
SMART BUSINESS OBJECT
A New Approach to Model Business Objects for Web Applications

Xufeng (Danny) Liang
School of Computing and Mathematics, University of Western Sydney, Sydney, Australia

Athula Ginige
School of Computing and Mathematics, University of Western Sydney, Sydney, Australia

Keywords: Business Object, Modelling Language, Web Engineering, Rapid Development.

Abstract: At present, there is a growing need to accelerate the development of web applications and to support
continuous evolution of web applications due to evolving business needs. The object persistence capability
and web interface generation capability in contemporary MVC (Model View Controller) web application
development frameworks and model-to-code generation capability in Model-Driven Development tools has
simplified the modelling of business objects for developing web applications. However, there is still a
mismatch between the current technologies and the essential support for high-level, semantic-rich modelling
of web-ready business objects for rapid development of modern web applications. Therefore, we propose a
novel concept called Smart Business Object (SBO) to solve the above-mentioned problem. In essence,
SBOs are web-ready business objects. SBOs have high-level, web-oriented attributes such as email, URL,
video, image, document, etc. This allows SBO to be modelled at a higher-level of abstraction than
traditional modelling approaches. A lightweight, near-English modelling language called SBOML (Smart
Business Object Modelling Language) is proposed to model SBOs. We have created a toolkit to streamline
the creation (modelling) and consumption (execution) of SBOs. With these tools, we are able to build fully
functional web applications in a very short time without any coding.

1 INTRODUCTION

Web programming languages (such as PHP, Python,
Perl, ASP, Java, etc) and database technologies have
been around for a long time with major web
applications developed using them. However, with
the increased time-to-market pressure, we can no
longer afford the time to work with rows and
columns in sophisticated databases, and create
business web-based applications from scratch. Thus,
there is a growing need to rapidly develop web
applications that can evolve meeting the ever-
changing business needs. One of the challenges in
developing web applications is to minimise the gap
between the development domain and the actual
problem domain. This has led to investigate ways of
creating better modelling techniques that empowers
users to express their mental model at a higher-level
of abstraction. Further to find smarter tools that can
capture and convert, for implementation, those

models into software objects in order to create
powerful web applications (i.e. by executing those
models). Our work builds on early work done by
Reenskaug in MVC (Model-View-Controller): a
modelling approach to bridge the gap between users’
mind and computer data (Reenskaug, 1979b,
Reenskaug, 1979a). Moreover, empowering users
and allowing trained end users to maintain or even
enhance existing applications is a cost-effective way
to support web application evolution (Wulf and
Jarke, 2004).

The OO (Object-Oriented) paradigm provides us
with techniques to build software applications by
mapping real world objects directly into software
objects. In the past, object mapping techniques have
proven to be successful in software engineering
projects (Casey, 1999). These techniques provided a
natural correlation between real world objects and
objects in the software and database domain.
Additionally, OO design techniques are applicable

30
(Danny) Liang X. and Ginige A. (2006).
SMART BUSINESS OBJECT - A New Approach to Model Business Objects for Web Applications.
In Proceedings of the First International Conference on Software and Data Technologies, pages 30-39
DOI: 10.5220/0001317800300039
Copyright c© SciTePress

of handling the domain evolution (Barstow and
Arango, 1991). The encapsulation concept in OO
provides us with a systematic way to handle
software evolution. System behaviours are
encapsulated inside the objects as methods. This
provides a means for software evolution to be
handled gracefully by delegating responsibilities to
objects. The ability to systematically handle
software evolution makes object orientation a
suitable technique for implementing web
applications.

