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Abstract: The present work is a continuation of several preceding author's works dedicated to a specific multi-
heuristic approach to discrete optimization problems. This paper considers those issues of this multi-
heuristic approach which relate to the problems of clustering situations. In particular it considers the issues 
of the author’s approach to the problems and the description of specific heuristics for the problems. We give 
the description of a particular example from the group of “Hierarchical Clustering Algorithms”, which we 
use for clustering situations. We also give descriptions of some common methods and algorithms related to 
such clustering. There are two examples of metrics on situations sets for two different problems; one of the 
problems is a classical discrete optimization problem and the other one is a game-playing programming 
problem. 

1 INTRODUCTION AND 
PRELIMINARIES 

This paper is a continuation of several preceding 
authors’ works dedicated to a specific multi-
heuristic approach to discrete optimization problems 
(DOPs). We should mark that the given list of 
literature consists almost only of the works of the 
present paper’s authors. First of all it is caused by 
the fact that the authors did not meet publications 
about application in discrete optimization problems 
of all the heuristics simultaneously. Among those 
works we would mark separately the following:  
• description of the approach to DOPs in general 

(Melnikov, 2005; 2006); 
• description of specific heuristics for particular 

DOPs (Belozyorova and Melnikov, 2005; Melnikova 
and Radionov, 2005; Melnikov, Radionov, and 
Gumayunov, 2006); 

• description of heuristics for game-playing 
programs (Melnikov and Radionov, 1998; Melnikov, 
2001; Melnikov, Radionov, Moseev, and Melnikova, 
2006). 

However this division is mostly conventional 
because each of those papers contains partitions and 
heuristics concerning any of the three areas 
mentioned. The object of each of DOPs is 
programming anytime algorithms, i.e., the 
algorithms, which can provide a near-to-optimal 
solution in real time.  

The considered DOPs will be briefly (and two of 
them quite properly) described in this paper. Here in 
the Introduction we will very briefly describe the 
approaches or actually the heuristics of the 
mentioned multi-heuristic approach; the text is given 
according to (Melnikov, 2005). So, the methods of 
solution of DOPs are constructed on the basis of 
special combination of some heuristics, which 
belong to different areas of the theory of artificial 
intelligence. Firstly, we use some modifications of 
truncated branch-and-bound methods (TB&B); 
moreover in this paper we will frequently refer to 
TB&B. Secondly, for the selecting immediate step 
of TB&B using some heuristics, we use dynamic 
risk functions. Thirdly, simultaneously for the 
selection of coefficients of the averaging-out, we 
also use genetic algorithms. Fourthly, the reductive 
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self-learning by the same genetic methods is also 
used for the start of TB&B.  

In this paper we consider those issues of the 
multi-heuristic approach to DOPs which are 
connected with the problems of clustering (or 
classifying; here we do not consider the difference 
between these two terms for in the considered 
problems they have the same meaning) situations, 
actually with the author’s approach to those 
problems, with description of the heuristics specific 
for those problems, and with applying the 
corresponding methods. Let us mention two works 
which became classical. The first one is about usage 
of clustering algorithms in artificial intelligence 
problems, see in (Lifschitz, 1990). The second one is 
a classical work on solving problems “by analogy” 
(in author’s opinion this subject is quite popular 
nowadays), see in (Carbonell, 1983)..  

Section 2 of this paper contains the description of 
an example from the group of “Hierarchical 
Clustering Algorithms”; the authors find this variant 
of algorithm the most efficient for the considered 
problems of situations clustering in application to AI 
problems and some empirical confirmations of this 
fact are given below. The authors apply this 
algorithm to problems in other areas (for more detail 
see Section 2). 

In any case a problem of clustering rather often 
demands development of a specific metric. 
Moreover when we fix a concrete algorithm of 
clustering (independent of any particular metric) we 
can say that “if there is a metric then there is a 
clustering” and we do not simplify the situation too 
much. In our case we need to develop metrics on 
situation sets and two examples of that are 
considered in Sections 3 and 4 of this paper. One of 
the problems is a classical discrete optimization 
problem and the other one is a game-playing 
programming problem. 

