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Abstract: Defect categorization is the basis of many works that relate to software defect detection. The assumption is 
that different subjects assign the same category to the same defect. Because this assumption was questioned, 
our following decision was to study the phenomenon, in the aim of providing empirical evidence.  Because 
defects can be categorized by using different criteria, and the experience of the involved professionals in 
using such a criterion could affect the results, our further decisions were: (i) to focus on the IBM Orthogonal 
Defect Classification (ODC); (ii) to involve professionals after having stabilized process and materials with 
students.  This paper is concerned with our basic experiment. We analyze a benchmark including two 
thousand and more data that we achieved through twenty-four segments of code, each segment seeded with 
one defect, and by one hundred twelve sophomores, trained for six hours, and then assigned to classify those 
defects in a controlled environment for three continual hours. The focus is on: Discrepancy among 
categorizers, and orthogonality, affinity, effectiveness, and efficiency of categorizations. Results show: (i) 
training is necessary to achieve orthogonal and effective classifications, and obtain agreement between 
subjects, (ii) efficiency is five minutes per defect classification in the average, (iii) there is affinity between 
some categories. 

1 INTRODUCTION 

Defect classification plays an important role in 
software quality. In fact, software quality is strictly 
related to the number and types of defects present in 
software artifacts and eventually in software code.  

The analysis of defect data can help to better 
understand the quality of software products and the 
related processes, and how they evolve.  

An invalid defect categorization would obviously 
imply wrong data, which could lead analysts to 
wrong conclusions, concerning the product, 
development process or phase, methods, and/or 
tools.  

For instance, in order to define the best mix of 
code testing and inspection techniques for given 
application domain and development environment, it 
is crucial to collect valid defect-category data (Basili 
& Selby, 1987; Cantone et al,. 2003; Abdelnabi et 
al., 2004).  

 
 
 

1.1 Related Works 

The Orthogonal Defect Classification (ODC) is a 
schema (IBMa, 2006) that IBM proposed in the aim 
of capturing semantics of software defects (see 
Section 1.3 for further details concerning ODC). 
ODC was originally published on 1992; because in 
the mean time the software world changed, the IBM 
provided to update ODC regularly. The 
classification adopted in this work is ODC v5.11, i.e. 
the last version of ODC, to the best of our 
knowledge. ODC is defined as a technology-
independent (software process, programming 
language, operative system, etc.) classification 
schema. This is based on eight different kinds of 
attributes, each of them having its own categories.  

Khaled El Emam and Isabella Wieczorek (1960), 
and Kennet Henningsson and Claes Wohlin (2004) 
investigated ODC empirically by focusing on 
subjectivity of defect classification. In order to 
evaluate the level of cohesion among classifications 
that different subjects enacted, both studies used 
“Kappa statistics” (Cohen, 1960), and worked on 
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their own variations of ODC. In particular, El Emam 
and Wieczorek involved various combinations of 
three subjects who performed in the role of defect 
categorizers on an actual software artifact, during 
the development process; they hence collected and 
eventually analyzed “real inspection data” (El Emam 
& Wieczorek, 1960). Eight subjects, each having at 
least a Master’s degree but with limited experience 
in defect classification, participated to the 
experiments conducted by Henningsson and Wohlin, 
where objects were utilized that included thirty 
defects selected from a repository. Concerning 
results from those studies, the former presents high 
level of cohesion with respect to standards utilized 
by medical studies, the latter shows that there might 
be subjectivity in classification. Durães and Madeira 
(2003) used the ODC as initial defect categorization 
framework and afterwards faults were classified in a 
detailed manner according to the high-level 
constructs where the faults reside and their effects in 
the program. The analysis of field data on more than 
five hundred real software faults shows a clear trend 
in fault distribution across ODC classes. Moreover, 
results show that a smaller subset of specific fault 
types is clearly dominant regarding fault occurrence. 

1.2 Study Motivations and View  

We can count a significant number of empirical 
works from many authors worldwide, whose 
conclusions are based on categorization of software 
defects. A common assumption of all those works 
(see Section 8 for few samples of them: (Basili & 
Selby, 1987; Cantone et al., 2003; Juristo and Vegas, 
2003; Myers, 1978)) is that in large extent defects 
can be classified objectively, whatever the 
classification model might be. In the absence of 
enough evidence for such an assumption, all those 
empirical results could be questioned. Consequently, 
the basic question of this study is whether software 
practitioners can uniformly categorize defects. 