However, the traditional object concept has a low
level of abstraction and has been designed for use by
software developers. On the contrary, business
objects are “business-focused” software objects
modelled to represent real world business entities
(Lhotka, 2003). They operate at a higher level of
abstraction than software objects. Business objects
offer representations of organisational concepts,
such as resources and actors, which collaborate with
one another in order to achieve business goals
(Caetano et al., 2005). Maamar and Sutherland
(2002) state that business objects provide “an insight
into what aspects of a business should be delegated,
how these aspects may evolve, and what will be the
effect of specific changes”, and through business
objects, “managers and users can understand each
other by using familiar concepts and creating a
common model for interactions”. Thus, an important
attribute that distinguishes business objects from
traditional software objects is the fact that they can
be understood by both business (business managers
and users) and software (software developers and the
software itself). They are considered as the bridge
between software developers and domain experts.

While object-orientation has been long proven
suitable for building business applications, existing
web development tools and frameworks do not
accommodate the need for high-level modelling and
rapid development of web-based business
applications. What is required instead are business
objects that make provision for web interfaces and
behaviours, we call those web-ready business
objects. Web-ready business objects should have
associated conventions such as:
• Providing a file upload facilities for documents

or other binary media contents
• Displaying URL as hypertext links, emails

addresses as mailto hypertext links
• Rendering calendars to assist user to enter date

information
• Offering the suitable media players for video

content.

In order to speed up the development of web-based
business applications, we need business objects that
incorporate those conventions. These conventions
are imperative directives that contribute to “web-
readiness” of business objects.

As a consequence, web-ready business objects
should embrace semantic-rich, web-oriented
attributes. These web-oriented attributes have high-
level, semantic-rich abstract data types (ADT) such
as: email, URL, image, video, document, and date.
These abstract data types require special validation
logic, content handling methods, and presentation
mechanisms. An image attribute for example, we
need to validate its filename appropriately, provide
an upload facility to record the image’s filename to
the database and store the actual image file to a
preconfigured location on the server (assuming that
we are not storing binary data inside the database),
and render the file content as image to the web
browser (via the tag if HTML is used). Web-
oriented attributes can affect different layers of a
web application. The benefit of being able to
program using abstract data types is well understood
in programming (see (Liskov and Zilles, 1974)).
Over decades, programmers have taken advantage of
language-provided, built-in data types, such as
“integer”, to perform normal operations, such as
arithmetic calculations, without worrying about the
underlying low-level instructions that are required to
be carried out by the machine. Similarly, in the
context of web applications, we need the direct
support for using richer and higher-level abstract
data types in order to represent web-oriented
attributes of business objects.

At present the responsibility of handling these
web-oriented richer data types is passed down to the
applications logic, based on primitive data types,
such as “string” or “text”. For example, an email
address attribute is not considered as type “email”,
but type “string” or “text”. As a consequence, web
developers need to craft the same regular expression
for validating the email address from users’ input
and customise the necessary web templates to render
the email attribute as an email hypertext link
(mailto) in every web application they build. This is
mainly due to the fact that “email” is not a built-in,
language-provided data type. The missing notion of
web-ready business objects does not only decelerate
web application developments, but also poses
impediments to business objects being modelled at a
higher level of abstraction. We cannot simply
model: “Employee has photo”, and expect a file
upload facility is provided for updating the photo

SMART BUSINESS OBJECT - A New Approach to Model Business Objects for Web Applications

31

attribute and a correctly displayed image of the
uploaded photo is rendered for viewing.

Thus, in this paper, we propose a Smart Business
Object (SBO) concept. SBO is designed to empower
users by addressing the issues in modelling and
building web applications. SBO uses representations
of business objects and their attributes to achieve a
higher-level of design abstraction in web
applications leading to faster development. We will
demonstrate the concept of SBO through the use of
the lightweight SBO Modelling Language (SBOML)
to model a SBO and create different views of SBO
as web applications.