Section 5 contains descriptions of some common 
methods and algorithms related to clustering. We 
apply these algorithms to different DOPs, both 
classical and intellectual game-playing 
programming. 

Some practical results of usage of our programs 
in two descrete optimization problems (minimization 
of non-deterministic finite automata and DNF) are 
mentioned in conclusion (Section 6). The programs 
contain implementations of all the heuristics 
described in this paper and in the previous 
publications of the authors. We can note in advance 
that the results of our programs execution are purely 
comparable to the best programs of other developers 
(found in the Internet and others). 

2 AN EXAMPLE  

The following Section describes an example from 
the group “Hierarchical Clustering Algorithms”, 
applied by the authors in a number of DOPs. Let us 
give a mathematical description of this algorithm. 
We should note in advance, that here appear a lot of 
problems, connected with building the most efficient 
variants to carry out this very variant – however, we 
are not going to study these problems in the present 
article. 

So, let Rij be the minimal distance between the 
elements of clusters numbered i and j, and ri be the 
maximal distance between the elements of cluster i. 
Common algorithms of clustering and algorithms of 
its quality evaluation generally use the values 

 
where f and g are specific increasing functions 
(chosen depending on a particular problem, 
particular algorithm and so) and i and j take on all 
possible values. First of all we mean different 
variants of algorithms from the group of 
“Hierarchical Clustering Algorithms”. For example 
see the site http://www.elet.polimi.it/ 
upload/matteucc/Clustering/  and also the 
information that can be found by links from this site. 

As distinct from common algorithms the authors 
use the same formula but with other meanings of ri 
values. In particular let: 
• i be the considered cluster,  
• m1,...,mn be all its elements,  
• lmn be the distance between its elements m and n,  
• (M1,..., MN) be some finite sequence consisting 

of the cluster’s elements m1,...,mn and including 
each of them at least once. 

Then we consider 

 
Note that although the given definition is not an 
algorithm the simplest possible algorithms of 
calculating ri values built on its base are not difficult. 
There are some differences between implementation 
of these algorithms and the common ones (i.e., 
implementation of the algorithms which can be 
found by the links on the site mentioned before) but 
we will not concentrate on those differences. 
(Actually those differences could be the subject of a 
separate publication, which practically would not be 
related to the present paper. One of those differences 
is concluded in the following: we step by step 
increase the criteria of combining two clusters into 

SOME SPECIFIC HEURISTICS FOR SITUATION CLUSTERING PROBLEMS

273



 

one, i.e., lowering the clustering threshold with help 
of a specific auxiliary algorithm which uses 
precomputed distances defined on the current 
clusters.) As it was mentioned above, there can be 
found some interesting problems focused on 
efficient realization of this algorithm variant. 
However we will not study these problems in the 
article either. Instead of considering such 
algorithmic problems we are going to approve 
empirically the expediency of using this algorithm in 
the considered DOPs. 

Thus we have shown a formal description of one 
specific clustering algorithm. As it was mentioned in 
Introduction the authors suppose that one of its 
applications could be the problem of forming the 
initial screen when searching in the Internet. In 
(Melnikova and Radionov, 2005), two different 
possible variants of using this algorithm in such a 
problem are given and a preliminary version of 
search engine was developed basing on this 
approach. However here we are more concerned 
about another possible application area of the 
algorithm and this area is discrete optimization 
problems. 