In this paper we focus on the ODC attribute 
“Defect Type” (DT), which role is to catch the 
semantics of defects, that is the nature of the actual 
correction that was made to remove a defect from a 
software code. DT categorization hence follows 
defect detection, identification and fixing: in fact, 
the real nature of a defect can be understood (and 
than suitably categorized) only after the code is 
fixed, in the ODC approach.  

DT includes seven defect categories (IBMa, 
2006; IBMb, 2006):  
1. Assignment/Initialization: value(s) assigned 

incorrectly or not assigned at all. 

2. Checking: errors caused by missing or incorrect 
validation of parameters or data in conditional 
statements. It might be expected that a 
consequence of checking for a value would 
require additional code such as a do while loop 
or branch. 

3. Algorithm/Method: efficiency or correctness 
problems that affect the task and can be fixed by 
re-implementing an algorithm or local data 
structure without the need for requesting a 
design change; problems in the procedure, 
template, or overloaded function that describes 
a service offered by an object.  

4. Function/Class/Object: the defect should require 
a formal design change, as it affects 
significantly capability, end-user interfaces, 
product interfaces, interface with hardware 
architecture, or global data structure(s); defect 
occurred when implementing the state and 
capabilities of a real or an abstract entity. 

5. Interface/O-O Messages: communication 
problems between modules, components, device 
drivers, objects or functions. 

6. Relationship: problems related to associations 
among procedures, data structures and objects. 

7. Timing/Serialization: necessary serialization of 
shared resource was missing, the wrong 
resource was serialized, or the wrong 
serialization technique was employed. 

In the remaining, we present, analyze, and 
discuss a benchmark including two-thousand and 
more data that we achieved through an experiment 
based on twenty-four segments of code, each 
segment seeded with one defect, and one hundred 
twelve sophomores, trained for six hours and then 
assigned to classify those defects in a controlled 
environment for three continual hours. In particular, 
Section 2 presents the experiment problem and goal 
definition. Section 3 shows the experiment planning 
and operation. Section 4 and 5 present and discuss 
results. Some final remarks and further intended 
works conclude the paper. 

2 GOAL AND EXPERIMENT 
HYPOTHESES 

The goal (Basili et al., 1987) of this paper is to 
analyze the (ODC)’s DT attribute from the point of 
view of the researcher, in the context of an academic 
course on “OO thinking and programming with 
Java” for sophomores, for the purpose of evaluating 
dependences of software defect categorizations on: 
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i) defect (d∈DD): ii) subjectivity of practitioners 
(s∈S); iii) expertise in defect detection (X), and (iv) 
Programming language (PL) utilized to code 
artifacts, by focusing on: a) Effectiveness (E), i.e. in 
what extent a defect is associated to its most 
frequent categorization (MFC); b) Efficiency (Ec), 
i.e. the number of (MFC)s per time unit; c) 
Orthogonality (O), i.e. in what extent a defect is 
assigned to just one category; d) Affinity (A), i.e. in 
what extent a defect category looks like other 
categories, and e) Discrepancy (D), i.e. in what 
extent subjects assign a defect different categories 
(see Sections 3 for quantitative definitions of all 
those variables). 

Based on that goal, the hypotheses of our work 
concern the impact of expertise (hX), defect category 
(hC), and programming language (hL) on 
orthogonality (hO), effectiveness (hE), and 
discrepancy (hD).  

The null (h0) and alternative (h1) hypotheses for 
expertise versus orthogonality (resp. effectiveness, 
and discrepancy) are: 
– hXO0: Expertise does not significantly impact on 

orthogonality (resp. hXE0, and hXD0). 
– hXO1: Expertise impacts significantly on 

orthogonality (resp. hXE1, and hXD1). 
Hypotheses concerning programming language 

(hLO0, hLO1, hLE0, hLE1, hLD0, hLD1), and defect 
category (hCO0, hCO1, hCE0, hCE1, hCD0, hCD1) have 
similar formulations. In the remaining, while we 
evaluate the impact of defect category, expertise, 
and programming language on outcomes, our 
reasoning mainly focuses on expertise.  In fact, in 
our expectation, in case of significant dependence of 
defect categorizations from the categorizers’ 
subjectivity, expertise should play the most 
important role and behave as the main 
discriminating factor; consequently, our planning 
and training emphasis was in providing variable 
expertise. 

3 EXPERIMENT PLANNING AND 
OPERATION 

Whoever the participant subject, three items 
characterize our elementary experiment:  a defect, as 
seeded and fixed in a program segment, the 
programming language of that segment, and 
dissimilarity of that defect.   