2 RELATED WORK

Recent MVC web development frameworks such as
(Apple, 2001, Catalyst, 2005, Ruby on Rails, 2005)
and Model-Driven Development tools such as
(AndroMDA, 2005, openMDX, 2005, Tangible
Engineering, 2005) provided the capability of auto
generating basic web user interfaces for CRUD
(Create Retrieve Update Delete) operations for user-
defined persistent objects. The built-in capabilities
of object persistence and web presentation UI
generation in contemporary tools or frameworks
have simplified the process of developing business
objects for the web. However, the real-world
semantics and the high-level abstraction required for
rapid modelling and developing of business objects
for enterprise web applications is still missing.

Most current tools rely on low-level database
column types to determine the web presentation UI
for the corresponding business object attributes. For
example, an attribute is rendered as a textbox if its
column type in the database is ‘text’. However, the
semantics offered by database column type is
insufficient for defining business objects in web
applications. It is tedious and unproductive for
developers having to craft the same regular
expression to validate the email attribute of a
business object. For example, in Ruby on Rails, each
time we need to validate an email address attribute
of a business object, we need to code the same
regular expression:

class Employee < ActiveRecord::Base

 validates_presence_of :first_name,
:last_name, :email
 validates_format_of :email,:with =>
/^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-
z]{2,})$/
end

Modelling business objects in most model-driven
tools via UML class diagram variants are also low-
level and lack high-level semantics suitable for
modelling web-ready business objects. For example,
we have to model “Employee has email:string” and
then customise in different layers of an web
application (such as presentation layer and domain
layer (refers to the layers of enterprise application
defined in (Fowler, 2002))) in order to make the
email attribute to be rendered as mailto hypertext
link and to be validated properly from user inputs.

Figure 1: An UML class diagram for an employee class.

 The Naked Object (Pawson and Matthews,
2002) address the problem of “behaviour
completeness” in business objects. Approaches such
as ARANEUS (Atzeni et al., 1998), WebML (Ceri et
al., 2000), and OOHDM (Rossi et al., 2000) have
focused on issues surrounding the modelling of
content, navigation, and structure in web
applications. Most of them have abstracted content
into traditional business objects. However, none has
looked at “web-readiness” of business objects and
theirs potential in raising the level of abstraction in
modelling business object in order to accelerate the
development of web applications.

3 SMART BUSINESS OBJECT

Smart Business Object (SBO) is a web-ready
business object that supports semantic-rich, web-
oriented attributes suitable for implementing web-
based business applications. As previously
mentioned, these attributes will support convention
settings such as file upload facility for documents,
displaying URLs as hypertext links, rendering a
calendar to assist user to enter date information, etc.
This enables SBOs to auto generate appropriate web
interfaces that will accelerate the development of
web-based business applications. Figure 2 is an
example of rendering a class of SBO called
“employee” as a web table with search capability. In
this example, the contents of the email address
attribute are displayed as mailto hypertext links and
the content of the photo attribute is displayed as
images.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

32

Figure 2: Rendering an SBO as a table with search
capability.

To assist the generation of useful web user
interfaces (such as in Figure 2) for rapid web
application development, each SBO have a rich set
of built-in methods (operations) for rendering
commonly used web user interfaces, such as tables,
forms, navigation menus, etc. These user interfaces
allow end users to interact with SBOs via a web
browser to perform CRUD operations or execute
various custom methods of SBOs.

The one line of code in Perl used to generate the
user interface in Figure 2 is as follow:

organisation::employee-
>render_as_search_form(create => 1,
edit => 1, view =>1, delete => 1);

In other words, render the “employee” SBO in the
“organisation” namespace as a search form, and
allow user to have create, view, edit, and delete
access to the “employee” SBO.

Users can create fully functional web applications
by modelling SBO and executing them to generate
various web user interfaces. The concept of web-
oriented attributes allows SBOs to be modelled at a
high-level of abstraction than conventional
modelling approaches.

