
ON CONTEXT AWARE PREDICATE SEQUENCE QUERIES

Hagen Ḧopfner
International University in Germany

Campus 3; 76646 Bruchsal; Germany

Keywords: Mobile Information Systems, Context Aware Systems, Databases, Conjunctive Queries.

Abstract: Due to the limited input capabilities of small mobile information system clients like mobile phones, it is
not a must to support a descriptive query language like SQL. Furthermore, information systems with mobile
clients have to address characteristics resulting from clients mobility as well as from wireless communications.
These additional functions can be supported by a reasonable, well-defined notation of queries. Moreover, such
systems should be context aware. In this paper we present a query notation named “context aware predicate
sequence queries” which respects these issues.

1 INTRODUCTION

Most mobile information systems (MIS) are
client/server systems with mobile clients that request
data from a database supported server. Clients post
queries and receive the answers. In wired environ-
ments querying is done by using the structured query
language SQL. Mobile devices suffer from strict
limited input capabilities. It is quite uncomfortable to
write SQL statements with the keyboard of a mobile
or the Grafitti-System of PalmOS based PDAs. So,
it is not a must to support such a descriptive query
language. As a replacement applications dynamically
generate queries based on information inputed via a
GUI. On the other hand, information systems with
mobile clients have to consider the wireless com-
munication. In order to reduce communication costs
and to improve response times mobile clients cache
data. Therefore, semantic caches were suggested
in the literature. Obviously, this kind of caching
is not possible if we allow the full variety of SQL.
But, with a predicate based query representation it
is possible (Ḧopfner and Sattler, 2003c). Another
problem resulting from caching is the consistency.
We have shown in (Ḧopfner, 2005a; Ḧopfner, 2006b)
that, in general, only the server is able to decide about
the relevance of updates. Therefore, we have to store
the posted queries on the server site (Höpfner et al.,
2004). This can be done more efficient (Höpfner,
2006a) with a well-defined query notation. Moreover,

MIS should be context aware. If a tourist in Munich
looks for restaurants, then she is not interested in
restaurants in London. So, the query representation
has to support context predicates in addition to the
normal query predicates.

This paper presents a query notation named “con-
text aware predicate sequence queries” that supports
conjunctive SPJ-queries with inequalities, and self-
joins in combination with context predicates. The pa-
per is structured as follows: In Section 2 we discuss
the predicate sequence query notation. Our approach
for handling context predicates is presented in Sec-
tion 3. In Section 4 both are coalesced in our con-
text aware predicate sequence query notation. Notes
on related work are included in Section 5. The paper
ends in Section 6 with a summary and an outlook.

2 PREDICATE SEQUENCES

The predicate sequence query notation (PSQ) is based
on the relational algebra but also includes aspects of
calculi (Codd, 1972). Since PSQ consists of join-,
selection-, and projection predicates and allows to
rename tables, it supports the well known conjunc-
tive SPJ-queries with inequalities but also allows self-
joins. First ideas on the way to PSQ were pub-
lished in (Ḧopfner and Sattler, 2003c). In (Höpfner
et al., 2004) these ideas were enhanced by equal-joins.
Now, we supportθ-joins. The predicates are defined

108
Höpfner H. (2006).
ON CONTEXT AWARE PREDICATE SEQUENCE QUERIES.
In Proceedings of the First International Conference on Software and Data Technologies, pages 108-114
DOI: 10.5220/0001312001080114
Copyright c© SciTePress

as follows:

Definition 1 (Selection Predicates)Selection predi-
cates correspond to theσ-operator of the rel. alge-
bra. Let σscond(r(Rname)) be such a selection with
the conjunctiveselect conditionscond. Each con-
junct of the select condition has to have either the
form s = A γ k or might be a attribute selec-
tion s = A γ B with γ ∈ {≤, <,=, 6=, >,≥},
A,B ∈ Rname, and k ∈ dom(A). This selection
σscond(r(Rname)) corresponds to a set of selection
predicates of the form{[name.s1], . . . , [name.sn]}
with n ∈ N andn = |scond|. Here, for all si with
1 ≤ i ≤ n alsosi ∈ scond holds.