The following question may arise: why do we 
need this very algorithm, what makes it better than 
the other ones described above? (Another question 
may arise why in our case we need to solve 
problems “by analogy” though the goal of each 
anytime-algorithm is in achieving one pseudo-
optimal solution. A possible answer to this question 
is given in Section 5 of this paper.) It is impossible 
to give the exact answer, as it always seems in case 
of heuristics. But practical programming and the 
solution of several DOPs has shown that this 
algorithm is the best to illustrate possible locations 
of situations. Here we mean the situations both for a 
certain DOP and for game-playing programs. We 
attempt to focus on situations not only within one 
cluster, but also in an order which corresponds to the 
possible sequence (M1,…Mn) in the formulae above 
and what is more important to the selection of the 
situations which are included more than once in into 
this sequence (let us call them key situations). 
Situations are sorted in the given way for ordered 
processing of the situations, for solving the 
corresponding subtasks in a similar order, and we 
certainly start with the key situations. (We mark in 
advance that our vision of the term subtask will bee 
defined more exactly in the next section.) By such 
situations sorting we achieve successful solving of 
problems “by analogy” because the situations which 
are close in a “good” metric most likely have similar 
solutions. Here we first have in mind the possibility 

to make the same step in TB&B. And not just 
possibility to make the same step, but heuristic 
choice and receiving the same separating element for 
such step in two subtasks close in the metric. 
So the authors hope that they have given the answer 
to the possible question about necessity of using the 
described algorithm of clustering in different DOPs. 
And as it was mentioned above to do clustering with 
help of this algorithm we need to find a metric on 
the situations set (subtasks set). The following two 
Sections of the paper are dedicated to description of 
such metrics for two different DOPs. 

3 METRICS FOR SITUATIONS IN 
ONE PROBLEM 

In this section we give a metric for the problem of 
vertex minimization in nondeterministic finite 
automata of Rabin-Scott. However the authors leave 
this title of the section because in principle similar 
heuristics can be applied to quite different discrete 
optimization problems. 

Let us explain the task setting (for more details 
see (Melnikov, 2000) and others). Some matrix is 
filled with numbers 0 and 1 (in terms of (Melnikov, 
2000), numbers 1 correspond to elements of binary 
relation #). Let us use the term Grid for any couple 
of subsets of columns and rows of the matrix if those 
subsets meet the following two conditions: 
• at the intersection of each column with each row 

of those subsets 1 is placed; 
• we can not add any row or column to those 

subsets without breaking the first condition. 
In the set of all possible grids we need to find a 

subset which includes all 1s of the given matrix. 
And to reach the requirement of vertex minimization 
in nondeterministic finite automata we should find 
that one of the subsets which contains the minimal 
number of grids in it. (One description of the 
sufficient requirement is given in (Polák, 2004). 
Besides in present time the authors of the paper are 
preparing a publication with a description of such 
algorithm based on description of the set of all 
possible arcs of an automation, which is given in 
(Melnikov, and Sciarini-Guryanova, 2002). To be 
more specific it is based on presence of analogues of 
all these arcs in the given automation. However here 
we consider only the requirement of vertex 
minimization so there is no need to consider arcs and 
each grid is a special description of an automation 
state.) 

We can demonstrate that the problem is not trivial 
by showing the following simple example. As usual 
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for such examples it is specially designed to make 
greedy algorithms inefficient. So, let the initial 
matrix be set by the Fig.1. 

 

 
Figure 1: Initial Matrix. 

Then the optimal solution does not contain the 
maximal grid, i.e. the grid of columns U, V, and W 
and rows A, B and C. Optimal solution consists of 
the tree single-row grids (the same A, B and C but 
now each of them contains all available 1) together 
with three similar single-column grids. Obviously 
real tasks are much more complex but as for smaller 
tasks this one is quite interesting. 

Now we are going to consider some different 
metrics but first we need to explain some general 
notations. Let X and Y be some sets, n=|X∩Y| be the 
number of elements in their intersection, N=|XUY| 
be the number of elements in their union. Then we 
will write Ω(X,Y)=1–n/N. 

