidden except for the symbols (tlar-

dersare shown, marketl and L, this concept will

be explained below). Fig. 4(a) shows the top model

which is called Class-MM. It describes important (©

object-oriented concepts like: abstract and concrete

class, property, multiplicity, association and general- Figure 5: Example of how to represent an objectin MATER.
ization.

Fig. 6(a) shows a simple class callBdi | di ng
with a property called d; Fig. 6(b) describes how
Class-MM can be instantiated to get the class and
then Fig. 6(c) demonstrates how MATER can be used

to describe the class (thePr oper t y-object is not iClass ic_p iProperty
shown). As we can see from the figure the number of [y 4o name="Building” [, =} name="id"
model elements is huge - it correspond approximately — isAbstract="false lscﬁfnﬁo;“t‘tejlﬁfue
to the number one would get if the UML metamodel : uHpTery=
was instantiated. (@) (b)

In the object-oriented literature, and also in this ar- Descrint Deserint s
ticle, the difference betweendass as a sefsome- Sl S| A
thing abstract) and theescription of a classs often name="Class:name name="c v
confuseé_l. As a consequence of being abstract: it is ‘Descriptor :Descriptor :Slot
not possible to "point to” a class and say "there it is”, » i T N

. . » R A name="Class:isAbstract name="c_p
but it might be possible to point to the instances of a
class and also to a description of a clasMATER :Descriptor :Descriptor
QOes not havelassas_ a b_uilt—in construction - _th_ere name="Class” name="class:p” Stot
is no model element in Fig. 3 calléd ass, but it is A :
possible to describe classes (e.g. Fig. 6(c)). St 1

Seeing a class as an object is not in conflict with the 2 iStructure |
UML metamodel architecture since a UML model can N V identified /]\

M— N
" T . . :Slot :Identifier
In our view reification is merely to establish a descrip- |

tions of a concept. name="Building”
2The termsabstract classand concrete clasaised in (c)

object-oriented programming is something else, in thatcon- . .

text a concrete class means that there are objects that are di- Figure 6: A part of the description of claBsi | di ng.

rect instances of the class which is not the case for abstract

classes.

305

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

be seen as composed of objects instantiated from the

UML metamodel (see (Atkinson andilkne, 2002) | SiwaModel
for more on this class/object nature); the UML meta- Border " 1 | name:Suin
model can again be seen as composed of objects in- | name:String : {}g
stantiated from MOF and MOF can be seen as com- LF 1
posed of objects instantiated from itself. *
AclassBui | di ng in a UML class diagram is an in- |HorizontalB0rder | | VerticalBorder | | Instance |
stance of clas€l ass of the UML metamodel, we

understand thaBui | di ng will be a class when we (2)

read about the semantics of cla3sass (OMG Ed-

itor, 2006b): A class is a type that has objects as its
instances...The instances of a class are objdatsm

this description we understand that a whole UML
metamodel architecture can be depicted as an object
diagram, which is known from the literature (e.g. (Ny-
tun et al., 2004) and (Martin Gogolla, 2005)).

MATER offers several ways to model the same
thing and it is not "strongly” constrained - this is de- (b)
liberate and opens for experimentations. It is not dis-
cussed in the article but it will be possible to configure
the framework with the help of some OCL-like lan-
guage, e.g. enforcstrict metamodelling Atkinson 0.1
and Kiihne, 2000).

Identifier

connected-
Identifier

VerticalBorder

connected-
Descriptor

UpperBorder Descriptor

connectedBorder
0..1

HorizontalBorder Identifier

connected-
Identifier

(©

Figure 8: Part of MATER: connecting Siwa models.

I :Slot l_ :Identifier :Identifier

name= name=

o]
“TMBuilding” “Building”
\[I [
:Structure Horizontal- Horizontal- :Structure
Border Border

Figure 7: Sketch of connected models. ildentificr ildentifier
name= —— name= .Slot
Slo “TMBuilding:id” “Building:id” oot

(a)

:S }7
Fig. 8 extends MATER and adds the possibility to ’ — s

connect models. A Siwa model can contain borders; J

two models are connected by connecting two borders,

2.2 Connecting Models

one from each model. When the models to connect :Identifier :dentifier

are on the same level both borders will be of type name="Building” name="Building:id”

Hor i zont al Bor der (Fig. 8(c)), when the models A A

are on different levels the border on the lower level is Descrintor | Upper- || .Deserintor

of type Upper Bor der (Fig. 8(b)) and the border of — Border —
. name="Building name="Building:id

the upper model is of typeower Bor der .