Example 1 (Selection Predicates)Let’s assume the
relation Movies(MID, name, FSK, genre,
actors, info). A query could ask for all action
movies with an FSK1 greater than 16 years: (1) rel.
algebra: σFSK>16∧genre=′action′(r(Rmovies)); (2)
calculus: {a, b, c, d, e, f |movies(a, b, c, d, e, f) ∧
c > 16 ∧ d =′ action′}; (3) selection predi-
cates: {[movies.FSK > 16], [movies.genre =′

action′]}

Definition 2 (Join Predicates) Join predicates cor-
respond to the⋊⋉θ-operator of the rel. algebra. Let
r(Rname1

) ⋊⋉jcond r(Rname2
) be such aθ-join with the

conjunctivejoin condition jcond. Each conjunct of
the join condition has to have the formj = A θ B
with θ ∈ {≤, <,=, 6=, >,≥}, A ∈ Rname1

, and
B ∈ Rname2

. This join corresponds to a join pred-
icate of the form[name1,name2, (j

′
1
, . . . , j′n)] with

n ∈ N, and 1 ≤ n ≤ |jcond|. We claim a lexico-
graphical order of the relation names within a join
predicate. Furthermore, we claim that in each con-
junct j′i with i ∈ N, and 1 ≤ i ≤ n the relation
name is prefixed to each attribute. A conjunct in rel.
algebraji = A θ B with θ ∈ {≤, <,=, 6=, >,≥},
A ∈ Rname1

, and B ∈ Rname2
is represented as

j′i = name1.A θ name2.B.

Example 2 (Join Predicates)Let us assume
the relation from Example 1 and the relation
shown in(date, time, SID, MID). An
example query that joins both relations could
use the movie identifierMID: (1) rel. algebra:
r(Rmovies) ⋊⋉MID=MID r(Rshown in) (2) calculus2:
{a, b, c, d, e, f, g, h, i, j|movies(a, b, c, d, e, f) ∧
shown in(g, h, i, j) ∧ a = j} (3) join predi-
cate: [movies,shown in, (movies.MID =
shown in.MID)]

In order to supportself joins we allow the re-
naming of tables similar to the TABLENAME-AS-

1The FSK in Germany specifies the minimal age re-
quired for watching a movie.

2{a, b, c, d, e, f, g, h, i, a|movies(a, b, c, d, e, f) ∧
shown in(g, h, i, a)} would also be correct. We here
used a “θ-join compatible notation”

ALIAS-construct of SQL. Such an alias is written as
name@alias and replaces thename in all affected
predicates.

Definition 3 (Projection Predicates) Projection
predicates correspond to theπ-operator of the
rel. algebra. A projectionπX(r(Rname)) with
X ⊆ Rname is written as a projection predicate
[name(x1, . . . , xn)] with n ∈ N, 1 ≤ n ≤ |X|,
and {x1, . . . , xn} = X. Projections that base
on join results like πX1,X2,...,Xi

(r(Rname1
) ⋊⋉θ1

r(Rname2
) ⋊⋉θ2

· · · ⋊⋉θi−1
r(Rnamei

)) with
i, j ∈ N, 1 ≤ j ≤ i, and Xj ⊆ Rnamej

,

1 ≤ nj ≤ |Xj |, {xj
1
, . . . , xj

nj
} = Xj are writ-

ten as projection predicate[name1(x
1

1
, . . . , x1

n1
),

name2(x
2

1
, . . . , x2

n2
), . . . ,namei(x

i
1
, . . . , xi

ni
)].

In calculus queries all exist quantified attributes that
do not have any selecting affect are marked by “”.
We handle attributes that are not specified in a projec-
tion predicate in a similar way.

