
A META-MODELLING APPROACH
TO EXPRESS CHANGE REQUIREMENTS

Anne Etien, Colette Rolland, Camille Salinesi
CRI - Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris – France

Keywords: Meta-modelling, Change requirements, Evolution.

Abstract: Organisations have to evolve frequently in order to remain competitive and to take into account changes in
their environment. We develop a co-evolution approach to jointly make evolve the information system and
the business processes. This approach relies on an explicit specification of change requirements defined
with operators expressing gaps between the As-Is and the To-Be situations. However, such gaps based
approach can also be used in an other evolution context, when a database or a workflow model evolves.
Thus, instead of specifying new operators associated to the Map meta-model used in this co-evolution
approach, we propose to define a generic typology of gaps to facilitate a precise definition of change
requirements under the form of gaps. The paper presents the approach to generate a gap typology and
illustrates it with the Map meta-model.

1 INTRODUCTION

Changes often affect an organization in its whole
from business processes to information system. If
they want to remain competitive, organisations have
to react quickly to changes of their clients’ needs or
organization goals.

We propose the Alignment and Co-Evolution
Method (ACEM) to help in jointly evolving the
business processes and the system. In that method,
the change movement is modelled from the current
situation to the future situation as gaps between the
As-Is model and the To-Be model. Intuitively a gap
expresses a difference between these two models
such as the deletion or addition of an As-Is element
in the To-Be model. Gaps are related to operators,
which transform elements of model.

We believe that an ad-hoc development of a gap
typology for each project is error prone because: (i)
it relies on the knowledge and know-how of some
persons; (ii) it is not systematic and (iii) it can be
influenced by the context of the project.

We thus could define a typology associated to
the Map meta-model used in ACEM. However, such
a typology would have been dependent of the used
formalism.

Furthermore, developing a specific typology for
each meta-model (e.g. XML DTD (Al-Jadir, 2003),
DB meta-model (Banerjee, 1987), process meta-
model (Soffer, 2004), workflow meta-model (Casati,
1996)…), leads to a situation where the typologies
depend on different specific meta-models and are
difficult to compare (Estublier, 2000).

In order to solve these issues, we propose to
introduce a generic typology relative to a generic
meta-model. This provides independence towards
the project and the meta-model. The generic meta-
model can be instantiated by each used meta-model.
The generic typology associated to the generic meta-
model is adapted to correspond to each specific
meta-model. Such an approach allows to
systematically identify the semantic and structural
aspects that compose the specific meta-model and
can be affected by a gap.

In the next section we provide an overview of the
approach. In section 3, we present the generic meta-
model and the generic gap typology. Section 4
outlines the process to generate a specific gap
typology and illustrates it with the Map meta-model
used in ACEM. Conclusions are drawn in section 5.

287
Etien A., Rolland C. and Salinesi C. (2006).
A META-MODELLING APPROACH TO EXPRESS CHANGE REQUIREMENTS.
In Proceedings of the First International Conference on Software and Data Technologies, pages 287-293
DOI: 10.5220/0001322102870293
Copyright c© SciTePress

2 OVERVIEW OF THE

APPROACH

The approach, we propose to express change
requirements, relies on a three levels structure: the
model level, the meta-model level and the generic
meta-model level, as shown in Figure 1.
At the model level, are defined the models before
and after evolution. At this level are also defined the
change requirements (represented in the figure by
the Greek letter ∆) under the form of gaps. In so far
as in the ACEM As-Is model and To-Be model are
defined with the Map meta-model, we make the
hypothesis that the two models As-Is and To-Be are
described in the same language. We are thus not
interested in evolutions where As-Is and To-Be
models are instances of two different meta-models
as in (Terrasse, 2003) or (Bezivin, 2001).

The meta-model level contains the specifications
of a specific meta-model and the associated gap
typology. The specific meta-model specifies the type
of elements used in the As-Is and To-Be models.
From the same way, the specific gap typology
specifies the type of gap operators defined at the
model level. The gaps identified between the As-Is
and the To-Be models are instances of the specific
gap typology.
The generic meta-model level proposes a generic
gap typology and a generic meta-model from which
are respectively defined the specific typology and
the specific meta-model. The generic meta-model
identifies the generic concepts necessary to the
definition of generic operators gathered in the
generic gap typology. The generic meta-model
allows to make explicit the elements and the
structures of the specific meta-models.

