
A DATA MINING APPROACH TO LEARNING PROBABILISTIC 
USER BEHAVIOR MODELS FROM DATABASE ACCESS LOG 

Mikhail Petrovskiy 
Faculty of Computational Mathematics and Cybernetics, Moscow State University, Vorobjevy Gory, Moscow, Russia 

Keywords: User behavior modeling, Data mining, Database access logs, Probabilistic models.  

Abstract: The problem of user behavior modeling arises in many fields of computer science and software engineering. 
In this paper we investigate a data mining approach for learning probabilistic user behavior models from the 
database usage logs. We propose a procedure for translating database traces into representation suitable for 
applying data mining methods. However, most existing data mining methods rely on the order of actions 
and ignore time intervals between actions. To avoid this problem we propose novel method based on 
combination of decision tree classification algorithm and empirical time-dependent feature map, motivated 
by potential functions theory. The performance of the proposed method was experimentally evaluated on 
real-world data. The comparison with existing state-of-the-art data mining methods has confirmed 
outstanding performance of our method in predictive user behavior modeling and has demonstrated 
competitive results in anomaly detection.  

1 INTRODUCTION 

User behavior modeling is one of the most important 
and interesting problems needed to be solved when 
developing and exploiting modern software systems. 
By user behavior modeling we mean discovering 
patterns of user activity and constructing predictive 
models based on precedent behavior information. 
These models allow forecasting next user action on 
the basis of the current activity. Primarily such 
technique was oriented to the commercial 
applications in recommendation systems (Sarwar, 
2001), (Manavoglu, 2004). At present time the area 
of its application is significantly wider. These 
methods play a great role in computer security 
systems (Ghosh, 1999), (Lee, 1998), where they are 
used for detecting malicious or unqualified user 
actions. Besides, recently user behavior modeling is 
applied for analysis, understanding and optimization 
of the architecture and business logic of various 
software systems. Models of user behavior can help 
to improve the UI usability, to optimize the database 
structure and data cashing strategy, to detect hidden 
use-cases, etc. Traditionally, data mining techniques 
are used for constructing user behavior models. The 
process of user behavior modeling can be presented 
as KDD-process (Knowledge Discovery in 
Databases), defined as extracting nontrivial, 
previously unknown and potentially useful 

information from large sets of data (Piatetsky-
Shapiro, 1996):  
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Figure 1: User behavior modeling as KDD process. 

On the first stage, necessary data is extracted 
from log-files, transformed into unified 
representation suitable for analysis, and stored in the 
data warehouse. Then data mining techniques are 
applied for building behavior models. Finally, the 
models are validated and interpreted by an expert. It 
is necessary to outline such features of the 
information sources used for user behavior modeling 
as large volume, heterogeneity and complicated 
structure of data coming from log-files. But the most 
significant features are temporal nature of the data 
and ordering of user actions. The source log-files 
can be of different levels – from high-level 
application logs (Sarwar, 2001) and web access logs 
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(Manavoglu, 2004) to low-level system calls traces 
(Ghosh, 1999). In this paper, we consider the 
intermediate level, in particular the database access 
logs. User behavior modeling on this level has not 
been well studied yet and it was considered mainly 
in the context of optimization of database server 
settings (Dan, 1995). Though, from our point of 
view, user behavior models built on database level 
can be very useful in other tasks as well, because 
nowadays many modern software systems use 
relational SQL databases as information storage and 
all important user actions leave a trace in the 
database access log.  

The paper is organized as follows. In Section 2 
we give the formal problem statement of 
probabilistic user behavior modeling. In Section 3 
we present our new approach based on classification 
method of autoregressive type and specially 
designed empirical feature map of data from 
structured log-files into finite dimensional metric 
space. This mapping allows taking into account both 
time and frequency of user actions. Section 4 is 
devoted to experiments and comparative analysis on 
real-world data. In the final section we formulate 
main results and contributions of our research. 