Example 3 (Projection Predicates)Let us assume
the relation from Example 1. An example query
might ask forFSK, genre, and name: (1) rel.
algebra: πname,genre,FSK(r(Rmovies)) (2) calculus:
{x, y, z|movies(, x, z, , , y)} (3) projection pred-
icate: [movies(FSK,genre,name)]

Another example query might be based on
the join result of Example 2 and ask for
name, date, and time: (1) rel. algebra:
πname,date,time(r(Rmovies) ⋊⋉MID=MID r(Rshown in))
(2) calculus: {b, g, h|movies(a, b, c, d, e, f) ∧
shown in(g, h, i, j) ∧ a = j} (3) join predi-
cate: [movies,shown in, (movies.MID =
shown in.MID)] (4) projection predicate:
[movies(name),shown in(date,time)]

With these definitions a predicate sequence query can
be defined. Therefore,PP is the set of all projection
predicates,V P is the set of all join predicates3, and
SP is the union of all selection predicate sets.

Definition 4 (Predicate Sequence Query)With
V ⊆ V P , pp ∈ PP ∪ {ε}, S ⊆ SP ,
and V ∪ {pp} ∪ S 6= ∅ a conjunctive
query Q =

∧

vp∈V vp ∧
∧

sp∈S sp ∧ pp is
represented as a predicate sequence query
Q′ = 〈vp1 . . . vpn sp1 . . . spo pp〉 with

∀i, k ∈ N, 1 ≤ i < k ≤ n; vpi, vpk ∈ V ∪ {ε} ⇒
vpi ⊳ vpk, and∀i, k ∈ N, 1 ≤ i < k ≤ o; spi, spk ∈
S ∪ {ε} ⇒ spi ⊳ spk. At this,⊳ means lexicographi-
cally smaller.

Predicates appear with regard to the following rules:
(1) All join predicates have to be linked us-
ing relation names and it is not allowed to

3In order to be consistent with our previous works we
useV P instead ofJP here.

ON CONTEXT AWARE PREDICATE SEQUENCE QUERIES

109

have two join predicates joining the same
two relations. Formally this means: Let be
vp1 = [name1

1
,name1

2
, (X1)] a correct PS-query.

For correct predicate sequence queries withn join
predicatesvp1 = [name1

1
,name1

2
, (X1)], . . . , vpn =

[namen
1
,namen

2
, (Xn)] we claim that for

each join predicatevpi of the form vpi =
[namei

1
,namei

2
, (Xi)] with i ∈ N, and1 < i ≤ n

there has to be at least one join predicate
vpj = [namej

1
,namej

2
, (Xj)] with j ∈ N and

1 ≤ j < i and thatnamei
1

= namej
1
∨ namei

1
=

namej
2
∨ namei

2
= namej

1
∨ namei

2
= namej

2

holds. Furthermore, it not allowed to have a join
predicatevpj = [namej

1
,namej

2
, (Xj)] for which

namei
1

= namej
1
∧ namei

2
= namej

2
holds.

(2) If a PS-query contains join predicates, selection
predicates and projection predicates must not use
relation names that are not used in a join predicate.
(3) In join free PS-queries all predicates must use the
same relation name.
(4) PS-queries without joins and selections must
contain exactly one projection predicate that uses
exactly one relation name.

PSQ implies the order of predicates within a query.
At first join predicates have to appear, followed by se-
lection predicates and, at the end, the projection pred-
icate. This corresponds to how such a query is an-
swered. Selections base on join results and might use
attributes that are not included in the final projection.

Example 4 (Predicate Sequence Query)Let us
reuse the relations from Example 3 and Example 2.
An example query that uses all three kinds of
predicates might ask for the starting time of action
movies for adults (FSK>16). (1) rel. algebra:
πtime,name(σFSK>16∧genre=′action′(r(Rmovies)
⋊⋉MID=MID r(Rshown in))) (2) calculus:
{e, b|∃a∃b∃c∃d∃e∃fmovies(a, b, c, d, ,) ∧
shown in(, e, , f) ∧ f = a ∧ d =′

action′ ∧ c > 16} (3) predicate sequence
query: 〈[movies,shown in, (movies.MID =
shown in.MID)] [movies.FSK >
16] [movies.genre =′ action′]
[movies(name),shown in(time)]〉

Two important issues of calculus based query lan-
guages or representations are the relational complete-
ness and the safety. We know that a calculus is com-
plete if for each termτ of the rel. algebra there is a
equivalent (safe) termη in the calculus. PSQ is not
relational complete. We do not support (yet) set oper-
ations. However, because it is possible to map PSQ to
SQL for the execution, PSQ has to be safe.

