
LEARNING EFFECTIVE TEST DRIVEN DEVELOPMENT
Software Development Projects in an Energy Company

Wing Kum Amy Law
TransCanada, 450 – 1 Street S.W., Calgary, Alberta, T2P 4K5, Canada

Keywords: Software engineering, software development methodology, agile, test driven development, automated tests,
junit tests, software design pattern, requirement analysis, software maintenance and reliable software.

Abstract: The tests needed to prove, verify, and validate a software application are determined before the software
application is developed. This is the essence of test driven development, an agile practice built upon sound
software engineering principles. When applied effectively, this practice can have many benefits. The
question becomes how to effectively adopt test driven development. This paper describes the experiences
and lessons learned by two teams who adopted test driven development methodology for software systems
developed at TransCanada. The overall success of test driven methodology is contingent upon the
following key factors: experienced team champion, well-defined test scope, supportive database
environment, repeatable software design pattern, and complementary manual testing. All of these factors
and the appropriate test regime will lead to a better chance of success in a test driven development project.

1 INTRODUCTION

TransCanada is a leader in the responsible
development and reliable operation of North
American energy infrastructure. TransCanada's
network of approximately 41,000 kilometres (25,600
miles) of pipeline transports the majority of Western
Canada's natural gas production to key Canadian and
U.S. markets. A growing independent power
producer, TransCanada owns, or has interests in,
approximately 6,700 megawatts of power generation
in Canada and the United States.

To support this enterprise, TransCanada
Information System (IS) department has delivered
many software solutions. Two of the solutions were
Project X and Project Y. These projects were
different in requirements, customers, budget, and
timeline. With varying degrees, both of these teams
wrote automated tests before implementation. This
practice can have many benefits (McBreen, 2002):

• Identify early mistakes prior to user
acceptance testing.

• Reduce time to locate mistakes in the code.
• Analogous to documentation on how to use

a class.
• Increase confidence that changes in one

place have not broken functionality in
another place.

The question becomes how to effectively adopt
test driven development. As a programmer on these
industrial projects, the lessons learned will be
presented to address the following how-to questions:

• How do you start a project focusing on
testing first?

• How do you establish a test scope?
• How do you configure an effective test

database?
• How do you reuse automated test

components?
• How do you guarantee system quality?

2 TRANSCANADA IS PROJECTS

Table 1: Project Profile.

 Project X Project Y
Programmer 8 12
Test Driven Skills Adopter Advance
Project Duration 8 months 3 years
Database Sybase Oracle
of Packages 55 96
of Classes 1,324 1,560
of Unit Tests 1,000 4,350

159
Kum Amy Law W. (2006).
LEARNING EFFECTIVE TEST DRIVEN DEVELOPMENT - Software Development Projects in an Energy Company.
In Proceedings of the First International Conference on Software and Data Technologies, pages 159-164
DOI: 10.5220/0001316101590164
Copyright c© SciTePress

As shown in Table 1, Project X and Project Y were
developed by two different teams. Project X was
initiated to re-engineer backend components of an
existing Java web-based system to enable integration
with other systems. The objective of Project Y was
to replace a legacy mainframe application with a
new Java web-enabled system according to
prioritized business functions. These projects shared
a common attribute in which both teams adopted test
driven development, an agile practice built upon
sound software engineering principles.

3 FOCUS ON TESTING FIRST

How do you start a project focusing on test driven
development? It is difficult to introduce test driven
development to programmers who are not formally
trained in this area. Through the lessons learned
from Project X and Project Y, a few clues will be
provided on the first step towards test automation.

3.1 Project X: Early Adopters

In 2001, TransCanada IS department started to adopt
agile practices in several software development
projects. The programmers in Project X were the
early adopters to apply test driven development in
TransCanada.

Without prior experience in using test driven
development practices, the programmers in Project
X had to start from the beginning on every aspect.
They relied on Internet articles and books to explore
test driven development techniques. The
programmers with fast reading speed gained
advantages. They could read, absorb, and apply test
driven skills through the self-learning media. The
challenge was how to effectively share the
knowledge.

