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The aim of the paper is to develop a new learning by examples PCA-based algorithm for extracting skeleton
information from data to assure both good recognition performances, and generalization capabilities. Here
the generalization capabilities are viewed twofold, on one hand to identify the right class for new samples
coming from one of the classes taken into account and, on the other hand, to identify the samples coming
from a new class. The classes are represented in the measurement/feature space by continuous repartitions,
that is the model is given by the family of density functions ("‘ ,3 hepr » Where H stands for the finite set of
hypothesis (classes). The basis of the learning process is represented by samples of possible different sizes
coming from the considered classes. The skeleton of each class is given by the principal components

obtained for the corresponding sample.

1 PRINCIPAL COMPONENTS

The starting point for PCA is a n-dimensional
random vector X. There is available a sample X(1),
X(2),... ,X(T) from this random vector. No explicit
assumptions on the probability density of the vectors
are made in PCA, as long as the first — order and the
second —order statistics are known or can be
estimated from the sample. Also, no generative
model is assumed for vector X.

In the PCA transform, the vector X is first
centered by subtracting its mean, X = X - E(X). In
practice, the mean of the n-dimensional vector X is
estimated from the available sample. In the
following, we assume that the vector X is centered.

State L., Cocianu C., Vlamos P. and Stefanescu V. (2006).

Next, X is linearly transformed to another vector Y
with m elements, m<n, so that the redundancy
induced by the correlations is removed. The
transform consists in obtaining a rotated orthogonal
coordinate system such that the elements of X in the
new coordinates become uncorrelated. At the same
time, the variances of the projections of X on the
new coordinates become uncorrelated. At the same
time, the variances of the projections of X on the
new coordinate axes are maximized so that the first
axis corresponds to the maximal variance, the
second axis corresponds to the maximal variance in
the direction orthogonal to the first axis, and so on
(Hyvarinen, 2001).
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linear
of the

In mathematical terms, consider a

combination of the elements x;,x,,...,x,

n
vector X, y; = Y wyx; = Wi X.
i=l
We look for a weight vector W, maximizing the
PCA criterion,

(s2)- B (W X)) - wrsw, n

[Will =1

where the matrix S is the covariance matrix of X
given for the zero-mean vector X by the correlation
matrix.

It is well known from basic linear algebra that
the solution of the PCA problem is given in terms of
the unit-length eigen vectors of the matrix S,
9,,9,,...9,. The ordering of the eigen vectors is

such that the
A Ayseis A

n

corresponding eigen values
satisfy 4, 24, 2...21,. The solution

E(yﬁ)z W/ SW, is
W, =¢,and the first principal component of X is

maximizing given by

¥, =@, X. The PCA criterion can be generalized to

m  principal components, 1<m<n. Let

Vo =2 WX, =W Xbe the m-th principal
i=1

component, with W, the corresponding unit norm

weight  vector. The  solution

E(y2)=WIsW,

E(ym Vi ) =0, for 1 <k <mis given by, (Hyvarinen,

maximizing

under the constrain

2001) W,, = ¢,, and the m-th principal component of
X iS ym = (p; X N

2 CLUSTER ANALYSIS

Cluster analysis is a data processing technique
aiming to identify the natural grouping trends
existing in a data collection, producing a set of
overlapping clusters, the elements belonging to the
same cluster sharing similar features. So far, there
have been proposed a relatively small number of
methods for testing the existence/inexistence of a
natural grouping tendency in a data collection, most
of them being based on arguments coming from
mathematical statistics and heuristic graphical
techniques (Panayirci and Dubes, 1983, Smith and
Jain,1984,Jain and Dubes,1988, Tukey,1977,
Everitt,1978).
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The data are represented by p-dimensional
vectors, X = ( XX, )[, whose components are the

feature values of a specified attributes and the
classification is performed against a certain given
label set. The classification of a data collection

N= {Xl,...,X,I} C R? corresponds to a labelling
strategy of the objects of N .