2.1 Converting PSQ to SQL

Mobile clients post PS-queries to a server where
these queries have to be answered. Since we do not
have a native PSQ support for query answering, we
have to convert PS-queries into SQL statements.The
conversion algorithm works as follows:
(1) Join predicates are reflected by theWHERE-part
of an SQL statement. At this, the affected relation
names are added to theFROM-list.
(2) Selection predicates are also reflected by the
WHERE-part of an SQL statement and the relation
names have to be added to theFROM-list
(3) Projection predicates are added to the
select list and the affected relation names
flow into the FROM-list. For predicate sequence
queries without projection predicates we add ”*” to
theselect list.
(4) A renaming of tables likename@alias is
added to theFROM-part and there converted into
name as alias. In the WHERE-part and in the
select list we finally replace this relation name
by thealias.

Relation names or relation-name-alias-
combinations that appear more than once, are
included only once into theFROM-list. The following
example illustrates the conversion from PSQ to SQL.
Example 5 (Conversion PSQ to SQL)
Conventing a query that do not use table re-
naming requires only the first three conver-
sion steps. Let us assume self-join-free query
〈[movies,shown in,(movies.MID=shown in.MID)]
[movies.FSK>16] [movies.genre=’action’]
[movies(name)][shown in(time)]〉. The result is:
SELECT movies.name, shown in.time
FROM movies, shown in WHERE
movies.MID=shown in.MID
AND movies.FSK>16 AND
movies.genre=’action’

On the other hand, the query
〈[movies@M1,movies@M2, (movies@M1.MID =
movies@M2.MID)] [movies@M1.name!=’a@b’]
[movies@M1(name),movies@M2(FSK)]〉 is
converted using all four steps:

Step 1: SELECT
FROM movies@M1, movies@M2
WHERE movies@M1.MID=movies@M2.MID

Step 2: SELECT
FROM movies@M1, movies@M2
WHERE movies@M1.MID=movies@M2.MID
AND movies@M1.name!=’a@b’

Step 3: SELECT movies@M1.name,
movies@M2.FSK
FROM movies@M1, movies@M2
WHERE movies@M1.MID=movies@M2.MID
AND movies@M1.name!=’a@b’

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

110

Step 4: SELECT M1.name, M2.FSK
FROM movies AS M1, movies AS M2
WHERE M1.MID=M2.MID AND
M1.name!=’a@b’

3 CONTEXT PREDICATES

As mentioned in Section 1 MIS should consider the
context under which a query is posted. This includes
location, time as well as other contextual informa-
tion. In fact, there exist many different definitions of
the term context (Schilit, 1995; Dey, 2000; Chen and
Kotz, 2000; Pascoe, 2001; Mitchell, 2002; Schmidt,
2002). We here use the definition by Dey:

”Context is any information that can be used to
characterize the situation of an entity. An entity
is a person, place or object that is considered rel-
evant to the interaction between a user and an
application, including the user and applications
themselves.”

Of course, formulating context predicates depends on
the underlying context model. We here use our own
generic context model published in (Höpfner and Sat-
tler, 2003a). The basic ideas are as follows: We en-
hance parts of the database (db) on the server by addi-
tional information (e.g. position, time) and call these
extended parts fragments. The additional information
are called extensionsv. Now, a mobile client submits
(in addition to a predicate sequence query) informa-
tion about its context (e.g. “I am in London.”). On
the server, this information is used for selecting frag-
ments, that relate to the context of the mobile client.
We distinguish between server-extensionsvse

name ∈
Vse and client-extensionsvce

name ∈ Vce. Both are
vectors (e.g. two-dimensional geographic coordinates
vgc(x, y);x, y ∈ R). The difference between client-
and server-extensions is the expressiveness of the pa-
rameters (in our last examplex and y). On the
server side parameters might be parameter-functions
that compute the parameter values by querying the
database. So, redundant storage of data, that is al-
ready in the database, is avoided.