For example, if the Entity-Relationship meta-
model is used to represent the database, then the
gaps are expressed at the model level between two
Entity-Relationship models. The gaps between the
As-Is and the To-Be models expressed what changes
or should be adapted between the two situations.
They instantiate the operators of the specific
typology. They can express that the Reservation
Entity type should be split into two Entities type
Reservation and Demand and that the ‘correspond’
Relationship type (whose source is Reservation and
target is Demand) should be added.

3 THE GENERIC TYPOLOGY

The generic gap typology takes the form of a set of
operators applicable to generic elements that
compose any model.

3.1 A Meta-model for Defining the
Generic Gap Typology

A number of attempts have been made to make
explicit the elements that compose any model, i.e. to
define meta-models (IRDS, 1990), (Marttiin, 1994),
(Prakash, 1999). There are different meta-models
depending on the meta-modelling purpose. For
example IRDS (IRDS, 1990) is a standard to
facilitate the evolution of model representation in
CASE tools, Prakash (Prakash, 1999) aims at a
formal definition of a method and Marttiin (Marttiin,
1994) searches for a generic repository structure of
meta-Case environments.

Instance of

Typology of
operators

Applied on
elements of

Instance of

Typology of
operators

Instance of

Typology of
operators

Applied on
elements of
Applied on
elements of

Generic Meta-
model

Instance of

Generic
Meta-model

level

Generic Meta-
model

Instance of

Generic Meta-
model

Instance of

Generic
Meta-model

level

Generic
Meta-model

level

Generic Gap
Typology

Applied on
elements of

Generic Gap
Typology

Applied on
elements of
Applied on
elements of

Model
level

Specific
Meta-model

level

Meta-
model

Instance of Instance of

Specific
Meta-model

level

Meta-
model

Instance of Instance of

Meta-
model

Instance of Instance of

As-Is
model

To-Be
model

Instance of

∆
∆

∆

Instance ofInstance of

∆
∆

∆

∆
∆

∆

Figure 1: Overview of the approach.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

288

The generic meta-model, that we propose, aims to
identify the key elements and the structure of any
meta-model having a graphic representation in order
to define the elementary transformations that can
occur on the elements of a meta-model.
This meta-model is drawn in Figure 2 using UML
notations. It shows that any model is made of
Elements, every element having a Name and is
characterised by a set of Property. In the E/R model
for example, Entity type, Attribute and Relationship
type as well as the Is-A relationship are elements.
Domain is a property of Attribute.

According to the generic meta-model, any meta-
model is composed of a collection of elements that
have properties. As shown in Figure 2, Elements are
classified into two clusters. First, a distinction
between Simple and Compound Elements is made.
Second, elements can be classified into Link and
NotLink.

Compound elements are composed into elements
that can be simple or at their turn compound. In
particular, any model is a compound element.

Link Elements are connectors between pairs of
elements. Links can be oriented; therefore one of the
linked elements plays the role of Source and the
other of Target. In the E/R model an Entity type is a

compound element made of Attributes, which are
simple elements. An Is-A relationship of the E/R
model is a Link: it connects a source Entity type to a
target Entity type. Vice versa, an Entity type is
NotLink.

Figure 2 shows that an element is-a another
element, i.e. might inherit from another element
Finally, any model is a compound element which
can be reduced to the root element (such as the
Object class in a class diagram).

3.2 The Generic Gap Typology

The generic gap typology is composed of a set of
operators applicable to Element. Each operator
identifies a type of change that can be performed on
an As-Is model. The operator identifies the
difference between the As-Is model and the To-Be
model

3.2.1 Three Types of Change

The generic gap typology identifies three major
types of change: naming changes, element changes
and structural changes.

Table 1: Meta-model elements and related operators.

