
PCA-BASED DATA MINING PROBABILISTIC AND FUZZY 
APPROACHES WITH APPLICATIONS IN PATTERN 

RECOGNITION 

Luminita State 
Dept. of Computer Science, University of Pitesti, Caderea Bastliei #45, Bucuresti – 1, Romania  

Catalina Cocianu 
Dept. of Computer Science, Academy of Economic Studies, Calea Dorobantilor #15-17, Bucuresti –1, Romania 

Panayiotis Vlamos 
Ionian University, Corfu, Greece 

Viorica Stefanescu 
Dept. of Mathematics, Academy of Economic Studies, Calea Dorobantilor #15-17, Bucuresti –1, Romania  

Keywords: Principal component analysis, fuzzy clustering, supervised learning, cluster analysis, pattern recognition, 
data mining. 

Abstract: The aim of the paper is to develop a new learning by examples PCA-based algorithm for extracting skeleton 
information from data to assure both good recognition performances, and generalization capabilities. Here 
the generalization capabilities are viewed twofold, on one hand to identify the right class for new samples 
coming from one of the classes taken into account and, on the other hand, to identify the samples coming 
from a new class. The classes are represented in the measuremen /feature space by continuous repartitions, 
that is the model is given by the family of density functions

t
( )f Hhh ∈ , where H stands for the finite set of 

hypothesis (classes). The basis of the learning process is represented by samples of possible different sizes 
coming from the considered classes. The skeleton of each class is given by the principal components 
obtained for the corresponding sample. 

1 PRINCIPAL COMPONENTS  

The starting point for PCA is a n-dimensional 
random vector X. There is available a sample X(1), 
X(2),… ,X(T) from this random vector. No explicit 
assumptions on the probability density of the vectors 
are made in PCA, as long as the first – order and the 
second –order statistics are known or can be 
estimated from the sample. Also, no generative 
model is assumed for vector X.  

In the PCA transform, the vector X is first 
centered by subtracting its mean, X = X - E(X). In 
practice, the mean of the n-dimensional vector X is 
estimated from the available sample. In the 
following, we assume that the vector X is centered. 

Next, X is linearly transformed to another vector Y 
with m elements, m<n, so that the redundancy 
induced by the correlations is removed. The 
transform consists in obtaining a rotated orthogonal 
coordinate system such that the elements of X in the 
new coordinates become uncorrelated. At the same 
time, the variances of the projections of X on the 
new coordinates become uncorrelated. At the same 
time, the variances of the projections of X on the 
new coordinate axes are maximized so that the first 
axis corresponds to the maximal variance, the 
second axis corresponds to the maximal variance in 
the direction orthogonal to the first axis, and so on  
(Hyvarinen, 2001). 
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In mathematical terms, consider a linear 
combination of the elements  of the 

vector X, . 
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where the matrix S is the covariance matrix of X 
given for the zero-mean vector X by the correlation 
matrix. 

It is well known from basic linear algebra that 
the solution of the PCA problem is given in terms of 
the unit-length eigen vectors of the matrix S, 

. The ordering of the eigen vectors is 
such that the corresponding eigen values 

nφφφ ,...,, 21

nλλλ ,...,, 21  satisfy nλλλ ≥≥≥ ...21 . The solution 

maximizing is given by 
and the first principal component of X is 

. The PCA criterion can be generalized  to 
m principal components, . Let 

be the m-th principal 

component, with the corresponding unit norm 
weight vector. The solution maximizing 

 under the constrain 
, for is given by, (Hyvarinen, 

2001) and the m-th principal component of 

X is . 
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2 CLUSTER ANALYSIS 

Cluster analysis is a data processing technique 
aiming to identify the natural grouping trends 
existing in a data collection, producing a set of 
overlapping clusters, the elements belonging to the 
same cluster sharing similar features. So far, there 
have been proposed a relatively small number of 
methods for testing the existence/inexistence of a 
natural grouping tendency in a data collection, most 
of them being based on arguments coming from 
mathematical statistics and heuristic graphical 
techniques (Panayirci and Dubes,1983, Smith and 
Jain,1984,Jain and Dubes,1988, Tukey,1977, 
Everitt,1978). 