In the fuzzy approaches, the clusters are
represented  as  fuzzy  sets  (u,1<i<c),
ui:N—>[O,1], where uik=ui(Xk) is the
membership degree of X, to the i-th
cluster,1<i<c, 1<k<n. A c-fuzzy partition is
represented by the matrix U :Huik"EMcxn' The

number of labels ¢ has to be selected in advance, the
problem of finding the optimal ¢ is usually referred
as cluster validation.

The main types of label vectors are crisp N,
Juzzy Np, and possibilistic Ny, defined as follows,

NC = y|yemcﬂy:(yl’yZ,"'ayc)’yi 6{0:1}3

1Si£c,iyi =1}:{el,ez,...,ec}, 2)

i=1

0%
Where(ei)/_ :5‘17 :{1 ,ilj;

N, = e Ry = (70007 b Viry, € [01]
Dy = 1}, (3)
i=1

N =1 € R 3= (3,30 v L Vi, € [0
J.y; # 0f, “)
Obviously, N, ,DN,DON,. If we denote by
U=[U,,..,U,] :H”i/H a partition of N, then,

according to the types of label vectors, we get the c-
partition types M,,,, M, and M.,

M, ={U|UeM,,.U=[U,..U,]
Vk,U, € N,,OS’Vi,zn:uik > 0} %)
k=1
M,={Ulvem,, vkU, eN,| (6)
M, ={U|U eM,,Vk,U, eNC} @)

Note that M, ch CMW.
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3 C-MEANS MODEL

The most popular classification methods are the c-
means algorithms. The variational problem
corresponding to c-means model is given by

%mlg{ W) =33k + S 30 }
(8) where
UeM,/M,IM,, Vz(vl,...,vc)eMcxp, v; is

the centroid of the i-th cluster , w=(w,..,w, )T is

the penalties vector corresponding to the cluster

system m=>1is the fuzzyfication degree, and
2

lk - ka i
Let us denote by (U R I}) a solution of (8). Then,
l. The crisp model:

(UV)eM xM, ;w=0l1<i<c,
. LDy, <D,,i#]j
= ’ )
0, otherwise
U, x
o= i<i<el<ksn (10)
uAik

2. The fuzzy model:
V) M, xM sm>1Lw, =0,1<i<c

U cxp?
P -1
i, - z Dy ™ (11)
J=1 Djk

i ; 1<i<e1<k<n (12)

3. The possibilistic model:
(UV)eM,, xM, ;Viw,>0

cxp?
L
Di m—1
S il
u, =|1+| —
w,
1
n
m
Zuikxk
k=1
n
m
Zuik
k=1

The general scheme of a cluster procedure ¢ is,

A

V. =

1

; 1<i<el1<k<n (13)

RECOGNITION

t<0
repeat
t<t+1
U «F,(V.)
V,«<G,(U,)
until(t = TmﬂVt - VHH < 8)
(U’V) (Ut’Vt)

where c is the given number of clusters, T is upper
limit on the number of iterations, m is the weight
parameter,]1 <m <o, C is the terminal condition, w
is the system of  weights Vi,w, >0,

v, :(vlo,...,vA )EMW

centroids and F,,, G, are the updating functions.

is the initial system of

4 PCA-BASED ALGORITHM FOR
EXTRACTING SKELETON
INFORMATION

In the following a new learning by examples PCA-
based algorithm for extracting skeleton information
from data to assure both good recognition
performances, and generalization capabilities, is
developed. Here the generalization capabilities are
viewed twofold, on one hand to identify the right
class for new samples coming from one of the
classes taken into account and, on the other hand, to
identify the samples coming from a new class. The
classes are represented in the measurement/feature
space by continuous repartitions, that is the model is

given by the family of density functions ( f A )hE e

where H stands for the finite set of hypothesis
(classes).