A fragmentF is an almost arbitrary segment of
one or more relation(s) and can be explained as tu-
ple F = (f, V) with a fragmentation-functionf
and a set of server-extensionsV = {v0, · · · , vn};
n ∈ N; v0, · · · , vn ∈ Vse. A fragmentation-function
f(r(R)) = r′(R′) with R′ ⊆ R and r′(R′) ⊆
πR′(r(R)) is a query in the query-language used by
the database system on the host holding the database
(e.g. SQL). In other words: A fragment is a view aug-
mented byV .

In the original paper we called the context infor-
mation, that are submitted to the server, replication
criteria. But, we recognized that this construct can

be used ascontext predicate, too. It consists of a
client-extension, and of the minimal postulated, and
the maximal allowed tolerance of this criterion. For
example,rkgc = ((100, 200), 0, 20), means that the
current position of the client is (100, 200) and the re-
quested data must refer to a position in the circumfer-
ence with the radius 20.

The decision, whether a fragment is of interest for
the client or not, is done on the server using a so called
ξ-function. If the result of this function is greater
than or equal to the minimal postulated threshold and
lower than or equal to the maximal allowed tolerance
the respective fragment is taken into account. In our
example such aξ-function might be the Euclidean dis-
tanceξEuc

gc (vgc1
, vgc2

) =
√

(x1 − x2)2 + (y1 − y2)2

or the Manhattan distanceξMan
gc (vgc1

, vgc2
) = |x1 −

x2|+ |y1−y2|. However, aξ-function does not neces-
sarily have to have the properties of a distance func-
tion, e.g., has not to be symmetric in the arguments.

Definition 5 (Client Extension) A client extension
is defined asvse

name = (ψ0, · · · , ψi) with the type
identifier (name) andψi (i ∈ N) constant parameters.

Definition 6 (Context Predicates) A context predi-
cate is defined similar to therepl. criterion in
(Höpfner and Sattler, 2003a). Hence, it is a triple
rk = (v′,∆min,∆max) with the client extension
v′ ∈ Vce and the threshold values∆max, ∆min ∈ R

(∆max ≥ ∆min) of the allowed variance of this client
extension.CP is the set of all context predicates.

From (Höpfner, 2005b) we can learn the PSQ-
conform notation of context predicates. In order to
query the database, the identifyingname of each repl.
criterion must be included into the repl. criterion val-
ues. For our geographical coordinates example the
context predicate is[gc,(100,200),0,20].

4 CONTEXT AWARE PSQ

With the definitions from Section 2 and Section 3
we can now discuss context aware predicate sequence
queries (CaPSQ). Since we allow only conjunctive
linked conditions in PSQ we also claim, that context
predicates are added in a conjunctive manner.

Definition 7 (Context Aware PSQ) With a predi-
cate sequence queryQ and a set of context predicates
C ⊆ CP a context aware predicate sequence query
is defined asQ′ = Q ◦ 〈 cp1 . . . cpo〉 with ∀i, k ∈
N, 1 ≤ i < k ≤ o; cpi, cpk ∈ C∪{ε} ⇒ cpi⊳cpk. At
this, ⊳ means lexicographically smaller and◦ is the
concatenation of the PSQ-query string and the con-
text predicate list.

ON CONTEXT AWARE PREDICATE SEQUENCE QUERIES

111

4.1 Performing Context Aware PSQ

In contrast to native PSQ queries it is not “trivial” to
perform CaPS-queries on a database system. Beside
converting the PSQ-part one has to handle the context
information. As discussed in Section 3 the evaluation
of the context predicates usesξ-functions that have to
be implemented either in a middle-ware or directly as
stored procedures in the DBS. We here assume, that
an additional component, a mobility server (Höpfner
and Sattler, 2003b), is used. Clients send their queries
to the mobility server that evaluates the contextual in-
formation and rewrites the remaining db query.