Let us consider the heuristic for definition of a 
metric on the grids set. (We suppose that any 
possible metric should deliver value of 0 if the grids 
are totally the same and value of 1 if the grids have 
no common elements, i.e. common matrix cells 
filled with 1.) As a result of practical programming 
including testing of several alternatives we have 
found that the following heuristic is the most 
efficient for the problem. Let X1 and X2 be sets of 
the numbers of the grids’ rows 1 and 2, Y1 and Y2 be 
the same sets for the columns. Then we will use the 
following value as a metric 

(α·Ω(X1,X2)+ (1– α)·Ω(Y1,Y2)), 
where α is some coefficient to be adjusted with help 
of genetic algorithms. (Actually it also depends on 
the number of elements in the mentioned arrays, but 
we do not discuss genetic algorithms in this paper.) 
Obviously if the grids are the same then we get 0. 
Though we do not always get 1 if the grids have no 
common cells with value of 1, nevertheless the given 
metric is quite efficient for the considered problem. 
Now let us consider possible heuristics for definition 
of a metric on the subtasks set. To do this we need to 
define more exactly what is subtask (though we will 

not give the complete definition, it is just 
impossible) and first let us show fragments of the 
corresponding programs in C++, containing 
descriptions of task and subtask. Here we reach two 
goals at the same time: firstly we show a possible 
variant of implementation of the approach to DOPs 
programming and secondly we introduce all the 
auxiliary elements needed for our definition of 
subtask. We hope that the comments placed in the 
listing will help to read the source code. 
First of all here is the class describing the whole 
DOP. 
class MyTask : public MAG { 
  // the ancestor contains  
  // the initial matrix 
  // and all yet generated grids  
private: 
  AST sbtAll; 
    // all possible generated subtasks 
  MySubTask* pstAnyTime; 
    // the best of yet solved tasks;  
    // it is NOT included in sbtAll 
    // ... 
}; 

Additional comments. We use the following 
auxiliary classes: 
• ancestor class MAG (abbreviation for Matrix, 

Array, Grid) includes data of the initial matrix 
and of the grids which are generated to the 
moment;  

• class AST (“array of subtasks”) is an array of 
subtasks; when using MFC library this class 
should be derivate of the class CPtrArray 
which includes only pointers to defined below 
subtask objects (of the class MySubTask). 

Then here is the class describing a subtask; we 
are listing the variant using MFC. 
class MySubTask { 
private: 
  MyMatrix* pMatrixThis; 
    // already filled HERE matrix 
  double rQuality; 
  MyWordArray* pArrYes; 
  MyWordArray* pArrNo; 
    // both arrays contain  
    // numbers of grids 
    // ... 
}; 

Additional comments. The matrix 
*pMatrixThis is of the same type as the matrix 
included in the class MAG; obviously at the start of 
TB&B this matrix is filled with 0 only, and when 
receiving any current solution it coincide with the 
matrix included in the class MAG. The value 
rQuality is a boundary which is used in TB&B 
execution. The array *pArrYes contains the 
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numbers of the grids which form the matrix 
*pMatrixThis. According to the common 
principles of TB&B a subtask must include the list 
of the grids which cannot be included in 
forthcoming solution and *pArrNo contains this list. 
References to the grids are made by their numbers 
included in the class MAG. Thus there is no direct 
access to the grids from the class MySubTask but 
the logic of this approach to the problem i.e. the 
logic of TB&B application does not demand such 
access. 

Basing on the introduced above metric on grid we 
define a metric on subtasks. To do this let us first 
define a metric for any two arrays of grids. Let 
X={x1,…,xm} be the first array, Y={y1,…,yn} be the 
second one. Then the metric itself is 

ρ(X,Y) = (∑ i , j Ω(xi , yj)) / (m·n), 
where i and j take on all possible values. Then let X1 
and Y1 be arrays *pArrYes and *pArrNo for the first 
subtask, X2 and Y2 be the corresponding arrays for 
the second one. Let us denote 

A = ρ(X1,X2),  BB1 = ρ(X1,Y2),  B2B  = ρ(X2,Y1), 
and as the distance between the subtasks we will use 
the value 

(1+2·α)·A – α·(BB1+B2), 
where α is again some coefficient to be adjusted 
with help of genetic algorithms. (Actually the last 
formula is true only for “close” subtasks. In the 
other case, for example in case of high values of the 
sum B1+B2, we use other formulae, however as 
before we will not get deeply into details.) 