The basis of the learning process is represented
by samples of possible different sizes coming from
the considered classes. The skeleton of each class is
given by the principal components obtained for the
corresponding sample. The recognition algorithm
identifies the class whose skeleton is the “nearest” to
the tested example, where the closeness degree is
expressed in terms of the amount of disturbance
determined by the decision of allotting it to the
corresponding class. The model is presented as
follows. Let X,,X,,..Xy be a series of n-

dimensional vectors coming from a certain class C.
The sample covariance matrix is
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1 N
ZN:N_l (Xi_/uN)(Xi_/uN)T’ (14)

1 N
where :WZXi :
in1

We denote by A > >.>2Y the ecigen

values and by 1//1N ,...,y/,iv the corresponding
orthonormal eigen vectors of Z .

If Xy.+; is a new sample, then, for the series

X, X,y Xy, Xy, we get

1
Ly =Zy +ﬁ(XN+1 _ﬂN)(XN+1 _/UN)T -

1
) 15
NN (15)

Lemma. In case the eigen values of X, are

pairwise distinct, the
approximations hold,

A= (N f Az =) 2paw (6)

[‘l’N] AZ:N‘Vl (17)

= 1 ﬂ,N AN /

J#i

Proof Using the perturbation theory, we get,
Tyg=Ey+AZy  and, M=y Ayl

AN =N A2 1<i<n. Then,

following first order

_‘I’z

1 1
AXy :m(XNH _HN)(XNH _PN) _WZN (18)

(Zy +A>:N)(\V§V +A\|;§V)=

=(/1,N +A/1,NX\|;§V +A\|;§V) (19)
Using first order approximations, from (19) we get,
ZASARRTD FUATARYN FRTARE

=20y ATyl AL (20)
hence,

Wi zyaw? ) azyy) =

=7l ) aw) +M?HWH2 @1

Using 2" (v | = (v [ £,y we obtain,
W agl sl f azyw) =

= 2 () awl + a2 (22)
hence A2 =y | Az ! thatis,

A2l ezl = f2vwl @3
The first order approximations of the orthonormal
eigen vectors of X, can be derived using the
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expansion of each vector A\le in the basis

represented by the orthonormal eigen vectors of
EN’

Ay =Yb oyl (24)
Jj=1
where
YA
b, =) sl (25)

Using the orthonormality, we get,

N T R (e

T
1420 ) (ap?), (26)
that is
b =(wl' ) vl =0 @)
Using (19), the approximation,
IZyAw +AS ! = A Ay F ALY (28)

holds for each 1<i<n.
For 1< j#i<n, from (28) we obtain the following

equations,

i/ zyaw? +(wh ) azyw) =

= 2w f sl + a2 v S vl (29)

Wi ) = yaw? (i ) azywl =

=4 (‘I’ﬂ/)r Ay (30)

2wl f awd + i f Az, =

Eif‘v(‘l’ﬂf)rml’fv G1)

From (31) we get,

(lfv ‘/I.I/YX‘I'Q)IAW?’ =(\V{V)TA>:N\|:,N (32)
( )TA\V, (WNX);A_i%‘"’ (33)

Consequently, the first order approximation of the
eigen vectors of X, are,

AX
v oy =yl +Z£“'—NM (34)

= v AN J
J#i
The skeleton of C is represented by the set of

estimated principal components 1//1N,...,l//,},v .When
the example Xy.; is included in C, then the new
skeleton is i *',...y ! The skeleton disturbance

induced by the decision that Xy, has to be alloted to
C is measured by
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1 n
D=3 dly v (35)
k=1

The crisp classification procedure identifies for
each example the closest cluster in terms of the
measure (35). Let H = {Cl,Cz,...,CM}. In order to

protect against misclassifications of samples coming
from new classes not belonging to H, a threshold
T>0 is imposed, that is the example Xy., is alloted to
one of C; for which

D=%’Zid(wi§»wé?l)=

= min —Zd(l//kp,l//N+1) (36)

1<psM n
and D<T, where the skeleton of C; is y/fj’j,...,y/,],\fj .