To leverage knowledge sharing, the team adopted
pair programming practice. Although pair
programming is not a part of test driven
development, it leads to blending expertise.

Due to personality differences, pairing was not
very popular in the team. Some programmers did
not passionately believe in test driven development
and preferred to write code prior to writing test.
They did not have automated tests for all of their
code. The diversified team culture reduced the
practical application of test driven development.

3.2 Project Y: Team Champion

At the other end of the spectrum, the programmers
in Project Y leveraged their collective practical

experience and test utility in using test driven
development to facilitate their work.

They had previously been exposed to the test
driven development and adhered to these practices.
The team exercised pair programming to share test
driven techniques. As shown in Figure 1, two
programmers paired at a computer and monitor with
two separate keyboards. The influence of pair
programming was to cross train between
programmers. With this background, automated
tests were indeed written prior to implementation.

Project Y had several keen and experienced
experts who built a solid foundation of test
framework and set good examples for others to
follow. With the supportive team culture, the
automated tests typically would not be broken for
longer than a day. These experts were the team
champions, and they motivated everyone to adopt
the practical application of test driven development.

Figure 1: Pair Programming.

3.3 Lessons Learned

Learning test driven development is not easy, but
there are a few titbits. A champion in test driven
development is a useful guide when a team is
challenged. The past experience of the champion
could help the reuse and extension of test utilities.
Without experienced champion, programmers could
become discouraged with tests that were not
working for a long period of time. It is simply easier
to learn new knowledge from someone who has
done it before and passionately believes in it.

And yet, not every project has the luxury to find
and fund an experienced team champion. When a
champion is not available, reference books and
Internet articles are easy-to-access learning media.
Furthermore, various research and case studies are
recently conducted and documented shaping the best
practices. These can be conveniently circulated.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

160

The problem with them is that they do not provide
an opportunity for team collaboration.

Test driven development can be enriched through
pair programming. Pair programming is like
blending colours together on a paint pad, where the
colours mix and influence the overall resulting
colour. This is a metaphor for the blending of
expertise between paired programmers; however,
these benefits can be tempered somewhat where
personality differences arise.

In most cases, test first guru focus on writing tests
first. On the other hand, others may adapt test
driven development such that both test and code are
implemented in parallel. The key point is that
automated tests are indeed written to ensure any
changes in functionality at one place would not
impact functionality at another place. This
continues to provide confidence to customers who
see repeatable tests pass.

4 ESTABLISH A TEST SCOPE

Assuming your project applies test driven
development, how do you establish a test scope? It
is impossible to test everything, and it is also
suicidal to test nothing. Therefore, the fundamental
principle is test things that might break (Beck,
2000). Several types of automated tests will be
discussed.

4.1 Project X: Basic Principle

The programmers in Project X followed the
fundamental principle, and they only wrote
automated tests for things that might break. If they
knew that the code was simple and it was unlikely to
break, then they did not write automated tests for it.
As early adopters in 2002, they had limited choices
in test frameworks. The team began with only unit
tests or Junit tests. A Junit test is an automated test
to verify a single program or a portion of a program.

Half-way through the project, the programmers
realized there was a need to validate the integration
of unit components. In response, integration tests or
HttpUnit tests were developed. A HttpUnit test
emulates browser behaviour and allows automated
tests to examine returned pages. Since the
integration test concept was introduced at a later
stage, the team only implemented a few integration
tests. Project X was a relatively simple application,
and so about 1,000 automated tests were developed.