Object Operator Description
Element Rename

Add
Remove
Merge
Split
Replace

Change the name of the element in the To-Be model
Add an element in the To-Be model
Remove an element of the As-Is in the To-Be model
Two separate As-Is elements become one in the To-Be model
One As-Is element decomposes into two To-Be elements
An As-Is element is replaced by a different To-Be one

Link ChangeOrigin The source or target of the link is changed
Compound AddComponent

RemoveComponent
MoveComponent

A component is added in the To-Be element
An As-Is component is removed in the To-Be element
A component is repositioned in the structure of the To-Be element

Property Give
Withdraw
Modify
Retype

Add a property to the To-Be element
Remove an As-Is property in the To-Be element
Change the property of the To-Be element
The As-Is and To-Be elements have different types

Figure 2: The meta-model for gap typology definition.

Not Link

source

target

Link

Compound

Simple

Element
Name

Is-aIs-a

Property

has a

Root

Type

0..*

0..1 0..1 1 1

A META-MODELLING APPROACH TO EXPRESS CHANGE REQUIREMENTS

289

Naming changes are defined with the Rename
operator. It only affects the way organisations want
to refer to an element.

Element changes affect elements and are
circumscribed to the elements themselves: adding an
attribute to an entity type is an example of such
localised change. Table 1 proposes four operators to
specify element changes, namely Modify, Give,
Withdraw and Retype.

Structural changes correspond to a modification
of the set of elements which composes the model.
There are nine operators to specify structural
changes in Table 1: ChangeOrigin, AddComponent,
MoveComponent, RemoveComponent, Replace,
Split, Merge, Add and Remove. For example adding
or removing Relationship types and Entity types in
an As-Is E/R schema to form the To-Be schema is a
structural change. Table 1 sums up the generic gap
typology composed of 14 operators classified
according to the type of Element they are applied on.

3.2.2 Structure of a Generic Operator

The definition of the operators relies on two
concepts: a signature and a predicate as shown in
Figure 3.

The signature identifies the type of the elements
involved in the As-Is model (before the operator is
executed), and in the To-Be model (after the
execution of the operator). The predicate is
composed of two elements: a first order logic
formula and eventually some parameters. The
formula does not indicate how to modify the As-Is
model but specifies the conditions that must be
fulfilled in the To-Be model. It relies on the
concepts of the specific meta-model (a concept
being an Element or a Property). A parameter refers
to a concept.

3.2.3 Structure of a Generic Operator

The definition of the operators relies on two
concepts: a signature and a predicate as shown in
Figure 3.

The signature identifies the type of the elements
involved in the As-Is model (before the operator is
executed), and in the To-Be model (after the
execution of the operator). The predicate is
composed of two elements: a first order logic
formula and eventually some parameters. The
formula does not indicate how to modify the As-Is
model but specifies the conditions that must be
fulfilled in the To-Be model. It relies on the
concepts of the specific meta-model (a concept
being an Element or a Property). A parameter refers
to a concept.

In order to take into account the concepts of the
generic meta-model and the links that exist between
them, we introduce some functions that are used in
the formula such as has-for-source() that is applied
on a Link and that takes in parameter an Element.
This function allows to specify the Element that is
the source of the Link element. We can thus write
L.has-for-source(E) where L is a Link and E is an
Element.

From this structure, this function and four other
ones, the fourteen operators of the generic typology
can be formally defined.

The operator Add is differently defined
depending on whether the element to add is a Link
element of a Not Link element:

(signature) AddLink: NotLink² → Link,
NotLink²

(predicate) AddLink (NL1, NL2) = L ∈ M ∧ L.
has-for-source(NL1) ∧ L. has-for-
target (NL2) | L ∈ Lien, NL1, NL2
∈ NotLink, M ∈ Model

(signature) AddNotLink: Model → NotLink
(predicate) AddNotLink (M) = NL ∈ M | NL

∈ NotLink, M ∈ Model
The operator AddLink allows to add a Link L

between two NotLink elements NL1 and NL2. After
application of the operator, in the To-Be model, L is
an element of the model M. L has for source NL1
and for target NL2.