2 PROBLEM DEFINITION  

Traditional probabilistic statement of the user 
behavior modeling problem is the following 
(Manavoglu, 2004). Precedent information on the 
activity of a user U is given in the form of ordered 
sequences of actions 21 N . Model 
of user behavior is defined as the following 
probabilistic function: 

),...,,()( AAAUH =

))(),(|( UHUSAP next . (1)

It defines the probability that next user action will be 
 under conditions that current user activity is 

described by the sequence of actions 
SKSS  and historical activity of 

the user is defined by H(U).  

nextA

),...,,()( 21 AAAUS =

Practically all existing methods of constructing 
models (1) are based on the following propositions. 
Any user action can be coded as a symbol from 
some finite alphabet Ω∈iA . And a training set 

train  is formed from the 
H(U), where  are all available 
subsequences. Usually i  are selected 
consequently by a sliding window method, but 
sometimes application-oriented methods are used 
(e.g. sequences may correspond to user sessions).   

)}(),...,({)( 1 UHUHUH L

Probabilistic models (1) can be applied for 
solving practical tasks of next action prediction; 
detecting anomalies (unexpected user actions); and 
discovering patterns and frequent episodes of user 
activity. For the last problem, it is difficult to 
indicate universal performance evaluation measure 
since representation of the patterns and frequent 
episodes depend on the used data mining technique. 
For the first two problems general performance 
evaluation measures do exist. Forecasting of next 
user action  is performed according to the 
formula derived form (1) with the use of Bayes rule: 

nextA

))(),(|(maxarg UHUSAPA
A

next

Ω∈
= . (2)

In this case, the performance evaluation measure is 
hit ratio that is a proportion of correctly predicted 
actions to total number of actions. For the anomaly 
detection, a threshold cutting (confidence level) α  
should be specified. Then user action  is 
considered to be anomalous if: 

nextA

))(),(|(|{ α>Ω∈∉ UHUSAPAAnext . (3)

Precision of anomaly detection is estimated by 
standard coefficients (Lee, 1998): detection rate and 
false positive rate. They depend on the threshold 
value and that is why the final comparison is 
performed with the help of ROC-curves (Maxion, 
2004) representing the mutual dependence of these 
coefficients. 

The most popular traditional data mining 
techniques applied for constructing probabilistic 
model (1) are association rules (Liu, 1998), 
sequential models (Manavoglu, 2004) and 
autoregressive classification methods (Debar, 1992). 
Although these methods are widely used and 
demonstrate acceptable results in many practical 
applications they all can be criticized for calculation 
complexity; using a priori set critical parameters; 
and either poor accuracy with good model 
interpretation or, on the contrary, high accuracy with 
non-interpreted models. In addition to these 
disadvantages, almost all these methods rely on 
order of actions and ignore time between actions. 
We think that in the case of database logs analysis it 
is significant defect for the following reasons. There 
exists tendency that recent actions have more 
influence to next possible action then those 
happened long time ago. Besides, there might be 
situations, when single db login is used by several 
different persons simultaneously (for example, most 
public web systems do not provide individual db 
logins for their users). In such case the sequences of 
actions in log files will be mixed up that will break 
the order of actions. The only thing to do here is 
including time feature in the model. 

=
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3 OUR APPROACH  

Before we turn to the problem of constructing 
function (1) we need to define the structure of 
database access log in the form of sequences of 
actions i . Most of database access logs consist 
of records of similar structure: 

Ω∈A

featuresothertimesqleventiduser ,,,, , 

where user id is user login; event is a type of event 
(e.g., start or finish of a query execution); sql  is 
SQL text of a query; time is a timestamp; other 
features can be divided into execution group that 
includes numerical characteristics of query 
execution (e.g. number of read/write operations, 
duration, etc); and identification group with discrete 
characteristics of query such as identifiers of client 
process, server’s process, user aliases, etc. Thus the 
problem is to map such structure into a finite 
alphabet. We suggest the following procedure. 
 
DB Access Log Pre-processing Procedure: 
Step 1. “Uninteresting” attributes 
reduction. 
Step 2. Numeric attributes 
descritization. 
Step 3. Extracting templates 
(skeletons) from SQL statement. 
Step 4. Mapping discrete attributes 
combination to finite alphabet Ω . 
 