Fig. 7 offers a sketch where a model calle8l is _{ .Structure Slot
connected to a modé&R that resides on a level above. T
MB has an instance dfpper Bor der (marked with ® °°°

letter U) containing two instances &escri pt or
calledD1 andD2; these two symbols are connected to Figure 9: The example (incomplete) of Fig. 1 in MATER.
instances of denti fi er, | 5 andl 6 respectively;

306

A GENERIC MODEL FOR CONNECTING MODELS IN A MULTILEVEL MODELLING FRAMEWORK

M2 has an instance dfower Bor der (marked with
letter L) containing bothl 5 and 1 6. Fig. 7 is
also demonstrating how mod®il and M2 residing

on same level are connected by two instances of
Hor i zont al Bor der (marked with letter H).

The vertical association in Fig. 8(b) has multiplic-
ity 0.. 1 onthel denti fi er side, this means that
incomplete architectures, as claimed in the introduc-
tion, are possible. The claim that a model can have
several metamodels is justified by allowing several
upper borders for one and the same model.

Fig. 9 shows in more detail an example (same ex-
ample as in Fig. 1) of how MATER can be instantiated
to connect models, (a) shows hdwBui | di ng and
Bui | di ng residing on the same level are connected,
while (b) shows howBui | di ng and: Bui | di ng
residing on different levels are connected.

This way of connecting models is an extension to
what we have presented before; (Nytun et al., 2004)

presents a solution where two models would share a

common border instead of having one border for each

model to be connected; also the connecting of models

on the same level is new.

A
o
: MA |
== U = | Class |[F— U

6 Building-M

A A
o Al
A A
== U = Building [= U

Building-bl

j

of

Figure 10: Architecture
(TMBui | di ng is not included).

building example

In Fig. 10 some of the models described above are
put together to form a multilevel architecture. The
only model that has not been mentioned before is the
one named Object-M; as can be seen in Fig. 11 it

Slot

f belongsTo
&
1.*

property

DataValue 1.%

Object

Link

Figure 11: Model Object-M in detail.

val:String ’ ‘
owner

simply defines an object as a structure having slots
with values and links to other objects. The instance
of St ruct ur e representing the building object has
bothBui | di ng andChj ect as descriptor.

Model Object-M is introduced to demonstrate that
a model can have several type models. Object-
M could be used to define a more general XML format
than if Building-M was used.

3 RELATED WORK

Today there is much interest in the use of metamodels,
e.g. in MDA (OMG, 2003), MDE (Favre, 2004b),
LDD (Fowler, 2005), DSL (Greenfield et al., 2004).

The part of Siwa presented in this article, which is
mainly the static part, can be used as a starting point
in all the mentioned fields.

There are several other meta-modelling frame-
works, to mention a few: MetaEdit+ (Meta-
case, 2006), Coral (Marcus Alanen, 2004),
XMF (Tony Clark, 2004), EMF (EMF, 2006)
and MPS (MPS, 2006).

Rondo (S. Melnik, 2003) is a programming plat-
form for generic model management and it includes
high-level operators used to manipulate models and
mappings between models. AMW (Marcos Didonet
Del Fabro, 2005a) goes further and allows extensi-
ble mappings. AMW (Marcos Didonet Del Fabro,
2005a) is a generic model weaver that allows the spec-
ification of correspondences between model elements
from different models - models are in this way con-
nected with a model, e.g. correspondetitguals
might be established between the tivd attributes
of classed’MBui | di ng andBui | di ng of Fig. 1.

Our approach has similarities with the aforemen-
tioned works, but we have not found a framework that
allows models and model levels two be connected so
freely as our approach does, e.g. the weaving of mod-
els described above can be achieved simply by intro-
ducing another model with borders to the models to
be weaved; this new model will describe the structure
of the correspondences, semantic engines can then
be defined to handle the semantics of the correspon-
dences; a somewhat related example is given below.