The operator AddNotLink allows to add the
NotLink element NL in the model M. After
application of the operator, NL belongs to the model
M.

The model is always present before and after the
application of the operator. It appears as element in
the signature, only when it is the only element
specifying the As-Is or the To-Be situation, as in the
definition of the AddNotLink operator.

All the other operators are described from the
same way (more details can be found in (Etien,
2006)).

3.2.4 Properties of the Generic Typology

From the literature, we identify properties that a gap
typology should fulfil: a typology is considered as
(i) complete if any model can be derived from any
other model (Kradolfer, 2000); (ii) correct if each
operator is correct i.e. it does not leave the model in
an incorrect state (Banerjee, 1987), (iii) consistent if
the definition of its operators do not conflict each
other (Teeuw, 1997), (iv) semantically rich if any
type of change can be expressed using only one
operator and (v) minimal if any operator can be
considered as the composition of others (Casati,

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

290

Operator

Signature

Predicate
Formula

Name

Parameter

Concept

refers1

1

1

0..*

1..*

0..*

1

0..*

uses

As-Is

To-Be
0..*

0..*

1..*

1..*

Figure 3: Model of operator.

1996). These two last properties are contradictory
and can not be fulfil at the same time.

The generic typology verifies each of these
properties. Based on (Banerjee, 1987), we
demonstrate in (Rolland, 2004) and (Etien, 2006)
that the generic typology is complete. The
verification of the consistency and correctness relies
on the formal definition of the operators. Finally, it
is clear that the typology is semantically rich what
allows to better answer to the customer requirements
expressing, e.g. merger or replacement of elements.

4 GENERATION OF A SPECIFIC
GAP TYPOLOGY

We propose a process to generate a typology
associated to a given specific meta-model from the
generic typology. We then illustrate it by specifying
a typology associated to the Map meta-model.

4.1 Description of the Generation
Process

The process that allows to generate a gap typology
associated to a specific meta-model, is composed of
six steps:

1. To choose the properties to reach, particularly the
minimality or the semantic wealth of the specific
typology. Indeed, the set of operators to
instantiate are not the same. To reach the
minimality, only the generic operators Give,
Withdraw, Add, Remove, AddComponent and
RemoveComponent are instantiated. To satisfy the
semantic wealth property all the operators of the
generic typology are instantiated in the third
steps.

2. To instantiate the generic meta-model. This step
aims to build the specific meta-model by
instantiation of the generic meta-model.

3. To instantiate the generic typology. This step uses
the generic typology to generate, by instantiation
a specific typology. According the choice made in
the first step, all operators or only those forming
the minimal set are instantiated for each concept
according to its generic type Link, NotLink,
Composed, Simple or Property.

4. To remove the non-sense operators. This step
allows to prune the operators that would not have
sense or would not be used in the context of the
specific meta-model.

5. To formally define the operators. This step relies
on the formal definition of the generic operators
and on the knowledge of the specific model in
order to formally define each specific operator.

Source IntentionSource Intentionh.p.t h.p.sStrategy

Stop Start

Target Intention

Thread
Bundle
Path

1..*0..*0..**
**
*

0..* 1

Intention

Map

0..*

0..1

0..*

Section

1

Business rules

Refinement

0..*

0..*

0..*has1

Simple
Composed
Link
Property
Root

Caption

Post-condition

Pre-condition

Figure 4: Instantiation of the generic meta-model for the Map meta-model.

A META-MODELLING APPROACH TO EXPRESS CHANGE REQUIREMENTS

291

To verify the different properties. This last step
corresponds to the evaluation of the properties
previously identified. During this step, the specific
typology can be modified in order to satisfy the
different properties.

4.2 llustration of the Generation
Process

The Map meta-model (Rolland, 1999) used in
ACEM provides an intentional representation of the
system and the business processes. A map is a
labelled directed graph from Start to Stop with
intentions as nodes and strategies as edges. A map is
composed of several sections; one section being an
aggregation of two intentions linked through a
strategy (cf. Figure 4).

We chose to construct a semantically rich
typology in order to better express the change
requirements. For sake of space, we do not detail
each of the six steps; we give the intermediary
important results.