3.1 High-Level Architecture of
Smart Business Object

SBO is a lightweight component that can be easily
integrated into existing web frameworks for building
both data intensive and process intensive web
applications. The SBO is layered on top of a
persistent object layer (Figure 3). A persistent object
layer is usually realised using ORM (Object
Relational Mapping) technologies unless an

OODBMS is used. The reference implementation of
SBO uses ORM technologies and relational database
to achieve object persistence. The Builder
component is mainly responsible for modelling
SBO. The interpreter for the SBOML lives inside the
Builder component.

SBOs are organised by their namespaces. The
relationships among SBOs are handled at the object
level (as opposed to being at the database level). The
advantage of this is that SBOs can establish
relationships with other SBOs coming from
physically diverse databases. Thus, the role of the
Metaobject component is to maintain the
relationship definition between SBOs. Moreover,
custom SBO schemas can be used to control the
behaviours of (e.g. look and feel, localisation, etc)
individual SBOs. Thus we need to preserve the
mapping information between customs schema and
SBOs. This information is also maintained by the
Metaobject component. Furthermore, the Metaobject
component also maintains the credential information
required to connect to the underlying data sources.

Figure 3: Smart Business Object high-level architecture.

As previously mentioned, SBO have a rich set of
built-in methods (operations) for rendering
commonly used web user interfaces. The Renderer
component is responsible for rendering SBOs. It has
a host of APIs (Application Programming
Interfaces) to support the generation of various web
user interfaces for SBOs. Each API provides a rich
set of options to achieve fine grain control over the
behaviours of the generated user interfaces. For
example, in Figure 2, we have enabled create, edit,
view, and delete access for the “employee” SBO.
Each API utilises one or more templates. Thus, by
specifying customised templates to the rendering
APIs, we are able to achieve different look and feel
for the generated user interfaces. If the default set of
user interfaces are insufficient for certain
application, we could extend the existing APIs (by
subclassing them) or add new APIs.

SMART BUSINESS OBJECT - A New Approach to Model Business Objects for Web Applications

33

3.2 The Smart Business Object
Schema

The SBO has a default schema to control the global
behaviours of all SBOs. The schema defines a set of
default templates used by each rendering API. Thus,
by specifying different templates in the default
schema or specifying custom schemas, we can
change the look and feel of various user interfaces
generated by the Renderer.

Additionally, the schema defines the behaviours
of each attribute type. By customising the attribute
type definitions in the default schema or by
specifying custom schemas, we can easily change
the behaviours of existing SBO attributes or add new
ones.

In turn, each attribute type definition defines a
number of behaviours of an attribute, such as:
validations, localisation, option values, and
formatting and conversion of values. SBO generates
the appropriate web user interfaces for its attributes
based on their nominated attribute type given when
the SBO was modelled. For SBO attributes whose
attribute type is not explicitly defined during the
time when the SBO is modelled, SBO will aggregate
the meta-information of the underlying data source,
such as the table definition of a database, and match
them against the known attribute types defined in the
specified schema to logically derive the most
suitable (conventional) web user interfaces for those
SBO attributes at run-time.

In this way, the modelling of SBO can be greatly
simplified. For example, we can simply model
“employee has email”, then the generated
“employee” SBO automatically and smartly
considers its email attribute as being of the high-
level type “email” without extra declaration. This
feature adds smartness to SBOs. Thus, we are able to
achieve a much higher level of abstraction than
traditional modelling approaches.

A partial extract from the default SBO schema
implemented in XML is given below:

<?xml version="1.0" encoding="UTF-8" ?>
<sbo version = '0.0.28'>
 …
 <smartness>1</smartness>

<table_template>
table.tt

</table_template>
 …
 <attribute_definition>
 …
 <attribute>
 <name>salary<name>

 <validate>MONEY</validate>
 <format>
 <to_ui>

Renderer::_to_ui_money
</to_ui>

 </format>
 <sort>NUM</sort>
 <default>0.00</default>
 <maxlength>14</maxlength>
 </attribute>
 <attribute>
 <name>photo<name>
 <type>file<type>