The data are represented by p-dimensional 
vectors, ( )1,...,

t

pX x x= , whose components are the 

feature values of a specified attributes and the 
classification is performed against a certain given 
label set. The classification of a data collection 

{ }1,..., nX Xℵ= p⊂ℜ  corresponds to a labelling 

strategy of the objects of ℵ .  
In the fuzzy approaches, the clusters are 

represented as fuzzy sets ( ) , ,1iu i c≤ ≤

[ ]: 0,iu ℵ→ 1 ), where   is the 

membership degree of  to the i-th 
cluster,1

(ik i ku u X=

kX
i c≤ ≤ , 1 k n≤ ≤ . A c-fuzzy partition is 

represented by the matrix ik c nU u M ×= ∈ . The 
number of labels c has to be selected in advance, the 
problem of finding the optimal c is usually referred 
as cluster validation.   

The main types of label vectors are crisp Nc,  
fuzzy Np, and possibilistic Npoz, defined as follows, 

( ) { }{ ,1,0,,...,,,| 21 ∈=ℜ∈= ic
c

c yyyyyyyN               

,                (2) { c

c

i
i eeeyci ,...,,1,1 21

1
=

⎭
⎬
⎫

=≤≤ ∑
=

}

where ( )
0,
1,i ijj

i j
e

i j
δ

≠⎧
= = ⎨ =⎩

 

( ) [ ]{ ,1,0,,,...,,| 21 ∈∀=ℜ∈= ic
c

p yiyyyyyN               

,                                   (3) 
⎭
⎬
⎫

=∑
=

1
1

c

i
iy

( ) [ ]{ ,1,0,,,...,,| 21 ∈∀=ℜ∈= ic
c

poz yiyyyyyN               

}0, ≠∃ jyj ,                                   (4) 

Obviously, pos p cN N N⊃ ⊃ . If we denote by 

[ ]1,..., n iU U U u= = j  a partition of ℵ , then, 

according to the types of label vectors, we get the c-
partition types Mpos, Mp and Mc, 
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Note that c p posM M M⊂ ⊂ .  
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3 C-MEANS MODEL 

The most popular classification methods are the c-
means  algorithms. The variational problem 
corresponding to c-means model is given by  
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the centroid of the i-th cluster ,  is 
the penalties vector corresponding to the cluster 
system, is the fuzzyfication degree, and 
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Let us denote by ( )VU ˆ,ˆ  a solution of (8). Then,  
1. The crisp model: 
( ), ; 0,1c c p iU V M M w i c×∈ × = ≤ ≤ , 

⎩
⎨
⎧ ≠≤

=
otherwise,0

,,1
ˆ

jiDD
u ijik

ik                                       (9) 

1

1

ˆ
ˆ

ˆ

n

ik k
k

i n

ik
k

u x
v

u

=

=

=
∑

∑
;   1 ,                             (10) 1i c k n≤ ≤ ≤ ≤

2. The fuzzy model:  
( ), ; 1, 0,1p c p iU V M M m w i c×∈ × > = ≤ ≤  

12
1

1

ˆ
mc

ik
ik

j jk

Du
D

−

−

=

⎡ ⎤
⎛ ⎞⎢= ⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ⎥                                          (11) 

1

1

ˆ

n
m
ik k

k
i n

m
ik

k

u x
v

u

=

=

=
∑

∑
;  1 ,                          (12) 1i c k n≤ ≤ ≤ ≤

3. The possibilistic model: 
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The general scheme of a cluster procedure ℘  is ,   
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where c is the given number of clusters, T is upper 
limit on the number of iterations, m is the weight 
parameter,1 m≤ < ∞ , C is the terminal condition, w 
is the system of weights , , 0ii w∀ >