307

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

4 LEGACY DATA CONSISTENCY
AS EXAMPLE

legacy data can be performed automatically. In our
case there is one legacy data source with information
about buildings and one about apartments. Consis-
tency testing results in a report revealing which legacy

Our article (Nytun and Jensen, 2003) focused on data that do not fulfil the consistency requirements.

the consistency problems that occur when previ- oo :
ously uncoordinated, but semantically overlapping The association (Fig. 12) betweépart ment and

data sources are being integrated. The paper pre-Bféslsg'dnﬁ’ Ol(rjlilugcl)nngst'ih?e ?:t;?]ghsetgn::nvfélamre?rﬁnt
sented techniques for modelling consistency require- p ! ! Itu ! y requi

ments using OCL and other UML modelling ele- two. When testing is performed on the legacy data,

ments. The paper also considered the automatic2 INK is created between aApartment and a
checking of consistency in the context of one of the bul | di nginstance if the invariant is fulfilled; if the
modelling techniques. This section presents an out- Multiplicity on the association is broken, this is re-
line of how Siwa can be applied to implement one of ported in the consistency report.

these technigues and how automatic testing of consis-CONSIStency requirement one is specified with help
tency can be performed. of class Consi st encyApart nment Bui | di ng,

property cApar t ment Count and its attached in-
variant. During testing instances of typeon-

si st encyApart ment Bui | di ng are created and
linked toBui | di ng instances; slot Apar t ment -
Count will be set to the value that fulfils the invari-
Fig. 12 shows an integration of two legacy mod- ant; if the value is al se then a consistency viola-
els, where one is a description of apartments (classtion has occurred and will be reported. Note that links
Apar t ment) and the other a description of build- betweerBui | di ng andApar t ment instances are
ings (classBui | di ng). The consistency require- traversed when the values ofApar t nent Count
ments are as follows: slots are set. From this example we can understand
1. The number of apartments that is given as a prop- that standard OCL-statements are used as production

erty in classBui | di ng should be equal to the rules_when Fhe consistency model is being automati-
number of apartments with the same building id (at- 2!ly instantiated.
tributebl d).

2. One building should have at least one apartment,
and an apartment should belong to exactly one

4.1 Consistency Modelling and
Testing

4.2 Implementation in SIWA

building. In Siwa the consistency model can be seen as an in-
stance of the declarative domain specific language de-
S ——— - y scribed by the metamodel given in Fig. 13.
| {cApartmentCount = I
| Guidingapartrent s = biding aputmen Coun) | CProperty - CClassEnd
| name * 1 11 name
_______________________________ 5 straint name multiplicity
| ConsistencyApartmentBuilding ! cons

1

i cApartmentCount boolean |
'_'_'_'_'_'_'_'_'_1'7i'\ __________ ; CProxyEnd1 1

CClassAssociation

name
constraint 1

v 1 name 1
Apartment Building 1
1.* 1
ald € — = === >| bld CProxyClass CProxyEnd2 CAssociation
|
bld I apartmentCount name name name
A i T legacySystem multiplicity constraint

Figure 13: Consistency modelling metamodel.

Figure 12:
Bui | di ng.

Consistency betweeApart nent and
In brief: The legacy classe8ui | di ng and
Apart ment have proxy classego represent them
The elements with dash-dotted line style in Fig. 12 in the consistency model; a proxy class is an in-
constitute what we call @onsistency modelthis stance ofCPr oxyd ass. ClassConsi st ency-
model is manually made by the user. When the con- Apar t ment Bui | di ng (Fig. 13) is an instance of
sistency model is established, consistency testing of CCl ass; its propertycApart nent Count is an

308

A GENERIC MODEL FOR CONNECTING MODELS IN A MULTILEVEL MODELLING FRAMEWORK

instance ofCProperty, where the value of sliot 5 SUMMARY AND RESEARCH
constrai nt is the text: DIRECTIONS
cApartmentCount = (building.apartmentsize() =

building.apartmentCount) The MATER model presented in this article repre-

sent our understanding of what we mean by a mul-
tilevel model architecture; we have tried to make an
explicit representation of all elements that constitutes
such an architecture. Complex and advanced concepts
can then be built in a natural way by combining these
defined building blocks.

MATER can be seen as a metamodel by itself,
but we choose to see it as the physical carrier for
multilevel modelling architectures. This view allow
us to specify top models as we see needed, e.g. a top
model that gives properties separate existence.

The association betweeflonsi st encyApart -
ment Bui | di ng and Bui | di ng is represented
as an instance ofcCl assAssoci ati on going
between the building proxy class ar@bnsi st -
encyApart ment Bui | di ng.
The association betweenBuil ding and
Apartment is represented as an instance of
CAssoci ati on going between the two proxy
classes; the value of slatonstrai nt for this
instance is the text:

apartment.bld = building.bld

Fig. 14 gives an overview of the complete archi- The following is a list of features that in our view

tecture. The lowest level can be seen as one c;)n'ugu-makes Siwa a promising and unique framework:
ous model composed of legacy data and a consistency

model instance. The legacy models are on the other® Itis not strongly coupled to the instantiation found

hand not changed - the borders towards the consis- in its implementation language, this allows a model
tency model can be extracted automatically. From a o have several type models each offering different
model management point of view this is considered and useful information about the model.

an advantage since it gives few models to manage (re-e |t is extremely generic which makes it adaptable to
member that the lowest level can be produced auto- many different modeling needs, e.g. it might allow
matically at will). . . separate existence of properties.