Therefore, the mobility server maintains a table of
server-extensions and fragments which are relevant
for this type of context.

Table 1 illustrates this list of fragments. At the mo-
ment the fragments are defined manually. An admin-
istrator has to create a view which is then added to the
list of fragments where she has do enhance it by the
contextual information. If now a mobile client sub-
mits a CaPS-query, the context information are ex-
tracted and compared to the fragment list by Algo-
rithm 1.

Algorithmus 1:Finding relevant fragments

ENSURE: INPUT: Fragment list
ENSURE: RETURN=∅; // reset return set

01.for each cpi = (v′,∆max,∆min) do
02. for each fragmentFj = (f, V) do
03. if ∃(vn ∈ V |vn is compatible tov′) then
04. if ∆min ≤ ξv(vn, v

′) ≤ ∆max then
RETURN=Fj ∪ RETURN

05. done
06. done
07.return (RETURN);

For the first time we assume, that each view con-
tains all relations and attributes that are required for
answering the query. However, as mentioned above,
client queries are generated by applications. So, it
is known, which relations might be used. Neverthe-
less, beside others, the specification of the fragments
is part of ongoing research. Therefore, we assume
here - for simplification - that the fragments are de-
fined over the Cartesian product of all relations in the
database. Obviously, this assumption is not accept-
able in real world systems but it guarantees the avail-
ability of all required information here.

The result of Algorithm 1 is a set of views that
might be used for answering the clients query. But,
the PSQ-part of the submitted query uses the rela-
tion names and the attribute names of the underlying
database. So, we have to adapt the predicate sequence

query to the selected views. LetF be the set of all se-
lected views. We know that the result might contain
tuples of allFi ∈ F with i ∈ N, and0 ≤ i ≤ |F|.
If F = ∅ holds, then the query result has to be empty.

Otherwise,Q(D)∩
(

⋃|F|
i=0

Fi(D)
)

is the result. Here

Q(D) means that the query is performed directly on
the databaseD. Because the views are defined on the
same database, the intersection of the union of all se-
lected fragments and the result of the query performed
on the database form the result. Nevertheless, this is
correct but not efficient. Especially if the views are
materialized a better idea would be to use only the
view, but this is ongoing work.

5 RELATED WORK

As aforementioned in Section 4 there are many pub-
lications in the field of context aware information
systems. Beside the already issued ones, (Stefani-
dis et al., 2005) discusses the usage of OLAP tech-
niques for realizing context aware systems. But, con-
text awareness is also discussed in different research
areas. Especially in the field of desktop computing.
Here the time of the usage of an object is used to sup-
port a search later on (Freeman and Gelernter, 1996;
Rekimoto, 1999; Ringel et al., 2003). A combination
of location, time and task awareness is suggested in
(Voida et al., 2002; Kaptelinin, 2003; Myka, 2005).

In combination with mobile clients, context aware-
ness is often reduced to location awareness. For ex-
ample, (Seydim et al., 2001b; Seydim et al., 2001a)
discuss approaches for location based hoarding. But,
location is only one part of the context of the usage
of a system. (Ren and Dunham, 2000) presents an
approach for handling location based queries. Here,
the focus lies on the client site where the results of
such queries are cached. Unfortunately, the authors
do not say something about how they perform their
queries. Furthermore, we do not limit ourself to loca-
tion awareness but support a generic context model.

The ContextSQL approach presented in (Höding
et al., 2003a) tries to integrate contextual information
in the optimization of query processing. Therefore, a
new SQL clauseBY CONTEXT is introduced and a
middle-ware component (Ḧoding et al., 2003b) man-
ages the context usage. This approach is compara-
ble to our approach. But, on the one hand we know,
that the variety of SQL statements hampers the cache
management on the client as well as the cache main-
tenance by the server. On the other hand ContextSQL
was presented as a first idea without algorithms or
proper definitions and the author did not publish any
new results.