( )0 1,0 ,0,..., cV v v Mc p×= ∈  is the initial system of 

centroids and ,  are the updating functions. ℘F ℘G

4 PCA-BASED ALGORITHM FOR 
EXTRACTING SKELETON 
INFORMATION  

In the following a new learning by examples PCA-
based algorithm for extracting skeleton information 
from data to assure both good recognition 
performances, and generalization capabilities, is 
developed. Here the generalization capabilities are 
viewed twofold, on one hand to identify the right 
class for new samples coming from one of the 
classes taken into account and, on the other hand, to 
identify the samples coming from a new class. The 
classes are represented in the measurement/feature 
space by continuous repartitions, that is the model is 
given by the family of density functions ( ) , 
where H stands for the finite set of hypothesis 
(classes).     

Hhhf ∈

The basis of the learning process is represented 
by samples of possible different sizes coming from 
the considered classes. The skeleton of each class is 
given by the principal components obtained for the 
corresponding sample. The recognition algorithm 
identifies the class whose skeleton is the “nearest” to 
the tested example, where the closeness degree is 
expressed in terms of the amount of disturbance 
determined by the decision of allotting it to the 
corresponding class. The model is presented as 
follows. Let  be a series of n-
dimensional vectors coming from a certain class C. 
The sample covariance matrix is 

NXXX ,...,, 21
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Lemma. In case the eigen values of  are 
pairwise distinct, the following first order 
approximations hold, 
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The first order approximations of the orthonormal 
eigen vectors of   can be derived using the 

expansion of each vector   in the basis 
represented by the orthonormal eigen vectors of 
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The skeleton of C is represented by the set of 
estimated principal components .When 
the example X

N
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N ψψ ,...,1

N+1 is included in C, then the new 
skeleton is . The skeleton disturbance 
induced by the decision that X

11
1 ,..., ++ N

n
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N+1 has to be alloted to 
C is measured by  
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The crisp classification procedure identifies for 
each example the closest cluster in terms of the 
measure (35). Let  . In order to 
protect against misclassifications of samples coming 
from new classes not belonging to H, a threshold 
T>0 is imposed, that is the example X
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The classification of samples for which the 
resulted value of D is larger than T is postponed and 
the samples are kept in a new possible class CR. The 
reclassification of elements of CR is then performed 
followed by the decision concerning to either 
reconfigure the class system or to add CR as a new 
class in H.   

In case of fuzzy classification, the value of the 
membership degree of XN+1 to each cluster of 
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5 EXPERIMENTAL RESULTS 
AND CONCLUDING REMARKS  

Several tests were performed on simulated data and 
they pointed out very successful performance of the 
proposed classification strategy. 

A series of tests were performed on 4-
dimensional simulated data coming from 5 clases 
each of them having 50 examples. The classes are 
represented by normal repartitions ~ ( )iC ii Σ,μ , 
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In order to evaluate the generalization capacities, 
100 new examples were generated for each 
distribution. The results are presented in Table 1.  
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Table 1: Results on new simulated examples. 

Class C1 C2 C3 C4 C5
Number of 
correct 
classified 
examples 

100 100 96 99 100 

Number of 
missclassified 
examples 

0 0 4 -  
allotted 
to C2

1 – 
allotted 
to C1

0 

The mean 
value of D in 
case of 
correct 
classifications 

0.08 0.05 0.75 0.21 0.14 

The 
maximum 
value of D in 
case of 
correct 
classified 
examples 

0.41 0.19 1.85 0.55 0.53 

 
The evaluation of the generalization capacities in 

case of examples coming from new classes was 
performed on 1000 samples generated from 
N ( )Σ,μ , where =μ [0 11 -9 -9.5] and  

=Σ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

5.2261    1.6410    2.5561    1.3680
1.6410    6.0422    1.8390    1.7925
2.5561    1.8390    6.8986    3.1080
1.3680    1.7925    3.1080    8.2725

.  

The admissibility criterion for allotting a sample 
to a  certain class is given by the maximum value of 
D corresponding to correct classifications. The 
results showed that about 975 examples were 
classified in CR, that is the algorithm managed to 
detect the intruded examples.   
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