When we use this metric in solving subtasks “by 
analogy” as it was said above we make efficient 
versions of programs because according to the 
metric’s description we have similar sets of grids in 
the arrays *pArrYes and *pArrNo for close in the 
metric subtasks. However this metric demands 
precomputing of distances between any two of the 
grids generated to the moment. That is why the 
authors often use another metric which is somehow 
analogous to the metric given above for the grids. 

So let us describe another variant of metric on a 
subtasks set. Let P1 be the set of cells of the first 
subtask’s matrix with value of 1; P2 be the same for 
the second subtask. Then as a metric we use the 
value Ω(P1,P2). Note that the formulas here are mush 
simpler than in the previous variant but if computing 
of the distances on the set of grids is made 
beforehand then the calculations for the second 
variant of metric take quite longer. These 
calculations bay be demanded as auxiliary for 
different subtasks of TB&B and in some variants of 
TB&B are actually made beforehand. Besides see 

the brief description of possible algorithms 
managing such calculations in Section 5. 

4 METRICS FOR SITUATIONS IN 
GAME PROGRAMS 

This section describes one problem of 
nondeterministic game-playing programming and 
metrics used for clustering of situations in this game. 
However we (as in the previous section) leave the 
general title because the offered approach can be 
used in other problems of non-deterministic game-
playing programming. 

The particular nondeterministic game in which 
we use situations clustering is called “Omega” 
game; a similar game was described in one of Martin 
Gardner’s works. Let us briefly describe the rules of 
this game. 

In the game a square matrix (with N rows and N 
columns) is used. Two players take turns to fill the 
matrix with natural numbers. After filling the whole 
matrix (both players make N2 moves in aggregate) 
the first player calculates the sum of the numbers 
productions by rows, the second player calculates 
the sum of the productions by columns. The 
difference between the sums is the first player’s 
profit and the second player’s loss. The numbers 
which the players use to fill the matrix are chosen at 
random from the range between 1 and N2 before 
each move. 

For this game even at the dimension of 3 (3 rows 
and 3 columns) there is no chance to find the 
optimal move with help of exhaustive search. That is 
why here we have to use TB&B modified in a 
specific way according to nondeterministic nature of 
the game (for details see (Melnikov, Radionov, 
Moseev, and Melnikova, 2006)). In particular we 
use the method of risk functions developed by the 
authors for programming of nondeterministic games. 
Besides, some specific heuristics are used in order to 
shorten the search. 

In most cases at a regular step of TB&B we need 
to classify the situation to choose one of the 
heuristics or to define the particular values of the 
used heuristics’ parameters for instance the values of 
the risk functions’ parameters. Moreover, an 
efficient method of situations classifying often helps 
to determine such an order of the moves processing 
which can shorten the search. 

Before we can define a metric on the set of 
situations of this game we need to define the term 
situation itself (or subtask in term of the previous 
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section). A situation in this case is a game matrix 
partly filled with numbers i.e. a state of the game 
matrix after a move of one of the players. Thus we 
are going to define a metric on the set of partly filled 
matrixes. 

To find the distance between two partly filled 
matrixes let us fill their empty cells with average of 
distribution of the random value. In our case we 
should put the value (N2+1)/2 into all empty cells of 
both matrixes. Now for each matrix we find the 
products of numbers by columns and by rows. Then 
we permute the rows and columns of each matrix in 
ascending order of the corresponding products. Note 
that the result of this game does not change after 
permutation of rows or columns of its matrix. Let S 
be the sum of absolute values of the differences 
between the corresponding products of the matrixes 
(2*N differences in aggregate). The value of S can 
be considered the distance between the matrixes. We 
can also use a normalized variant i.e.  