4.2.1 Instantiation of the Generic
Meta-model

Figure 4 shows the instantiation of the generic meta-
model for the Map meta-model.

An intention is a NotLink element corresponding
to a goal that can be achieved by the performance of
a process.

A strategy is a manner or a means to achieve an
intention. In Figure 4, a Strategy is shown as a Link
element. As a link, a strategy has a source which is
the Source Intention and a target which is the Target
Intention.

A section is an aggregation of the source
intention, the target intention, and a strategy. A
section is thus a composed element. Furthermore, a
section can be seen as the transition from an initial
situation obtained by the realization of the source
intention towards a final situation resulting from the
enactment of the target intention by application to

business rules linked to the section. These aspects
are specified by three Properties associated to the
section element: the pre-condition (characterising
the initial state), the post-condition (reflecting the
final state) and the business rule.

Sections are connected one another according to
three different links: a path (establishing a
precedence/succedence relationship), a thread
(specifying that sections between a pair of intentions
are alternative) or a bundle (when sections between
a pair of intentions are mutually exclusive). These
three elements are of type Link.

Finally, let us mention that it is possible to refine
a section of a map at level i into an entire map at a
lower level i+1 to view an intention together with its
strategy as a complex graph of intentions and their
associated strategies. Refinement as defined here is
an abstraction mechanism by which a complex
assembly of sections at level i+1 is viewed as a
unique section at level i. The refinement is a Link
element.

4.2.2 Instantiation of the Generic Typology

The instantiation of the fourteen generic operators
(Table 2) for the specific elements of the Map meta-
model allows to obtain a table with eight columns
corresponding to the number of elements in the Map
meta-model (intention, strategy, section, map,
refinement, path, bundle and thread).
The nature of the elements (Link, NotLink, Simple,
Composed) helps in reducing the number of specific
operators in the typology. For example, the operator
ChangeOrigin can only be instantiate for the
elements strategy, refinement, path, bundle, thread,
relationship and alignment relationship that are Link
elements.

Some operators have been removed from the
typology insofar as they have no sense (step 4), as
for example AddComponentSection or
RemoveComponentSection. Indeed, the structure of a
section is immutable: a source intention, a target
intention and a strategy.

Operator Intention Strategy Section Map pivot Refinement
Rename RenameIntention RenameStrategy N/A RenameMap N/A

Add AddIntention AddStrategy N/A AddMap AddRefinement
Remove RemoveIntention RemoveStrategy N/A RemoveMap RemoveRefinement
Merge MergeIntention MergeStrategy MergeSection MergeMap N/A
Split SplitIntention SplitStrategy SplitSection SplitMap N/A

Replace ReplaceIntention ReplaceStrategy ReplaceSection ReplaceMap N/A
Change N/A ChangeSourceIntention
Origine (Non Applicable) ChangeTargetIntention
Retype RetypeIntention RetypeStrategy N/A N/A N/A

N/A. N/A. N/A.

Table 2: Extract of the typology associated to the Map meta-model.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

292

Finally some operators are removed in order to
satisfy the chosen properties (step 6). Thus, for
example, a typology containing the operators
AddSection and AddSectionMap is not consistent
since these operators have the same formal
definition. Table 2 shows an extract of the obtained
table at the end of the generation process.
This approach has been used in different industrial
projects as for example with DIAC, the financial
branch of the French constructor Renault. We
developed a typology for the Map meta-model. The
evolution based on gap elicitation allows to
construct the To-Be model by focussing on change
without defining again what remain unchanged.

5 CONCLUSION

System adaptation is done under intense time
pressure: the new system must be put in place
yesterday. Therefore, it is not possible to develop a
To-Be model from scratch, given the time and
resources involved. A workable strategy under these
circumstances is to use and modify what is available,
and add the remaining. This is the thrust of the gap
drive proposed in this paper.

In this paper, we have proposed an approach to
identify operators expressing change requirements.
This approach relies on the existence of a generic
meta-model and a generic typology.