The format of this article does not give roog*for e Itis possible to have incomplete architectures, e.g
presenting a complete picture of how Siwa solves the XML documents might be loaded for analysis, and

problem at hand, but below is some information about then a model might be produced automatically (T
how the consistency model instance is automatically Gigseeter and J. P. Nytun and A. Prinz and M,

created by a semantic engine. g o .
A semantic engine is a Siwa model that exhibits be- Snaprud and M. S. Tveit, 2006). This is typically
not possible in other frameworks due to their strong

havior. A special type of semantic engines can be at- ; . SR .
tached to borders, they are calledrder enginesnd coypllng to instantiation in the selected implemen-
' tation language.

are typically involved in instantiation. For simplicity
we can assumed that such engines are programmed in Parts of our framework are already implemented
Java since this is our implementation language. Thein the Eclipse framework (d’Anjou et al., 2004).
metamodellehas made a border engine and attached The first prototype is implemented by defining the
it to borderL4 (Fig. 14). BorderJ4 andL6 is cre- MATER model as a UML model in Eclipse and from
ated by the engine when the modeller decides to makethis we create an EMF Model; this looks like a trick
a consistency model. The engine is also attaching asince we end up with having all the Siwa model lev-
premade border enginela, it is this engine that au- els at one EMF level (Prinz et al., 2006), but it gives
tomatically produces the consistency model instance us a jump-start and it automatically produces a lot of
and the consistency report when triggered. This last useful code.
engine is an adapted implementation of the algorithm
presented in (Nytun and Jensen, 2003).

This way of establishing the semantics can be seen ACKNOWLEDGEMENTS
as a specific way of implementirdgep characteriza-
tion; some see deep characterization as a natural par

of metamodelling (Kihne, 2005). tI'hanks to Andreas Prinz, Vladimir Oleshchuk, Chris-

tian S. Jensen, Birger Mgller-Pedersen and Arne
Maus for continuous inspiration and valuable discus-
sions.

309

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

REFERENCES de Donnes Avances (BDAOSvailable at:
http://ww. sci ences. uni v-nantes. fr

Atkinson, C. and Kihne, T. (2000). Strict Profiles: Why /linalatl/publications/.

and How. InUML 2000 - The Unified Modeling Lan- Marcus Alanen, I. P. (2004). The Coral Modelling Frame-

guage, Advancing the Standaxblume 1939 ot ec- work. In Koskimies, K., Kuzniarz, L., Lilius, J., and

ture Notes in Computer Sciencgpringer. Porres, I., editorsProc. of the 2nd Nordic Workshop
Atkinson, C. and Kihne, T. (2001). The Essence of Mul- on the Unified Modeling Language NWUML'2004

tilevel Metamodeling. INUML 2001 - The Unified Turku Centre for Computer Science, Finland.

Modeling Language: Modeling Languages and Appli- Martin Gogolla, Jean-Marie Favre, F. B. (2005). On squeez-

catllons volqme 2185 ofLecture Notes in Computer ing m0, m1, m2, and m3 into a single object diagram.

ScienceSpringer. In Workshop on Tool Support for OCL and Related
Atkinson, C. and Kihne, T. (2002). Rearchitecting the Forr.nallsms'- Needs and Trends OCL at Models 2005

UML infrastructure.ACM Transactions on Computer Available at: _ _

Systems (TOCS)12(4):290-321. http://ww adel e.imag.fr/ jnfavre
d’Anjou, J., Fairbrother, S., Kehn, D., Kellermann, J., and Metacase (2006). MetaEdit+. Available at:

McCarthy, P. (2004) The Java Developer's Guide to http://ww. net acase. cont

Eclipse Addison-Wesley. MPS (2006). Meta programming system. Available at:
EMF (2006). EMF, the Eclipse Modelling Framework: http://www.jetbrains.com/mps/.