As far as we know, there is no other approach that
tries to combine context awareness with a query nota-

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

112

Table 1: List of fragments.

fragment used server-extensions frag.-function
Chelsea (gc,SELECT x,y FROM geocoord WHERE city=’London’ ChelsaeData

and district=’Chelsea’)
Greenwich (gc,SELECT x,y FROM geocoord WHERE city=’London’ GreenwichData

and district=’Greenwich’

tion that considers the special capabilities of informa-
tion systems with mobile clients. But, of course, there
is related work.

6 SUMMARY AND OUTLOOK

We presented an approach to notate db queries in a
way that allows the easy usage of the queries for in-
dexing purposes in a context aware environment. We
introduced context aware predicate sequence queries
that correspond to conjunctive queries with inequal-
ities and self-joins but also allow the integration of
contextual information into the query. We discussed
the formal definitions of CaPSQ as well as how to per-
form such queries. The usability of our approach, at
least of the PSQ notation, was proven during a PhD-
Project (Ḧopfner, 2005a) where it was used for server
site client indexing. Since PSQ as a well defined syn-
tax, it is obviously more suitable for indexing issues
than descriptive query languages, logical queries or
(of course) graphical approaches. However, we have
shown that it is possible to translate PSQ into SQL,
which is necessary for performing the queries on ex-
isting database management systems.

Although, CaPSQ is a good basis, it is a starting
point for more research. Some of the open issues
were already issued in the text. Fragments are defined
manually, but we’ll try to learn such structures. We
also work on the integration of the various subsystems
and on the implementation of our scalable mobility
server that will support an easy realization of database
based information systems with mobile clients. Fur-
thermore, we have to handle with the consistency of
context based systems. In previous works we consid-
ered consistency without the context predicates. But,
our context model opens two new consistency lev-
els which result from context modifications and from
database modifications that affect the frag.-functions.
The most urgent issue we will focus is the pure usage
of materialized views instead of frag.-functions. From
the theoretical point of view this issue should not lead
to bigger problems but especially attribute name con-
ditions in real existing database management systems
raise some practical issues.

REFERENCES

Chen, G. and Kotz, D. (2000). A survey of context-
aware mobile computing research. Technical Report
TR2000-381, Dept. of Computer Science, Dartmouth
College.

Codd, E. F. (1972). Relational Completeness of Data Base
Sublanguages. InData Base Systems, pages 65–98,
Englewood Cliffs, New Jersey. Prentice-Hall.

Dey, A. K. (2000). Providing Architectural Support for
Building Context-Aware Applications. PhD thesis,
College of Computing, Georgia Inst. of Technology.

Freeman, E. and Gelernter, D. (1996). Lifestreams: a stor-
age model for personal data.ACM SIGMOD Record,
25(1):80–86.

Höding, M., Leich, T., and Plack, M. (2003a). Conext-
Based Querying for Mobile Applications with Con-
textSQL. InProc. of the 7th World SCI Multiconfer-
ence.

Höding, M., Plack, M., and Leich, T. (2003b). A Flex-
ible Middleware for Mobile Computing Using Con-
textSQL. InProc. of the 7th World SCI Multiconfer-
ence.

Höpfner, H. (2005a). Relevanz vonÄnderungen f̈ur
Datenbesẗande mobiler Clients. Dissertation, Fakult.
für Informatik, Universiẗat Magdeburg. in German.

Höpfner, H. (2005b). Towards Update Relevance Checks in
a Context Aware Mobile Information System. InIN-
FORMATIK 2005 - Informatik LIVE!, Band 2, volume
P-68 ofLNI, pages 553–557, Bonn, Germany. GI.

Höpfner, H. (2006a). Anfragebasierte Client-Indexierung
in Client-Server-Informationssystemen.Informatik -
Forschung & Entwicklung, 20(4):209–221.