4.2 Project Y: Test for Design

By writing tests first, the programmers in Project Y
captured customer requirements and scenarios in the
tests. They better understood the requirements
through the realistic customer’s test data. When the
tests passed, they knew that they completed the
requirements. Therefore, the tests were written for
design. The team began with unit tests and
integration tests.
 Half-way through the project, the team adopted
user acceptance tests or Canoo tests. Canoo is an
automated test to validate workflow. The Canoo test
results are shown in colour-coded pages. The green
colour represents tests passed, whereas the red
colour represents tests failed. Since these Canoo
tests were added at a later time, these tests were
written retroactively on existing functionality and
based on business priorities. Therefore, the tests
were only written for a few main features. With the
help of the colour-coded pages, the customers
reviewed the tests in order to sign off on a release.
Since Project Y had a wealth of business rules, about
4,350 automated unit tests were developed.

4.3 Lessons Learned

There are many types of software tests, such as the
unit tests, integration tests, function tests, regression
tests, system tests, and acceptance tests (Humphrey,
1989). It is recommended that different types of
automated tests be applied to provide a wide
coverage for system validation. On the other hand,
it does not mean to write tests in every possible case.
For example, writing tests to verify every “setter”
and “getter” in a domain object is a waste of time.

Before programmers decide to implement another
automated test, they should ask themselves if they
gain additional business values by having it. Before
they decide to stop testing, they should ask
themselves four questions (Bertolino, 2001):

• What is the probability of finding more
problems?

• What is the marginal cost of doing more
testing to detect these problems?

• What is the probability of users
encountering these problems?

• What is the impact of these problems to the
users?

At a minimum, the programming team should
write automated unit tests and integration tests
because these tests validate the core business logic,
database transactions, and interface of the overall
system. Where possible, the team should also
develop automated tests to validate end-to-end

LEARNING EFFECTIVE TEST DRIVEN DEVELOPMENT - Software Development Projects in an Energy Company

161

system behaviour on critical features and perform
manual tests to cover other areas.

The customers see the positive results from
repeatable tests. This saved the customer time from
extensive manual testing and became an overall cost
saving. Having said that, test driven development
does not deliver software more cheaply than manual
approach. Therefore, establishing a test scope and
seeking a balance between automation and manual
approach is essential to control project cost. This is
not a trivial exercise, and this topic may actually be
a general interest as a paper into itself.

5 DATABASE CONFIGURATION

After you determine a test scope, how do you
configure an effective test database to accommodate
the test requirements and ensure test suites do not
take too long to run? Database resources,
administration overheads, data collision avoidance,
and flexibility are key considerations in setting up a
test database as examined below.

5.1 Project X: Single Database

The programmers in Project X shared a single
Sybase test database. They only needed to refresh
one database when there was a change in the
database structure. This minimized administration
overhead and database resources. However, test
data could collide with one another when they
executed automated tests against the same database.
Hence, the tests might not pass and unwanted test
data might remain in the database. The issue
became exponential when multiple developers ran
the automated tests at the same time as shown in
Figure 2.

Shared Single
Sybase Test
Database

Developer 1

Developer 2

…
 Data

Collision
Developer 8

Figure 2: Single Test Database.

Although multiple test schemas in a database
could accommodate the concurrency requirement,
Sybase database had a technical limitation.
Specifically, Sybase did not have the concept of
schemas. In order to simulate multiple schemas, the
team had to create multiple databases. This was not

acceptable to the operational team. Thus, the team
shared a single test database.

 To reduce the data collisions, the programmers
took an advantage of their co-location. They were
seated in an open co-located area, where everyone
could hear one another. They addressed this
database insufficiency by announcing when a
developer was about to run the automated tests such
that the other programmers would not run the tests at
the same time. With discipline, the team could
execute all 1,000 automated tests in a single test
database under thirty minutes.

Another technique was to use a private database
to overcome data collision. Some developers used a
private MySql open source database to setup,
execute, and clean up automated test data in their
own workstation. However, the team ran with the
risk that the MySql open source database behaved
differently than the Sybase database.

5.2 Project Y: Multiple Schemas

On the other hand, the programmers in Project Y
took an advantage of Oracle database to overcome
test data collision. Each programmer had a private
Oracle database schema in the same database
instance. Hence, anyone could create test object,
execute automated test, and clean up test object at
any time as shown in Figure 4. In some cases, the
team used a mock object to simulate results as if a
database call was made.