 <validate>FILENAME</validate>
 <sort>NAME</sort>
 <convert>
 <to_ui>

Renderer::_to_ui_file
</to_ui>

 <to_db>
Renderer::_to_db_file

</to_db>
 </convert>
 <format>
 <to_ui>

Renderer::_to_ui_image
</to_ui>

 </format>
 </attribute>
 <attribute>
 <name>gender<name>
 <options>
 <option>male</option>
 <option>female</option>
 <options>
 </attribute>

…
 </attribute_definition>

…
</sbo>

In the example schema, “<smartness>” defines
whether SBO should automatically derive the high-
level attribute types for its attributes. The
“<table_template>” element defines that the
“table.tt” template file will be used for the
rendering API(s) responsible for rendering SBOs as
a web table.

Different attribute types are defined within the
“<attribute_definition>” element. For
example, in the “gender” attribute, we have
specified two option values: “male” and “female”.
For the “photo” attribute, we have specified various
trigger functions to control the conversion and
formatting behaviours. Firstly, we define that
“photo” is a “file” type, such that a file upload
input field is provided by default. Before saving the
value from users’ input (usually via web forms

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

34

generate by the SBO), the “_to_db_file” function
is triggered, such that the filename of the uploaded
image file is saved in the underlying database and
the actual binary image file is saved on a
preconfigured location on the server. Similarly,
during retrieval, each value of the “photo” attribute
is sent to the “_to_ui_file” trigger function in
order to construct the necessary URL path needed
access the image file on the server. Then it is sent to
the “_to_ui_image” function for formatting, such
that the values are displayed as images on users’
web browser (such as via the HTML tag).
The “employee” SBO in Figure 2 is rendered
utilising various high-level attribute types defined in
the default SBO schema, including “photo”
attribute type that we have just discussed. We can
always define new trigger function in order to
handle special attribute types.

3.3 Smart Business Object
Modelling Language

According to Pilone and Pitman(2005), modelling is
“a means to capture ideas, relationships, decisions,
and requirements in a well-defined notation that can
be applied to many different domains”. Domain
modelling is the building of an object model of the
domain that incorporates both behaviour and data
(Fowler, 2002). To streamline the modelling and
creation of SBOs, we need a higher-level modelling
language. SBOML (Smart Business Object
Modelling Language) is a lightweight modelling
language designed for modelling SBO.

SBOML is not proposed to be another object-
oriented programming language or to extent existing
OO concepts. Its main intention is to be a
lightweight modelling language that leverage on
existing, most commonly used (conventional) OO
concepts that are suitable for building web based
business applications. It brings OO concepts closer
to users’ mental model. It is designed to allow users
to express their domain specific business objects in
near natural language syntax.

In this section, we will use the following
conventions to represent the formal construction of
the SBOML:
• Keyword elements are emphasised in both bold

and italic
• Normal style texts represent user-defined

elements
• When an element consists of a number of

alternatives, the alternatives are separated by a
vertical bar (“|”)

• Optional elements are indicated by square
brackets (“[” and “]”)

• An ellipsis (“...”) indicates the omission of a
section of a statement, typically refers to
recursive statements.

The statement for defining SBO attributes,

methods, and ‘has’ relationships between SBOs is as
follow:

in namespace, business object has
attribute A [([mandatory] [type] [which
could be option a or option b])],
[might have] [many] another business
object [(has attribute B, attribute C,
yet another business object (has
...))]... ,[use method A (method name
type from location [option is value,…]
[with attribute A, attribute B,… | with
attribute A as parameter name abc ,
attribute B as parameter name …]),
service B...]