The classification of samples for which the
resulted value of D is larger than T is postponed and
the samples are kept in a new possible class CR. The
reclassification of elements of CR is then performed
followed by the decision concerning to either
reconfigure the class system or to add CR as a new
class in H.

In case of fuzzy classification, the value of the
membership degree of Xy.; to each cluster of
HT =H v {CR} is computed as follows. Let

d(XNH, ) Zd({//kl,l//,ﬁvl“), 1<i<M and

—Zd wir Wik Lif CR# D

d(XNmCR): k=1 ( l >
oo, otherwise

where the skeleton of CR is represented by the set of

. .. N N
estimated principal components ¥/ g,....,¥/, g -

ﬂCl-(XNH):l_MalgiﬁM 37)
d\Xy,,CR) .
e (Xr) = 10 it o )20 3,
0, otherwise

where
Zd(XNH,C), if d(XNH,CR);t o0

S = CeHT . (39)
zd(XNH’C)’ if d(XN-H)CR) =
CeH

RECOGNITION

S EXPERIMENTAL RESULTS
AND CONCLUDING REMARKS

Several tests were performed on simulated data and
they pointed out very successful performance of the
proposed classification strategy.

A series of tests were performed on 4-
dimensional simulated data coming from 5 clases
each of them having 50 examples. The classes are
represented by normal repartitions Cl-~(,ui,2i),
1<i <5, where

4 =[10112-12]

3.5944 2.0100 1.4720 0.6460 |
2.0100 3.7500 3.1000 1.5350
1.4720 3.1000 3.0600 0.8010
0.6460 1.5350 0.8010 1.8369
My =[12-5813]
1.5566 0.7755 0.5230 0.3745]
0.7755 1.7766 0.9305 0.6720
0.5230 0.9305 2.4586 1.0050
0.3745 0.6720 1.0050 2.3961 |
Hy;=[-10009 11]
[1.7300 1.3740 0.0200 0.6000 |
1.3740 2.5144 0.0120 0.4600
0.0200 0.0120 3.0725 0.3250
10.6000 0.4600 0.3250 2.3144
Hy=[-3143-11.5]
(23618 0.5825 0.3814 0.9805 |
0.5825 2.4038 0.9920 0.6029
0.3814 0.9920 2.3724 0.4250
10.9805 0.6029 0.4250 4.1054 |
Hs=[-7-10.5-14 11.5]
[1.8017 0.2860 0.6330 0.6540 |
0.2860 2.4436 0.0240 0.0210
0.6330 0.0240 1.6301 0.3454
10.6540 0.0210 0.3454 2.9441 |

The classification criterion is: allote Xy, to C i if

1=

X, =

25:

D= mm—Zd(w,, Wt ) (37)

I<i<t m =1

In order to evaluate the generalization capacities,
100 new examples were generated for each
distribution. The results are presented in Table 1.
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Table 1: Results on new simulated examples.

Class C] Cz C3 C4 C5
Number of 100 100 | 96 99 100
correct
classified
examples
Number of 0 0 4 -1 -10
missclassified allotted | allotted
examples to C, to C;

The mean 0.08 [0.05 | 0.75 0.21 0.14

alue of D in
case of
correct
classifications
The 041 D.19 1.85 0.55 0.53
maximum
value of D in
case of
correct
classified
examples

The evaluation of the generalization capacities in
case of examples coming from new classes was
performed on 1000 samples generated from
Nz T ), where #=[011-9-9.5]and

8.2725 3.1080 1.7925 1.3680
3.1080 6.8986 1.8390 2.5561
1.7925 1.8390 6.0422 1.6410 |
1.3680 2.5561 1.6410 5.2261

The admissibility criterion for allotting a sample
to a certain class is given by the maximum value of
D corresponding to correct classifications. The
results showed that about 975 examples were
classified in CR, that is the algorithm managed to
detect the intruded examples.
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