Available at:ht t p: / / waw. ecl i pse. or g/ enf. Nytun, J. P. and Jensen, C. S. (2003). Modeling and Test-

;) P ~ ing Legacy Data Consistency RequirementsUML
Favreg’u‘;'gézso\?s;)éta'r:ﬁggggt&gzigblrgi[? pyramids: Lan 2003 - The Unified Modeling Language: Modeling
http: // ww. ci teseér i st pSl.j edu Languages and Applicationsolume 2863 ot.ecture

/722867. ht m . Notes in Computer Sciengeages 341-355. Springer.

Nytun, J. P., Prinz, A., and Kunert, A. (2004). Represen-

Favre, J. (2004b). Foundations of model (driven) (reverse) tation of levels and instantiation in a metamodelling

engineering - episode i: Story of the fidus papyrus

and the solarus. Available at: environmentNWUML 2004

http://ww.citeseer.ist.psu.edu/ OMG (2003). Model Driven Architecture Guide, Version

f avr e04f oundati ons. ht m . 1.0.1 Object Management Group. omg/03-06-01.
Favre, J.-M. (2005). Megamodelling and etymology. In OMG Editor (2003). Revised Submission to OMG RFP

Dagstuhl Seminar 05161 on Transformation Tech- ad/2003-04-07: Meta Object Facility (MOF) 2.0 Core

niques in Software Engineeringwvailable at: Proposal. Available at

http://ww adel e.imag.fr/ jnfavre. http://ww. ong. or g/ docs/ f or mal

Fowler, M. (2005). Language workbenches: The killer-app /06-01-01. pdf..

for domain specific languages? Available at: OMG Editor (2006a). MOF Support for Semantic Struc-
http://ww. martinfow er.com articl es/ tures, OMG RFP ad/2006-06-03. Available at:
| anguageWor kbench. htm . http://ww. ong. or g/ docs/ ad

Greenfield, J., Keith Short, w. ¢. b. S. C., and Kent, S. /06-06-03. pdf . 3
(2004). Software Factories: Assembling Applications OMG Editor (2006b). UML 2.0 Infrastructure Specifica-

with Patterns, Frameworks, Models & Too®hn Wi- tion, OMG Document formal/05-07-050MG Docu-
ley & Sons. ment. Available atht t p: / / www. ong. or g.
J. Bézivin, F. Jouault, P. V. (2004). On the need of meg- Prinz, A., Nytun, J. P, Chen, L., and Wei, S. (2006).
amodels. IMDOPSLA, 2004 Integration of MATER and EMF. IrProc. of the 4th
. . L Nordic Workshop on the Unified Modeling Language
Kihne, T. (2005). What is a model? Inégvin, J. NWUML'2006 Available at:

and Heckel, R., editord.anguage Engineering for
Model-Driven Software Developmemumber 04101

in Dagstuhl Seminar Proceedings. Available at:)
http://drops. dagst uhl . de/ opus S. Melnik, E. Rahm, P. A. B. (2003). Rondo: A program-

/vol | t ext e/ 2005/ 23. ming platform for generic model management.inn

) e SIGMOD pages 193-204.
Marcos Didonet Del Fabro, JeanéBvin, F. J. E. B.))
G. G. (2005a). AMW: a generic model weaver. In 1. Gjgseeter and J. P. Nytun and A. Prinz and M. Snaprud

http://osys.grm hi a. no/ osys/ archive
/ conf er ences/ nwum _06.

Proceedings of the 1re Journe sur I'Ingnierie Dirige and M. S. Tveit (2006). Modelling accessibility con-

par les Modles (IDMO05)Available at: straints. InProc. of ICCHP

http://ww. sci ences. uni v-nantes. fr Tony Clark, Andy Evans, P. S. J. W. (2004pplied Meta-

/linalatl/publications/. modelling. A Foundation for Language Driven Devel-
Marcos Didonet Del Fabro, JeanéBvin, F. J. P. V. opment.Xactium. Available at:

(2005b). Applying generic model management to http://wwv. xactium com

data mapping. IrProceedings of the Journes Bases

310

A GENERIC MODEL FOR CONNECTING MODELS IN A MULTILEVEL MODELLING FRAMEWORK

Class |F—= U3
Il

Class '# U1

CClass)= u4

Class '# L3

Apartment-M | Apartment

Apartment)= L5

Apartment Consistency-M | Building Building
]] I T
H1 H2 H3 H4
| CApartmentBuilding | L6
|
| CApartmentBuilding | U7
1

Apartment)= U6

1

Building-M

Building)=L7

@tment-MI

Consistency-MI

1

Building-MI

Figure 14: Architecture example: consistency modelling and testing.

311