On the first step we exclude attributes that are not 
interesting for analyzing. For example, db server 
process id, as a rule, is not interesting for the model. 
On the second step the rest numerical attributes are 
discretizied by some unsupervised discretization 
algorithm. In particular, we use equal frequency 
interval method with small (3-10) number of 
intervals. On the next step SQL statement text is 
processed. We extract its so called skeleton or, in 
other words, template, that presents the query syntax 
with removed user parameters. We use the approach 
similar to (Valeur, 2005). SQL statement is 
converted into the sequence of tokens, where each 
token has either keyword type (for SQL language 
keywords) or name type (for db related names, i.e. 
table names, fields, stored procedure, etc.). Let us 
clarify this idea on the example. Assume we are 
given the following query:  
SELECT FROM USERS WHERE NAME=’Bob’ AND 
CITY=’London’ 
We convert it to the sequence of tokens:  
(SELECT,keyword)(FROM,keyword)(USERS, 
name)(WHERE,keyword)(NAME,keyword)(AND, 
keyword)(CITY,name) 
 

Then each unique template gets its unique identifier. 
Thus, before the fourth step the initial log file record 
has the form of vector of discrete attributes, where 
each attribute is either discrete attribute of the initial 
record or SQL template identifier, or interval id of 
discretizied initial numeric attribute. Records with 
the same SQL template, the same discrete attributes 
and close numeric attributes have the same 
representation, i.e. the same combination of resulting 
discrete attributes. Such representation of the similar 
records identifies the possible action, to which a 
unique symbol from the alphabet  is assigned. In 
this way the alphabet 

Ω
Ω  determines the set of all 

possible user actions. At the first glance the 
suggested procedure can be criticized for the 
possibility of unbounded growth of the size of the 
alphabetΩ . In practice, for production systems 
being in stable exploitation, it is found that the 
growth comes to stop quickly enough, just for few 
hundreds. Besides, number of different possible 
actions can be reduced by grouping them, using 
clustering or frequent episodes or expert’s domain 
knowledge.  

After applying this procedure for mapping db 
access logs structures into the alphabet Ω  we can 
use traditional data mining methods based on 
association rules, sequential models or 
autoregressive classification. However, as we 
outlined before, these methods do not take time 
feature into account, only the order. To avoid this 
problem we propose novel approach. Its main idea is 
constructing empirical feature mapϕ  that explicitly 
maps an arbitrary sequence of symbols from Ω  
with timestamps into a finite-dimension metric space 
H. First of all, we need to extend the representation 
of user actions by adding time labels to them. Then 
each action from S(U) or H(U) is described by the 
pair TimetmA ×Ω∈),( . Let us formulate the basic 
assumptions for ϕ  mapping: 
- recently performed actions have more influence on 
the upcoming action  than actions  performed 
long time ago;  

nextA

-  requently performed actions have more influence 
on the upcoming action  than actions 
performed rarely.  

nextA

Appropriate background for constructing such 
mapping comes from the theory of potential 
functions (Aizerman,1970). We assume that any 
possible action Ω∈iA  has its own potential at any 
moment t. This potential is being reduced 
proportionally to the time passed from the moment 
when the action was performed. The exact form of 
this reduction is given by a priori chosen potential 
function ℜ→×TimeTimePf : . If the sequence 
contains the same actions in different times, in 
accordance to the potential function theory, their 
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potentials are summed up. In this manner, we define 
the mapping of the sequence (of an arbitrary length) 
of user actions with timestamps into the real vector 
space of dimensionality Ω=L : 

Ω∈>∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

AtmtUHtmA

tmtPftUH
0),(),(

00 ),()),((ϕ . (4)

According to (4) the internal “state of a user 
activity” at any moment t is described by the set of 

Ω=L  potentials )),(( nA tUHϕ . It allows 
considering both time and frequency features of 
previous actions. 

Functions from RBF class are convenient for use 
as potential function Pf (4). Potential functions of 
this type depend only on time interval between 
actions in series and do not depend on exact time 
moments. In our experiments we use exponential 
function )exp(),( yxyxPf −−= σ , where 
parameter σ  controls the speed of the past actions 
influence vanishing, i.e. how quickly potentials go 
down. Besides, such RBF can be efficiently 
calculated for continuous sequence using the 
recursive formula (where 0)0( =Aϕ ): 
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The feature mapping function (4) allows a 
sequence of actions to be presented as a feature 
vector from L-dimensional real vector space. At any 
moment the “state of the user activity” is 
unambiguously described by the given vector. 
Therefore, it is naturally to use the approach based 
on autoregressive classification methods for 
constructing user behavior models. In such case a 
training set is represented as the set of pairs 

Ω×ℜ∈ Ω
Ω∈

t
AA At ,))((ϕ : 

t
t

AAtrain AtUH },))(({)( ><= Ω∈ϕ  (6)

Then learning algorithm is used to construct a multi-
class probabilistic classifier of the form: 