S/(2*N*(N2*N-1)). 
As is easy to see both variants are equal to 0 

when the matrixes are the same. They also equal to 0 
when the matrixes are equal to permutation and this 
property corresponds to the game specific. Besides, 
the normalized variant can never exceed 1 and it can 
reach this value only in the case when one matrix is 
completely filled with 1s and the other one is 
completely filled with N2. 
The given metric can be used in the described above 
approach of situations clustering. 

5 SOME COMMON 
ALGORITHMS 

In one of the previous sections the following 
question was asked: why in our case we need to 
solve problems “by analogy” though the goal of 
each anytime-algorithm is in achieving one pseudo-
optimal solution. We can give the following 
answers. First, we do not know which one of the 
considered subtasks will deliver the pseudo-optimal 
solution (which will replace the current one i.e. 
*pstAnyTime according to the given program 
notation). Second, according to one of the main 
principles of the branch-and-bound method (not only 
in the truncated one) two different subtasks can not 
deliver the same final solution. Therefore the current 
pseudo-optimal solutions for different subtasks will 
certainly be different. However as is easy to see the 
given answers do not cancel the possibility (and 

maybe necessity) of solving similar (i.e. close in 
metric) tasks by analogy. 

Thus solving problems by analogy is one of the 
common approaches which the authors use for 
different DOPs. Among the other common 
approaches we should firstly mark the following 
one. 

As we said in Section 3 sometimes it is good to 
have a metric on a set of grids (or generally on a set 
of auxiliary objects common for several subtasks). 
However it often (including the described problem) 
takes too much time to build such metric on set of all 
situations. In this connection there can be used the 
following algorithm. In our implementations of 
TB&B we use such auxiliary algorithms one by one: 
finding the new metric value for a pair of auxiliary 
objects of the subset (grids and so); 
• adjusting the precomputed metric value for a 

pair of subtasks; 
• selection of the next subtask from the list if 

subtasks demanding solution; 
• selection of an auxiliary object (grid or so) from 

the corresponding set; this object will be used as 
the separation element for the next step of 
TB&B; 

• building the left and the right subtasks basing on 
the selected separation element and including 
these subtasks in the corresponding data 
structure for subsequent solution. 

Thus we can say that here we have briefly 
described TB&B with application of algorithms 
connected with situation clustering. Remark also, 
that: 
• The authors have just started to use this auxiliary 

algorithms in practical programming and its 
efficiency is still under question. Besides we 
should mark that the other possible solution of 
the problem is implementation of distributed 
calculations. However it is absolutely separate 
problem and the authors did not yet start to solve 
it in practice.  

• In Section 3 we did not consider such algorithms 
of precomputing. For the problem of 
minimization of nondeterministic finite automata 
the formulae for the metric precomputing are 
similar to the ones given in Section 3. However 
they use only those pairs of grids which have 
their metrics already computed.  

• Actually the most efficient data structure for 
keeping the subtasks sets is a specific variant of 
correctly filled tree (or heap in other terms; see 
(Cormen, Leiserson, Rivest, and Stein, 2001) and 
others). 

• At the same time we build the so called sequence 
of the right problems (SRP). In (Melnikov, 
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2005), there is information about this auxiliary 
algorithm but it is quite important so we are 
giving a part of its description from that paper. 
Each time, when we obtain the next right 
problem (let us call it problem T) we make at the 
same time also the SRP, i.e., T, then the right 
problem of T, then the right problem of the right 
problem of T, etc. Certainly, we make each time 
also the corresponding left problems, i.e., the left 
problem of T, then the left problem of the right 
problem of T, etc. This process finishes: 
– when we obtain a trivial problem (e.g., of 

dimension 1), then we use its solution (i.e., 
its bound, and also the obtained path, and 
similar behavior) by the current quasi-
optimal solution of the considered anytime 
algorithm; 

– or when we obtain the big value of the 
bound, for example, if this value is more 
than the current (existing) quasi-optimal 
solution. 