 Multiple Schemas

Developer 1 Test Schema A

Developer 2 Test Schema B

 …

Developer 12 Test Schema L

Figure 3: Multiple Test Database Schemas.

To expedite a unit test cycle, the team distributed
automated unit test suites among four separate test
database schemas. Each test cycle consisted of
4,350 automated Junit tests, and the team can
execute each cycle under fifty minutes.

Two additional test database schemas were
created to run HttpUnit and Canoo tests at night.
This procedure was used to preserve the correct
system behaviours without consuming the intensive
CPU power during daytime. If a test failed, an email
notification was sent out to the team.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

162

As a result of the added convenience, the team
incurred schemas administration overhead. The
team accumulated up to twenty-five test database
schemas. When there was a database structure
change, all of schemas required a refresh.

5.3 Lessons Learned

Automated tests could generate many test databases.
Some of these databases became unused due to
turnover. Alternatively, a pool of test databases can
be developed. When programmers are ready to
execute the tests, they select available databases
from the pool. After use, they can be released it
back to the pool.

These databases would not be identical at all
times to accommodate different programming needs.
The programmers could effectively execute the tests
without data collision, maximize resources without
increasing large administration overheads, and
achieve concurrent programming. With adequate
resources, automated tests should be executed every
time new code is checked into the central source
code repository.

6 REUSE OF TEST COMPONENT

Another interesting topic surrounding test driven
development is how do you reuse automated test
components? Experts do not solve every problem
from first principles. Instead, they built on previous
experiences making designs more flexible and
ultimately reusable. A number of techniques will be
addressed concerning reuse.

6.1 Project X: Design Pattern

The programmers in Project X made use of software
design patterns, such as the Factory Pattern and
Singleton Pattern. Since 1997, these software design
patterns were well documented (Gamma, 1995).
However, the maturity of software design pattern in
test driven development was in the childhood stage
in 2002. There were no documented reusable
objects for automated tests. Perhaps it was an
excuse for programmers who lacked passion to test
driven development, Project X did not use any
repeatable software design pattern in their automated
tests. Each automated test was always a fresh new
test in its own right. This saved time for the
programmers by reducing learning curve to existing
tests and potentially increased code readability.

6.2 Project Y: Test Design Pattern

The programmers in Project Y applied “Object
Mother” software design pattern (Schum, 2001) to
reuse the test data setup. The “Object Mother”
pattern is a creational pattern. It aims to simplify,
standardize, and maintain test object. Using this
pattern, test objects can be conveniently used in any
automated tests because they are created from public
static methods. In case new requirements surface,
any future changes can be centralized in the “Object
Mother” and propagated to the children test objects.
A sample of the “Object Mother” test object is
shown below. In addition to “Object Mother”
design pattern, the programmers made use of class
inheritance such that common test methods could be
shared by different automated tests.

public static Pipe createPipe() {
 Pipe pipe = new Pipe();
 pipe.setId = unquieRandomNum();
 …
 pipe.setCreatedBy = “ObjectMother”;
 return pipe;
}

6.3 Lessons Learned

One of the challenges of test driven practices was to
design, build, and effectively maintain data setup for
the automated testing. The data setup involved the
creation of objects required to satisfy the data
constraints and test scenario. For example, a
repeatable software design pattern should be used,
such as the “Object Mother”, to reuse test objects.
The software design pattern reduced the complexity
of individual tests. It also encouraged programmers
to reuse test objects in subsequent tests.

Another technique for reusing functionality in
automated tests is class inheritance. This approach
can group common test methods in the parent class,
whereas the children classes can make use of them.
Both recommendations enable programming tests
less tedious to implement and change. The
reusability and consistency outweigh the time
invested to avoid learning curve to existing tests.
There are now books, training, and internet web sites
with many patterns for effective automated tests.