Ω→ℜΩ:)(UH  that estimates probabilities (1) for 
any given state 
F

Ω∈AA t))((ϕ : 

))))(((())(),(|( )(
t

AAUH
t AtFPUHUSAP == Ω∈ϕ  (7)

Since almost all probabilistic multi-class 
classification method can be applied, when the input 
space is finite-dimensional real vector space, we 
concentrate our attention on the two main criteria –
accuracy of prediction and understandability of the 
obtained model for a human expert. From our point 
of view, decision trees (Hastie, 2001), (Quinlan, 
1987) have the best balance between accuracy and 

interpretation power among all classification 
methods. Tree based methods partition the input 
feature space into a set of rectangular regions 

n , and fit a simple model in each one. 
Usually this simple model is a class probability 
distribution. Applying a standard algorithm, e.g. 
CART (Hastie,2001) or C4.5 (Quinlan,1987) to the 
training set (6) we come to the model that can be 
represented as a tree, where each terminal node m is 
connected with a region  described by the 
following predicate system: 

RRR ,...,, 21

mR

IF  AND … ))(( upper
AiAi

low
Ai CtC <<ϕ

    AND … ))(( upper
AjAj

low
Aj CtC <<ϕ

THEN mAA Rt ∈Ω∈))((ϕ  

(8)

Here Aj  and Aj  are constants bounding 
possible value of the potential for action 

lowC Cupper

Ω∈jA  at 
the moment t. The distribution of class probabilities 
is associated with each region m . For each possible 
action 

R
Ω∈tA  we take probability (7) as a ratio of 

samples presented in the m  and having class R tA  
( ) to the total number of samples in 

( ): 
)( mA RCount t

mR ( )mCount R

)(
)(

)))((|(
m

mA
mAA

t

RCount
RCount

RtAP t
=∈Ω∈ϕ  (9)

Class probabilities (9) are considered as estimates 
(7), and the whole procedure looks as follows. 
 
User Behavior Modeling Procedure: 
 
Preparation process:  
Step 1: For any given db trace find Ω  
and prepare historical data H(U) using 
the proposed log translation procedure.  
Step 2: Choose potential function type 
and parameters for feature map (4). 
Step 3: Convert H(U) into training set 
(6) using feature map (4). 
Training process:  
Calculate regions (8) and class 
probabilities (9) using decision tree 
algorithm (e.g. CART or C4.5). 
Prediction process: 
At any moment t for any current user 
actions sequence do the following: 
Step 1: Translate the sequence into S(U) 
using the proposed log translation 
procedure. 
Step 2: Calculate potentials Ω∈AA t))((ϕ  
using (4). 
Step 3: For each Ω∈AA t))((ϕ  use (8) to 
find the target region m  and use (9) 
to estimate probabilities (7) that 
define model (1). 

R
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It should be noticed that proposed model has simple 
and meaningful interpretation for a human expert. It 
can be visualized as a decision tree with 
distributions of possible actions in terminal nodes. 
Its semantics is described by a system of rules in the 
form: “IF at the moment t potentials of the previous 
user actions are in specified ranges THEN next user 
action would be A with probability P”.  

4 EXPERIMENTS 

In this section the results of experimental 
performance evaluation are presented. The goals of 
experiments are to check how traditional data 
mining methods (sequential patterns and association 
rules) work on real-world data with our proposed 
SQL-trace translating procedure and to compare 
performance of existing methods to our novel 
method, based on time-dependent feature mapping 
and decision tree learning algorithm. We consider 
two scenarios: “next action prediction” and 
“anomaly detection”. 

Below we denote our method as Pf-DT that 
stands for “Potential function feature space with 
Decision Tree”. We use recursive exponential RBF 
(5) as a potential function in the feature map (4), 
time is calculated in milliseconds, 1000=σ . In our 
method, we use С4.5 learning algorithm with 
probabilistic cutting threshold (Quinlan, 1987). As 
competitors we tried Expectation-Maximization 
based sequence clustering algorithm (Seq-EM) and 
Apriori association rules mining algorithm (A-
Rules). Both algorithms are implemented in MS 
2005 SSAS (Tang, 2005).  