The “in” clause defines the namespace where the
subsequent business object(s) are created within. If
the namespace does not exist, a new namespace is
created. The “has” clause defines the attributes of
the intended SBO, or ‘has’ relationships with
another intended SBO. The optional “use” clause
defines the methods (operations) of the SBO. We
first explain the statement by referencing to a simple
example:

in organisation, employee has first
name, last name, gender, date of birth,
photo, email address, home phone,
position (has title, description)

Literally, we have just defined an “employee”
SBO and a “position” SBO where “employee” has a
“position”. When the above statement is executed,
and we can directly render the “employee” SBO to
the web, such as to generate a web form for adding
new employees (creating new “employee” SBO
instances).

SMART BUSINESS OBJECT - A New Approach to Model Business Objects for Web Applications

35

Figure 4: Rendering the “Employee” SBO as a web form.

As previously mentioned, by default, a SBO
predicts its attribute types by matching the attribute
name against the defined attributes types in the
default SBO schema. Thus, when rendered as a web
form (Figure 4), the “employee” SBO automatically:
• Enforce first name, last name, date of birth, and

email address attributes as mandatory fields and
enforce the appropriate validation rules to all
corresponding fields

• Provide the “male” and “female” option values
to the gender attribute according to SBO
schema

• Provide a calendar to assist users for date entry
for the “Date of Birth” attribute and present the
date according to users’ locale setting

• Provide a file upload facility for the photo
attribute to upload binary image file

• List the available positions as options items
(assuming that we have previously created some
“Position” SBO instances), due the relationship
established between the “employee” SBO and
the “position” SBO

We can always overwrite the default settings, and

explicitly declare the attribute type. For example:

in organisation, employee has first
name, last name,…, department
(mandatory name which could be IT or
Sales)

By default, all defined attributes are optional,
except for whose attribute types are defined as
mandatory in the specified SBO schema or due to
the requirement of the underlying data source (such
as a NOT NULL column of a database table). In the
example, the “mandatory” keyword enforces that
the value of the department attribute cannot be
empty (i.e. a mandatory field on a web form). The

“name” specifies the type of attribute. Thus, could
be any attribute type defined in the default SBO
schema or in any custom SBO schema. The “which
could be … or” clause allows users to specify the
possible value set of an attribute. In case of the
department attribute in the example, option values
are “IT” and “Sales”.
 The “many” keyword indicates a “has many”
relationship, in UML terms, the cardinality is [1..*].
In combination with the “might have” keyword,
i.e. “might have many”, then the cardinality
becomes [0..*]. For example:

in organisation, employee has first
name, last name,…, might have many
office (has room number, building id)

 SBO can easily aggregate local functions or
remote service as its methods (operations). This
enables SBO to be seamlessly integrated with
workflow engines and SOA (Service-Oriented
Architecture) to develop more complex process
oriented business web applications. This can be
achieved using the “use” clause. For example:

in organisation, employee has first
name, last name,…, use notify HR
(notify_HR from
http://10.10.10.2/notify.wsdl with
first name as param_first_name, last
name as param_last_name)

In the example, “notify HR” is the name of the
method for the employee SBO, and “notify_HR” is
the actual name of the remote method “from” the
WSDL file located at
“http://10.10.10.2/notify.wsdl”. In the
reference current implementation, the SBO support
Web Services and XML-RPC for remote invocation.
Thus, the “type” keyword could be: Local (for
executing local application APIs), Web Service, or
XML-RPC. The “with” keyword is used to indicate
the mapping of the attributes of the SBO to the
required parameters of the remote method. In the
example, when the “notify_HR” method is
executed, the value of the first name and last name
of an “employee” SBO instance is passed to the
“param_first_name” parameter and the
“param_last_name” parameter respectively.
Depending on the nature of the remote method, more
arguments, such as URI, may be required to identify
and execute the remote method, thus the clause
within the squarely blanket allows user to specify
key-value pairs for any optional argument that is
needed.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

36

 After incorporating the changes to example
shown in Figure 4, when we retrieve an instance of
the “employee” SBO and render it as a web form
again, it would generate the screen shown in Figure
5. Now, users can assign a department, multiple
offices to the employee and click the “notify HR”
button to execute a web service.