7 SYSTEM QUALITY

People with passion on test driven development
claim that automated tests bring various benefits
including system quality. So, how do you guarantee

LEARNING EFFECTIVE TEST DRIVEN DEVELOPMENT - Software Development Projects in an Energy Company

163

system quality? Testing can be used to show the
presence of bugs, but never their absence [4]. In
spite of how much testing is performed, the team can
never guarantee that an application is free of defects.
The possible combinations of the input and the
execution paths are too many to perform exhaustive
testing. Program testing is not a simple process.

7.1 Project X: Manual Test Plan

Since the programmers in Project X did not write
automated tests for the entire system, they developed
a 35-page comprehensive manual test plan to
validate system behaviours. The manual test plan
contained test criteria and expected results to guide
the users. In response to traditional software
development practice, the customers performed an
extensive manual user acceptance testing regimen
for project sign off.

7.2 Project Y: Customer Sign Off

The programmers in Project Y had a series of
automated tests that targeted to validate a wide range
of business logics. These tests became a
precondition for project sign off. Hence, the
customers performed selective manual tests rather
than extensive manual tests. As a result, the
influence of test driven development practice
reduced time from manual testing.

7.3 Lessons Learned

According to PMBOK (PMI, 2004), quality is the
degree to which a set of inherent characteristics
fulfil requirements. It is documented in requirement
specifications. It can be measured by a combination
of automated tests and manual tests

The automated tests should be executed as
frequently as possible to reduce repetitive tests
manually. They fill in the gaps incurred from
manual testing. This is especially the case when the
team stress level surfaced or human judgment started
to degrade.

During software maintenance stage, changes to
the automated tests should be made prior to changes
to the source codes. Therefore, tests are always kept
up-to-date with the specifications and code. This
approach requires strict discipline and familiarity to
the automated test architecture. Regardless of how
extensive automated tests are developed, manual
tests must still be performed, to some extent, in
order to assure the look and feel of the system. This
also increases system usability. As a result, any
tuning requirements can be identified and completed
prior to the production release.

Testing requires team experience and customer
involvement. Therefore, the trick is to know when
to stop testing, while at the same time keeping the
likelihood of having the application fail post-
deployment to under the target reliability objective.
A balance of pair programming, code reviews,
inspections, traditional manual testing, and user
acceptance testing provide a complementary
mechanism to test driven development for finding
defects and deliver quality and reliable software.

8 CONCLUSION

There is no such thing as instant success in test
driven development. However, there are clues
which can enable positive results. This paper used
the lessons learned from two teams to address
questions surrounding test driven development. Any
software development team can leverage these
lessons learned and develop their own version of test
driven development techniques to fit into their
unique team environment. Under these conditions,
we have a better chance of success in applying test
driven development.

REFERENCES

Beck, K., 2000. Extreme Programming Explained,
Addison Wesley Professional, p 116-117.

Bertolino, A., 2001. Software Testing, Guide to the
Software Engineering Body of Knowledge, Software
Engineering Coordinating Committe, IEEE.

Caputo, W., 2004. TDD Pattern: Do not Cross
Boundaries,
http://www.williamcaputo.com/archives/000019.html

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.
Design Patterns, Addison Wesley.

Humphrey, W., 1989. Managing the Software Process –
SEI Series in Software Engineering, Addison Wesley.

McBreen, P., 2002. Becoming a Software Developer Part
2: Test Driven Development with Ruby,
http://www.informit.com/articles/article.asp?p=26339
&seqNum=5

Mock Object, Project Description and Goals, 2003.
 http://www.mockobjects.com
PMI, 2004. A Guide to the Project Management Body of

Knowledge, ANSI.
Poppendieck, M., Poppendieck T., 2003. Lean Software

Development – An Agile Toolkit, Addison Wesley.
Schum P., Punke S., 2001. Object Mother, XP Universe

Conference.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

164

http://www.williamcaputo.com/archives/000019.html
http://www.informit.com/articles/article.asp?p=26339&seqNum=5
http://www.informit.com/articles/article.asp?p=26339&seqNum=5
http://www.mockobjects.com/

