
A PEER-TO-PEER SEARCH IN DATA GRIDS
BASED ON ANT COLONY OPTIMIZATION

Uroš Jovanovič
XLAB Research

Teslova 30, SI-1000 Ljubljana, Slovenia

Boštjan Slivnik
University of Ljubljana, Faculty of Computer and Information Science

Tržaška 25, SI-1000 Ljubljana, Slovenia

Keywords: Distributed search, P2P, data grids, ant colony optimization.

Abstract: A method for (1) an efficient discovery of data in large distributed raw datasets and (2) collection of thus
procured data is considered. It is a pure peer-to-peer method without any centralized control and is therefore
primarily intended for a large-scale, dynamic (data)grid environments. It provides a simple but highly efficient
mechanism for keeping the load it causes under control and proves especially usefull if data discovery and
collection is to be performed simultaneoulsy with dataset generation. The method supports a user-specified
extraction of structured metadata from raw datasets, and automatically performs aggregation of extracted
metadata. It is based on the principle of ant colony optimization (ACO). The paper is focused on effective
data aggregation and includes the detailed description of the modifications of the basic ACO algorithm that
are needed for effective aggregation of the extracted data. Using a simulator, the method was vigorously tested
on the wide set of different network topologies for different rates of data extraction and aggregation. Results
of the most significant tests are included.

1 INTRODUCTION

Nowadays, vast datasets too large to be stored on a
single computer are being generated and used all the
time. In the scientific environment, they are often
produced during experiments in a number of different
fields, ranging from physics to genetics. In business,
companies are storing all kinds of data from which
customer behaviour can be analysed and predicted. In
computing and telecommunications, logs are gener-
ated day and night.

Some datasets are generated by a single source but
must be distributed immediately because of their size.
For example, data grids are being developed to man-
age all data produced by particle accelerators. Other
datasets like computer logs, for example, are gener-
ated by multiple sources but are most often analysed
together.

Data grids represent a promising way to handle
large and distributed datasets (Chervenak et al., 1999;
Berman et al., 2003). To enhance the overall system
performance, data replication is used to minimize the
transfer of different chunks of a distributed dataset
to the computer running the application (Čibej et al.,
2005).

However, if the amount of data needed by the appli-
cation is small compared to the entire dataset, the data
should be extracted at the remote servers, collected to-
gether, and finally transfered back to the application.
Thus, an application must be capable of sending cus-
tom requests to the dataset servers. In a distributed en-
vironment based on an unstructured network with no
fixed topology and no metadata prepared in advance,
this problem is hard to solve efficiently.

Grid infrastructure like Globus or gLite (Globus,
2006; gLite, 2006) is used to handle all low level de-
tails of sending the requests and obtaining the results,
and to provide read access to raw data in order to ex-
tract metadata. To avoid flooding the network with
requests and thus keeping the load limited the im-
plemented grid service uses a method of ant colony
optimization for extracting and collecting data from
chunks of a distributed dataset (Dorigo and Stütlze,
2004).

It has been demonstrated that ACO can be an effec-
tive method for clustering (Handl et al., 2006), but so
far only static datasets have been considered. In this
paper the ACO algorithm, adapted and extended in or-
der to handle extraction and collection from dynamic
raw datasets, is described.

363
Jovanovič U. and Slivnik B. (2006).
A PEER-TO-PEER SEARCH IN DATA GRIDS BASED ON ANT COLONY OPTIMIZATION.
In Proceedings of the First International Conference on Software and Data Technologies, pages 363-366
DOI: 10.5220/0001319703630366
Copyright c© SciTePress

2 USER’S PERSPECTIVE

Following the approach introduced in (Jovanovič
et al., 2006), a grid service must enable a user to do
the following two tasks:

1. Starting a new search: As a user is given full (read)
access to the raw dataset, a user should be able to
specify a program that searches the local chunk of
a distributed dataset and extract the relevant data.

2. Checking the list of performed searches: A user
must be able to check if any other user has already
performed a search equal or similar to the one he or
she is about to start.
As the user’s program extracts data from the local

chunk only, it is the responsibility of the grid service
to transfer the user’s program to each dataset server,
to run the program, and to collect the extracted data
from all servers.

The first reason for keeping a list of performed
searches is to keep the overall system load low (a) by
not repeating the same search all over again and (b)
by using results from a similar (possibly more gen-
eral) search instead of starting a new one. The second
reason is a fact that the list of performed searches acts
as a virtual blackboard about what data or relations
among data in the dataset seem interesting to other
users. This might be especially valuable in a collabo-
rative scientific research. It follows that the results of
the searches performed in the past should be stored in
one form or the other somewhere in a data grid.