Figure 5: Rendering the “Employee” SBO as a web form
with a department, multiple offices and a new method.

We can use the following statements to explicitly
define relationships among existing SBOs. For
“has” relationships, we could use either:

in namespace, business object has|
might have another business object [as
attribute X] [via yet another business
object]

or

business object in namespace has| might
have another business object in another
namespace [as attribute X] [via yet
another business object in yet another
namespace]

The second construct allows SBOs to establish
relationships across namespaces. The “as” clause is
to nominate a specific attribute as a reference to a
foreign SBO instance. For example:

in organisation, employee might have
employee as supervisor

In the above example, the “employee” SBO has a
self-referential “has” relationship, such that an
employee may have a supervisor, which is also an
employee.
The “via” clause is a shorthand for specifying
“many-to-many” relationships. For example:

in organisation, employee has car via
company car rental

Similarly, to define “is a” relationships (inheritance)
between SBOs, we can use either of the following
statements:

in namespace, child business object is
parent business object

or

child business object in namespace is
parent business object in another
namespace

For example:

in organisation, employee is person

3.4 Creating Web Applications
using Smart Business Object

The reference implementation of SBO is deployed
on a web framework called CBEADS© (Ginige et
al., 2005). We have created a lightweight SBO
toolkit, which consists of the SBO Builder (Figure 6)
and the SBO User Interface Generator (Figure 7) on
the CBEADS© framework. They are designed to
streamline the creation (modelling) and consumption
(execution) of SBOs.

Figure 6: The SBO Builder.

The SBO Builder allows users to model and create
SBOs and relationships among them using the
SBOML. The SBO User Interface Generator allows
users to easily create applications on the CBEADS©
framework by rendering SBOs using the SBO
rendering APIs. It also allows users to customise

SMART BUSINESS OBJECT - A New Approach to Model Business Objects for Web Applications

37

various options supported by the SBO rendering
APIs.

Figure 7: The SBO User Interface Generator.

The SBO toolkit allows fully functional web
applications to be created without any coding.
Figure 8 is an employee directory application
generated purely using the toolkit. It is rendering all
the SBOs in a namespace as a tab menu view.

Figure 8: View of the generated application.

3.5 Creating a Customer
Relationship Management
(CRM) Application

In this section, we will demonstrate how we can use
SBOs to generate a lightweight CRM application on
the CBEADS© framework. According to the actual
business requirements, we need to first identify the
actors and their actions, for example:
• Potential customers can make enquiries about

products, request sales people to visit them to
discuss about products, and make purchases

• Sales persons need to keep track of customers,
visits, and sales orders.

Next, we need to identify the necessary business
objects:
• A customer has first name last name, email

address, phone number, and address
• A sales person has first name, last name, and

phone number
• An enquiry has title, question, answer, and date
• A product has code, name, description, price,

and enquiries
• A sales order has number, customer, sales

person, products, and total amount
• A visit has title, date, time, description,

customer, sales person, and sales order.

Using the SBO Builder tool, we can generate those
business objects by expressing them in SBOML:

in crm, visit has title, date, time,
description, customer (has first name,
last name, email address, phone number,
address), sales person (has first name,
last name, phone number), sales order
(has number(mandatory alphanumeric),
many product (has code, name,
description, price, many enquiry (has
title, question, answer, date)), total
amount)

The above SBOML expression models all the
identified business objects at the same time.
However, we can also model them individually.

Figure 9: Sales management function assigned to sales
people.

Lastly, we generate various views (such as Figure 9)
of the SBOs using the SBO User Interface Generator
and assigned them to the system user groups defined
in CBEADS©. Similarly, we can easily extend the
CRM application by modelling additional business

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

38

objects, such as suppliers or competitors, to meet the
evolving business needs.

Once the business objects and the views of the
business objects based on the actions actors need to
perform are identified, we can quickly generate fully
functional web-based applications using SBO toolkit
and the CBEADS© framework. Thus, the overall
development time can be greatly reduced.