In practice, such process of SRP-constructing does not 
require a lot of time, and the increasing the dimension of 
the list of problems for the solution in the future is very 
reasonable. 

6 CONCLUSION. SOME 
PRACTICAL RESULTS 

So in this paper we considered some issues of the 
offered by the authors multi-heuristic approach to 
discrete optimization problems, the issues connected 
with problems of situations clustering. In conclusion 
we will mark the following circumstances. 

In auxiliary algorithms we often use self learning 
with help of genetic algorithms and not only in cases 
evidently marked in Section 3. Generally you can 
find more information about the author’s usage of 
genetic algorithms in the mentioned above 
references (Melnikov and Radionov, 1998; 
Melnikov, 2005; Belozyorova and Melnikov, 2005; 
Melnikova and Radionov, 2005; Melnikov, 
Radionov, Moseev, and Melnikova, 2006; Melnikov, 
Radionov, and Gumayunov, 2006), mainly in 
(Melnikov, 2001; 2006). 

We also should mark once more, that the given 
list of literature consists almost only of the works of 
the authors of the present paper. However this is a 
consequence of the fact that we offer our own 
approach to solving DOPs generally. 

As it was mentioned above, the results of our 
programs execution are about the same as the ones 
of the programs found in the Internet. The best of 

available links can be found at 
http://citeseer.ifi.unizh.ch/fiser02set
.html or at  
http://www.dei.isep.ipp.pt/~acc/bfunc/. 
Now we are going to show one slightly different 
approach to describing the practical results, see 
below. 

While testing, we set the time for our anytime 
algorithm (see the tables). We also set the dimension 
of the problem – i.e., the number of rows for NFA 
(the number of columns depends of the last value 
also by special variate) and the number of variables 
for DNF – not the numbers of grids for NFA and 
planes for DNF, the last values are also special 
variates depending on previous ones. 

The clock speed of the computer was about 2.0 
GHz. If we choose the time under 10 minutes, we 
make the averaging-out about 50 solutions. 

And the values of cells have the following 
meaning. For each cell, we made corresponding 
tests. For each test, we set the number of 
grids/planes for the given problem (certainly, we did 
not use this information in the program) and obtain 
the value of grids/planes found by anytime 
algorithm. Then we counted comparative 
improvement of this value (+) or the worsening (–). 
The possibility of positive values is the corollary of 
the fact, that, e.g. for the DNF, two planes of 
dimension k could form one plane of dimension k+1. 
The values were averaged; they are written in the 
table in percents. (I.e., +0.22 means that the mean 
value is better than the a priori given than 0.22%.) 

Thus, below are the practical results. 

Table 1: Nondeterministic Finite Automata. 

NFA 20–23 40–45 60–65 
01 sec 1.76 –0.58 –0.02 
10 sec –0.55 –0.17 +0.22 
01 min –0.03 +0.45 +1.00 
10 min 0 +1.06 +1.07 
01 h 0 +1.07 +1.17 

Table 2: Disjunctive Normal Forms. 

DNF 20–22 25–27 30–31 
01 sec –8.5 –2.2 –1.9 
10 sec –1.21 –0.70 –0.43 
01 min –0.73 –0.65 –0.43 
10 min –0.03 –0.01 –0.01 
01 h –0.03 –0.01 0 

 
The obtained results are near to 100%; this fact 
shows that the approach proposed in this paper could 
be applied in the future. And in the next papers, we 
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are going to give the practical results for two other 
problems mentioned in Section 2. 

The authors hope to continue the series of papers 
about applying the multi-heuristic approach to 
solution of different DOPs. In this connection we 
should note that some subjects of the new 
algorithms, programs and publications were briefly 
mentioned in the present paper. 
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