We run experiments on real-world data, collected 
from MS SQL Server trace logs and generated by 
real-world banking intranet application. The task of 
the application is registering, evaluating and 
processing consumer credit requests. An operator 
enters and processes customer’s requests in the 
system. Several real persons usually work 
simultaneously under the same operator’s login. We 
collected traces of operators’ activity in one branch 
of the bank during two days, one day – for training, 
another for testing. There are about 30000 SQL 
queries per day. Applying SQL trace transformation 
procedure we consider only SQL query text, 
execution time, duration and number of read/write 
operations in a query. As a result we obtain the 
alphabet size Ω=L =65.  

The first series of experiments was for “next 
action prediction” scenario. To study how the size of 
the training set affects the model precision we 
prepared three training sets of different sizes: 2 
hours, 4 hours and 8 hours (the whole working day) 

of activity. The testing dataset is 8 hours of activity 
in another day. Training time of all algorithms in 
these experiments was nearly the same, about one 
minute or less. The experimental performance 
results (hit ratio) are presented in the table below: 

Table 1: “next action prediction” experiments. 

Experiment Settings Algorithm hit ratio 
Training: 8h (33856 records) Pf-DT 85.76% 
Testing: 8h (28060 records) Seq-EM 59.72% 
No anomalies  A-Rules 42.47% 
Training: 4h (16180 records) Pf-DT 79.77% 
Testing: 8h (28060 records) Seq-EM 43.72% 
No anomalies A-Rules 41.65% 
Training: 2h (4039 records) Pf-DT 51.91% 
Testing: 8h (28060 records) Seq-EM 21.07% 
No anomalies A-Rules 8.6% 

 
In this scenario our method dramatically 
outperforms its competitors. Another thing is that 
accuracy of all algorithms growths with the size of 
the training set, though the difference between 4 and 
8 hours is not significant. It means that user activity 
in the investigated application is very stable and we 
do not need large datasets to train.  

The second series of experiments is devoted to 
the investigation of the problem of anomaly 
detection. To estimate the ability of the algorithms to 
discover anomalies we have added to the testing 
dataset 10% of randomly generated anomalous 
actions (possible actions but in a random places). 
We also tried 1% and 5% but the results turned out 
to be very similar to 10%, that is why (and because 
of space limitation) we leave only results for 10%. 
They are presented on ROC curve chart below: 
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Figure 2: ROC curve for anomaly detection task with 10% 
anomalies in the testing set (31912 records). 

However, unlike other methods, our method reached 
the detection rate of 100% the corresponding false 
positive rate is too big (about 7%). In the area of 
smaller false positive rates Seq-EM and even A-
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Rules outperformed our method. Outstanding 
performance in the “next action prediction” task and 
average results in anomaly detection mean that 
proposed method very precisely guesses the most 
expected action, but not enough accurately estimates 
the set of all expected actions (that Seq-EM and A-
Rules do). It means that the mechanism of 
probabilities estimation used in the decision tree 
algorithm (9) is not perfect for the anomaly 
detection task. In the future research we will check 
the anomaly detection ability of the proposed 
approach with other probabilistic multi-class 
classification algorithms, e.g. with kernel methods 
(Hastie, 2001), and we hope to obtain outperforming 
results in this scenario as well. 

5 CONCLUSIONS 

The main contributions of this paper can be 
summarized as following: 
1. New type of data source for user behavior 
modeling has been considered. This is the database 
access log consisting of traces of SQL queries 
executed by users. It is promising information 
source because the major part of modern software 
systems use relational databases as information 
storage, and usually all critical user actions leave a 
trace in database access logs. 
2. Simple but effective procedure for translating 
SQL traces structures into a finite alphabet of 
symbols has been proposed. It allows analyzing 
database access log data with traditional data mining 
techniques such as sequential mining and association 
rules mining methods.  
3. Novel method for mining probabilistic user 
behavior models has been formulated. Unlike other 
existing data mining methods it incorporates time 
feature in the user model. The empirical feature 
map, motivated by potential functions theory, has 
been proposed for that. Combining this feature map 
with decision tree algorithm we obtain new method 
with following advantages: it is precise enough; it 
takes into account time intervals between user 
actions; it gives understandable for a human expert 
interpretation of generated behavior models in the 
form of “IF…THEN” rules. 
4. Experimental performance evaluation on real-
world data has been conducted. It has demonstrated 
that database access logs can be successfully used 
for user behavior modeling and reliable models can 
be constructed. In these experiments, our proposed 
method has demonstrated outstanding results in the 
“next action prediction” scenario and competitive 
results in “anomaly detection” scenario. 
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