Hence, the typical method for performing a search
is best described by an (informal) Algorithm 1. Note
(1) that starting a new search in line 6 does not block
the execution as the new search is performed on re-
mote servers; (2) that the search and its results will
eventually appear on the list of performed searches
(even if it yields no results) and thus the loop in lines
7–13 does terminate.

Algorithm 1 Performing a search.
1: check the list of performed searches
2: if the (similar) search has been found then
3: return its results and stop
4: end if
5: provide the extraction program
6: start a new search
7: loop
8: check the list of performed searches
9: if the search has been found then

10: return its results and stop
11: end if
12: sleep for a specified amount of time
13: end loop

This method allows different implementations of a
distributed index of performed searches and different

implementations of searching. At the time being, the
research is focused on the efficient peer-to-peer im-
plementation of a single search (line 6). The task
of maintaining a list of performed searches in a dis-
tributed index and especially a method for comparing
descriptions of different searches are left for the fu-
ture work.

3 ANT COLONY OPTIMIZATION
FOR SEARCHING RAW
DATASETS

Ant colony optimization is a biologically-inspired op-
timization method (Dorigo and Stütlze, 2004). The
basic idea is to use a large number of simple agents
called ants: each ant performs a relatively simple task
but combined together they are able to produce so-
phisticated and effective optimization. Further im-
provements of ACO are based usually on a combina-
tion of the ACO algorithm with other local optimiza-
tion techniques (Dorigo and Stütlze, 2004). Ant based
clustering and sorting have already been studied in the
past (Deneubourg et al., 1991; Handl et al., 2006).

There are two main differences between ant based
clustering and peer-to-peer searching as described in
this paper. First, a node in the system can possess
a pile of data, not just one datum. Second, other
ant based clustering algorithms are suited for mesh
or similar regular planar topologies, and thus the dis-
tance function is modified in order to be efficient for
an arbitrary topology of a distributed environment.

Extraction Ants. Using user-specified programs,
extraction ants extract data from local chunks of
raw datasets. Each extraction program is uniquely
identified. Extraction ants mark their paths with
pheromones associated with the id of the program
they are carrying. In order for extraction ants to dis-
cover as much data as possible they avoid the trails
and prefer the clean paths.

Aggregation Ants. The data extracted by extraction
ants is collected into piles by aggregation ants. Ag-
gregation ant is based on Algorithm 2. According to
the pick-up function 1/(1+x/n)k, small piles of data
are picked up with a very high probability while large
piles are most unlikely to be picked up. The distinc-
tion between small and large pile is predefined and
based on the characteristics of the environment, such
as the average connection bandwidth, and expected
amount of data. Note that the distinction between
a small and large piles can be simply regulated by
changing n (a measure for the size of a pile) and k

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

364

ant has a load

dropped load

the gap on the trail
prevents formation

of the cycle

after the gap,
the trail continues

Figure 1: Result of the acyclic path marking. (The trail
on the right is a “backward” trail produced when the ants
is moving away from the location where a data has been
dropped.).

(a measure of strictness) in the pick-up function. Sec-
ond, the dropping probability function is simplified:
the ant decides to drop the load whenever data of the
same type is present on the node. Furthermore, in or-
der to limit the network load, the number of hops that
a loaded ant can take is limited.

The probability of finding some data is based on
the number of pheromone trails that lead to the pile
containing the data. To increase this probability, after
dropping the load, an ant marks the first few connec-
tions with pheromones directed to the location of the
dropped data. The outcome of such pheromone mark-
ing is a tree of pheromone trails where every branch
of the tree is directed towards the root of the tree that
contains a pile of data. The result of such process in
shown in Figure 1.

There are positive as well as negative consequences
of these so called pheromone fields. On the positive
side, there is a high probability that a smaller pile is
correctly merged with larger pile. On the negative
side, once an ant enters the pheromone field, it gets
trapped. The ant that picks up a pile gets trapped in
the pile’s own pheromone trails.

Pile Ants. In order to avoid the pheromone fields
because of their negative effects, pile ants are used.
They are simple random walkers that are produced by
piles and ignore any pheromone information. At ev-
ery new location, a pile ant checks if another pile of
data of the same type as the one in the pile that emit-
ted it, exists. The smaller pile is picked up and merged
with the bigger pile.

One-Time Aggregating Ants. One-time aggrega-
tion ants are special type of aggregation ants. When-
ever an extracting ant extract some data, a one-time

aggregation ant is also created at the same location.
This ant picks up the new extracted data and tries
to drop it at an appropriate place. When the data is
dropped, the ant dies, i.e., is removed from the sys-
tem. One-time aggregation ants annul the time needed
to discover new extracted data and increase the prob-
ability that they are dropped into near piles.