The process that we have defined in this paper
allows to systematically generate a specific typology
satisfying the properties of completeness,
correctness, consistency and semantic wealth. From
this way: (1) any change can be expressed by the set
of the typology operators; (2) the application of each
operator let the system in a coherent state without
introducing new errors; (3) the operators definitions
are clear and non ambiguous and (4) each type of
change can be expressed by using only one operator.

Furthermore, there are some advantages of
proceeding following the proposed approach: (i) the
generic typology serves as a guide to define the
specific typology: the latter is just an instance of the
former and (ii) specific typologies are consistent
with each other as they are generated from the same
mould: this is important when several typologies are
used in the same method.

The illustration of this process to define a
specific typology associated to the Map meta-model
has shown its relative simplicity and its systematic
aspect. We have use this process in (Rolland, 2004)
to define a specific typology associated to the
intentional Map meta-model and in (Etien, 2003),
we generated typologies respectively associated to
WIDE (Casati, 1996) and ORION (Banerjee, 1987).

REFERENCES

Al-Jadir L. 2003 “Once Upon a Time a DTD Evolved into
Another DTD” Object Oriented Information Systems,
Lecture Notes in Computer Science, Vol.2817,
pp.226-237, 2003.

Banerjee, J., Kim, W., Kim, H.-J., Korth, H. F, 1987.:
Semantics and Implementation of Schema Evolution
in Object Oriented Databases In Proc. of the ACM-
SIGMOD Annual Conference, pages 311--322, San
Francisco, CA, May 1987.

Bezivin J., 2001 From Object Composition to Model
Transformation with the MDA, Proceedings of
TOOLS, USA, Santa Barbara, August

Casati F., Ceri S., Pernici B., Pozzi G., 1996 Workflow
Evolution. In Proc. of 15th Int. Conf. On Conceptual
Modeling (ER'96), Cottbus, Germany, pp. 438-455

Estublier J. and Nacer M. Schema Evolution in Software
Engineering Databases -- A new Approach in Adele
environment CAI Computer and Artificial Intelligence
Journal. June 2000. Vol 19. pp. 183-203.

Etien, A, 2006 Ingénierie de l’alignement : Concepts,
Modèles et Processus Thèse de Doctorat, Université de
Paris I, Mars

Etien, A., Salinesi, C, 2003. Towards a Systematic
Definition of Requirements for Software Evolution: A
Case-study Driven Investigation. Proc of
EMMSAD’03 Velden, Austria.

Information Technology-Information Resource Dictionary
System (IRDS) , 1990 – Framework, ISO/IEC
International Standard.

Kradolfer M. , 2000 A Workflow Metamodel Supporting
Dynamic, Reuse-based Model Evolution. PhD thesis,
Department of Information Technology, University of
Zurich, Switzerland, chap. 4, pp. 59-73

Marttiin, P., 1994, Methodology Engineering in CASE
shells: Design Issue and Current Practice, PhD thesis,
Computer science and information systems reports,
Technical report TR-4

Prakash, N. , 1999 On Method Statics and Dynamics.
Information Systems 24(8), pp. 613-637.

C. Rolland, C. Salinesi, A. Etien, 2004, “Eliciting Gaps in
Requirements Change”. Requirement Engineering
Journal Vol. 9, N°1, pp1-15

Rolland, C., Prakash, N., Benjamen, A, 1999.A Multi-
Model View of process Modelling, Requirements
Engineering Journal, 4 : 169-187

Soffer P, Wand Y 2004 Goal-Driven Analysis of Process
Model Validity. Proceedings of CAiSE’04, Riga,
Latvia.

Teeuw W. B., van den Berg H. 1997, On the Quality of
Conceptual Models, Proceedings of the 16th
International Conference on Conceptual Modeling
(ER'97), Los Angeles, CA, November 1997

Terrasse M-N, Savonnet M., Becker G., Leclercq E., 2003
"UML-based Metamodeling for Information System
Engineering and Evolution", Proceedings of OOIS'03,
LNCS 2817, Springer Verlag, pp. 83-94

A META-MODELLING APPROACH TO EXPRESS CHANGE REQUIREMENTS

293