Höpfner, H. (2006b). Update Relevance under the Multiset
Semantics of RDBMS. InMobile Informationssys-
teme, volume P-76 ofLNI, pages 33–44, Bonn, Ger-
many. GI.

Höpfner, H. and Sattler, K.-U. (2003a). Semantic Repli-
cation in Mobile Federated Information Systems. In
Proc. of the 5th EFIS, pages 36–41, Amsterdam. Ios
Press Inc.

Höpfner, H. and Sattler, K.-U. (2003b). SMoS: A Scalable
Mobility Server. InPosters of 20th BNCOD, pages
49–52. School of Math. & Inform. Sciences; Coventry
Univ.

Höpfner, H. and Sattler, K.-U. (2003c). Towards Trie-
Based Query Caching in Mobile DBS. InPost-Proc.

ON CONTEXT AWARE PREDICATE SEQUENCE QUERIES

113

of the Workshop Scalability, Persistence, Transactions
- Database Mechanisms for Mobile Applications, vol-
ume P-43 ofLNI, pages 106–121, Bonn. GI.

Höpfner, H., Schosser, S., and Sattler, K.-U. (2004). An
Indexing Scheme for Update Notification in Large
Mobile Information Systems. InEDBT 2004 Work-
shops, volume 3268 ofLNCS, pages 345–354, Berlin.
Springer.

Kaptelinin, V. (2003). UMEA: translating interaction his-
tories into project contexts. InProc. of the SIGCHI
conference on Human factors in computing systems,
pages 353–360, New York, NY, USA. ACM Press.

Mitchell, K. (2002).Supporting the Development of Mobile
Context-Aware Computing. PhD thesis, Departement
of Computing, Lancaster University.

Myka, A. (2005). Nokia Lifeblog — towards a truly per-
sonal multimedia information system. InProc. of the
8th Workshops of the GI-working group mDBIS.

Pascoe, J. (2001).Context-Aware Software. PhD thesis,
Computing Lab., University of Kent at Canterbury.

Rekimoto, J. (1999). Time-machine computing: a time-
centric approach for the information environment. In
Proc. of the 12th annual ACM symposium on User in-
terface software and technology, pages 45–54, New
York, NY, USA. ACM Press.

Ren, Q. and Dunham, M. H. (2000). Using semantic
caching to manage location dependent data in mobile
computing. InProc. of the MobiComm2000, pages
210–221.

Ringel, M., Cutrell, E., Dumais, S., and Horvitz, E. (2003).
Milestones in Time: The Value of Landmarks in Re-
trieving Information from Personal Stores. InProc.
of the Ninth IFIP TC13 International Conference on
Human-Computer Interaction, pages 184–191, Ams-
terdam. IOS Press.

Schilit, W. N. (1995).A System for Context-Aware Mobile
Computing. PhD thesis, Columbia University, New
York, USA.

Schmidt, A. (2002).Ubiquitous Computing – Computing in
Context. PhD thesis, Comp. Dep., Lancaster Univ.

Seydim, A., Dunham, M., and Kumar, V. (2001a). An ar-
chitecture for location dependent query processing.
In DEXA ’01:Proceedings of the 12th International
Workshop on Database and Expert System Applica-
tions, pages 549–550, Washington. IEEE.

Seydim, A. Y., Dunham, M. H., and Kumar, V. (2001b).
Location-Dependent Query Processing. InProc. of
the 2nd ACM International Workshop on Data Engi-
neering for Wireless and Mobile Access, pages 47–53,
New York, NY, USA. ACM Press.

Stefanidis, K., Vassiliadis, P., and Pitoura, E. (2005). On
Supporting Context-Aware Preferences in Relational
Database Systems. InProc. of the First International
Workshop on Managing Context Information in Mo-
bile and Pervasive Environments.

Voida, S., Mynatt, E. D., MacIntyre, B., and Corso, G. M.
(2002). Integrating virtual and physical context to sup-
port knowledge workers.IEEE Journal on Pervasive
Computing, 1(3):73–79.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

114