Algorithm 2 A pheromone-based aggregation ant.
1: loop
2: while the ant is empty do
3: while the node is empty do
4: select a random direction
5: make a step in the selected direction
6: end while
7: if load is selected then
8: pick up the load; h← 0
9: end if

10: end while
11: repeat
12: select a direction

using the existing pheromones
13: mark the selected direction
14: make a step in the selected direction
15: h← h + 1
16: if h = hmax ∨ the node load = the ant load

then
17: drop the load; h← 0
18: end if
19: until the ant is empty
20: while h < hmax do
21: select a random direction
22: mark the selected direction

using the cycle-prevention method
23: make a step in the selected direction
24: h← h + 1
25: end while
26: end loop

Query Ants. The role of the query ants is to find
data collected in piles by following the pheromone
paths created by aggregation ants.

Another method for data discovery excludes the
need for query ants. It is based on maintaining of
distributed indexing service. When the pile is static
and big enough, it registers its location into this dis-
tributed indexing service. Here, static property of a
pile means that the pile has not changed its position
in some predefined amount of time. The second prop-
erty, being big enough, means that the pile contains
at minimum some predefined amount of aggregated
metadata.

A PEER-TO-PEER SEARCH IN DATA GRIDS BASED ON ANT COLONY OPTIMIZATION

365

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600

random walkers
ants

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600

random walkers
ants

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600

random walkers
ants

Figure 2: The results of testing with high rate of extraction (100 random extractions per iteration; 300 extraction ants): the
total number of piles aggregated by random walkers and aggregation ants (left), number of large (static) and small piles
aggregated by random walkers and ants (top right and top bottom, respectively).

4 EXPERIMENTAL RESULTS

The experimental results were obtained by simulat-
ing the extraction and collection of data using a two-
layered network consisting of 2550 nodes. There are
50 fully-connected nodes, each of them being a node
of a subnetwork consisting of another set of 51 fully-
connected nodes. We have also performed the tests
on different layouts and of different scale, but differ-
ent topologies yield very similar results to those pre-
sented here.

For the chosen topology and the number of nodes,
we tested our algorithm against the random walk
heuristic. Note that during the extraction the aggrega-
tion is also being performed. We have also tested the
scenario when the extraction stops and only aggrega-
tion is being performed. These cycles are referred to
as pure aggregation cycles.

Figure 2 shows the results obtained when data is
being extracted on 100 random locations in each iter-
ation, and 300 aggregation ants were always present
in the system besides one-time aggregation ants.

5 CONCLUSION

In this paper we have presented modifications of basic
ACO algorithms that are well suited to the limitations
of the distributed environments. The described modi-
fication of ACO enables very simple yet precise run-
time control over the load caused by extraction and
aggregation simply by regulating the number of ants.

REFERENCES
Berman, F., Fox, G. C., and Hey, A. J. G. (2003). Grid

Computing: Making the Global Infrastructure a Real-
ity. John Wiley and Sons, Ltd., Chichester, England.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and
Tuecke, S. (1999). The data grid: Towards an archi-
tecture for the distributed management and analysis of
large scientific datasets. Journal of Network and Com-
puter Applications, 23:187–200.

Čibej, U., Slivnik, B., and Robič, B. (2005). The complexity
of static data replication in data grids. Parallel Com-
puting, 31:900–912.

Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks,
A., Detrain, C., and Chretien, L. (1991). The dynam-
ics of collective sorting: Robot-line ants and ant-like
robots. In From Animals to Animats 1 (Proceeding
of the First International Conference on Simulation of
Adaptive Behavior), pages 356–365. The MIT Press,
Boston, USA.

Dorigo, M. and Stütlze, T. (2004). Ant Colony Optimiza-
tion. The MIT Press, Boston, USA.

gLite (2006). EGEE > gLite — Lightweight Middleware
for Grid Computing. Retrieved April 28th, 2006, from
http://glite.web.cern.ch/glite/.

Globus (2006). The globus alliance. Retrieved April 28th,
2006, from http://www.globus.org/.

Handl, J., Knowles, J., and Dorigo, M. (2006). Ant-based
clustering and topographic mapping. Artificial Life,
12(1):35–62.

Jovanovič, U., Močnik, J., Novak, M., Pipan, G., and
Slivnik, B. (2006). Using ant colony optimization for
collaborative (re)search in data grids. In Proceedings
of the Cracow Grid Workshop ’05, Cracow, Poland,
pages 205–207.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

366