4 CONCLUSION

In this paper, we have introduced the Smart Business
Object concept. The SBOs support semantic-rich,
web-oriented attributes. We have presented a
modelling language that allows users to express their
mental model at a higher-level of abstraction. We
have created a tool that generates web-ready Smart
Business Objects from the high-level models. We
have demonstrated the significant benefits of
utilising Smart Business Object in web application
development such as ability to model the application
based on high level business domain objects and
very rapid development of the application using the
tools that we have created.
 We have implemented several industry projects
using SBOs. A significant project is an enterprise
level application; the Online Course Approval
System (OCAS) (University of Western Sydney,
2006) developed for University of Western Sydney
(UWS). The use of SBOs greatly reduced the low
level modelling activities such as creating ER
diagrams and database schemas and enabled us to
rapidly develop OCAS.

REFERENCES

Andromda (2005) Cutting Edge MDSD/MDA Toolkit.
APPLE (2001) WebObjects 5 Reviewer’s Guide.
Atzeni, P., Gupta, A. & Sarawagi, S. (1998) Design and

maintenance of data-intensive web-sites. the 6th
International Conference on Extending Database
Technology: Advances in Database Technology
(EDBT'98). Springer-Verlag.

Barstow, D. & Arango, G. (1991) Designing software for
customization and evolution. Proceedings of the 6th
international workshop on Software specification and
design.

Caetano, A., Silva, A. R. & Tribolet, J. (2005) Using roles
and business objects to model and understand business
processes. Symposium on Applied Computing. Santa
Fe, New Mexico, ACM Press.

Casey, R. M. (1999) Object Mappings in a Software
Engineering Project. Software Engineering Notes -
ACM SIGSOFT, 24.

Catalyst (2005) Welcome to Catalyst Development.
Ceri, S., Fraternalli P. & Bongio, A. (2000) Web

Modeling Language (WebML): a Modeling Language
for Designing Web Sites. WWW9 Conference.

Fowler, M. (2002) Patterns of Enterprise Application
0Architecture, Addison-Wesley Professional.

Ginige, J. A., Silva, B. D. & Ginige, A. (2005) Towards
End User Development of Web Applications for
SMEs: A Component Based Approach. ICWE 2005.
Sydney, Australia.

Lhotka, R. (2003) Expert One on One Visual Basic .NET
Business Objects, Birmingham, Wrox Press Ltd.

Liskov, B. & Zilles, S. (1974) Programming with Abstract
Data Types. Symposium on Very High Level
Programming Languages.

Maamar, Z. & Sutherland, J. (2002) Toward intelligent
business objects. Communications of the ACM, 43.

OPENMDX (2005) openMDX - the leading open source
MDA platform.

Pawson, R. & Matthews, R. (2002) Naked Objects, John
Wiley and Sons Ltd.

Pilone, D. & Pitman, N. (2005) UML 2.0 in a Nutshell,
Sebastopol, O'Reilly Media, Inc.

Reenskaug, T. (1979a) MODELS - VIEWS -
CONTROLLERS.

Reenskaug, T. (1979b) THING-MODEL-VIEW-
EDITOR:an Example from a planning system.

Rossi, G., Garrido, A. & Schwabe, D. (2000) Navigating
between objects. Lessons from an object-oriented
framework. ACM Computing Surveys (CSUR), 32.

Ruby on Rails (2005) Web development that doesn't hurt.
Ruby on Rails.

Tangible Engineering (2005) Tangible Architecture.
University of Western Sydney (2006) Online Course

Approval System (OCAS). University of Western
Sydney (UWS).

Wulf, V. & Jarke, M. (2004) The Economics of End-User
Development. Communications of ACM, 47.

SMART BUSINESS OBJECT - A New Approach to Model Business Objects for Web Applications

39