In order to average on differences among 
participant subjects, our planning decisions was to 
utilize subjects with the same level of experience; in 

particular: i) one hundred or more subjects from the 
same academic class, ii) subjects showing the same 
OOP class frequency record, iii) subjects who would 
be attending all the training sessions. Moreover, in 
order to manage the impact of learning effect on 
results, we kept further planning decisions, which 
also helped to prevent exchange of information 
among participant subjects: iv) to arrange four 
master files, where experiment artifacts are located 
in different order, v) to assign subjects seats 
randomly, and give neighbors copies of different 
master files, and vii) to ask subjects to handle 
artifacts in sequence, staring from the first artifact 
their assigned. 

We hence developed and saved into repository 
defected artifacts. An artifact consists in a less than 
twenty ELOC segment of code, plus comments to 
ensure easy and valid understanding; one defect is 
seeded per code segment, and fixed through specific 
comments. Let us note that while we used our 
understanding of DT ODC to generate defected 
artifacts, we no further utilize such understanding in 
the remaining of this study, where categorizations 
are utilized as enacted by subjects. 

In parallel with repository construction, we 
called for participation, and trained subjects through 
three two-hour lectures, which presented the role 
and importance of defect categorization, defined 
categories of the ODC DT attribute, and explained 
extensively two or more exemplar cases for each 
defect category.  Subsequently, we evaluated in Low 
(L), Average (A), and High (H) the dissimilarity 
between defects in the experiment artifacts and 
defects in the examples given for training (see 
Expertise in Section 3.1.4 for further details). 
Finally, we ruled the random selection of experiment 
artifacts from the repository, as in the following: (i) 
Get as many C++ as Java coded artifacts; (ii) Get 
two or more artifacts for each defect category; (iii) 
Get 20% of artifacts for each value of Dissimilarity, 
and remaining (40%) at random. 

3.1 Independent Variables: 
Parameters, Blocking Variables 
and Factors 

3.1.1 Subjects 

As already mentioned, one hundred twelve 
sophomores participated to the experiment, who 
were attending the course of Object-Oriented 
Programming, their fourth CS course at least. All of 
them had attended all the training lectures and, in 
term of experience, they can be considered as novice 
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programmers.  Subjects’ participation was part of a 
course test; they worked individually in the same 
250 seats room, in the continual presence of two or 
more observers; communication among subjects was 
not allowed. Other one hundred subjects, who had 
not fully attended the training or the OOP course, 
were located in an adjacent room: their data will be 
no further considered in the present paper. 

3.1.2 Objects 

Experiment artifacts, twelve C++ coded and twelve 
Java coded, were assigned to all subjects, each 
artifact seeded by one defect. All quadruples of 
neighbor subjects handled the same artifacts but in 
different order. 

3.1.3 Experiment Duration 

Subjects had up to three hours assigned to enact their 
task. They were allowed to quit the experiment any 
time, after the start and before the formal end. 

3.1.4 Factors and Treatments 

Factors of the basic experiment and their levels are: 
– Programming Language (PL), levelled at C++ 

and Java, respectively. 
– Defect Category (Ctg). Six defect categories are 

utilized, i.e. all the DT ODC less 
Timing/Serialization: in fact, subjects had not yet 
been exposed to concurrent programming 
concepts, constructs, and mechanisms, when 
they participated to the experiment. 

– Expertise (X). It is analogous to Dissimilarity 
but scale is reversed; it hence relates to quantity 
of examples given per defect during training. In 
fact, for each defect type, we set artificially the 
subjects expertise by dosing the explanation 
time, and the numbers of examples given per 
defect. (0, 1, 2) are the values of the ordinal scale 
we use to measure the subjects expertise, where: 
0 means that training did not include examples 
showing that specific instance of the defect 
category (hence, the defect shows low level of 
similarity with the explained defects, and its 
Dissimilarity measure is H); 1 means that 
training exposed subjects just one time to that 
specific instance of the defect category 
(Dissimilarity measures A); 2, means that 
subjects trained with two or more instances 
concerning that specific defect category (the 
defect shows high similarity with the explained 
ones, and its Dissimilarity measure is L).   
Concerning this point, let us finally note that, 

because subjects had already attended two CS 
courses in C++ and were attending a Java 
course, trainers gave more emphasis to defected 
artifacts coded in the latter.  

3.2 Dependent Variables 

We directly measured: 
– Completion Time: Actual task duration per 

subject (duration of all the elementary 
experiments assigned to the same subject). 

– Categorization: ODC per elementary experiment 
and subject. A subject, whether sure about his 
understanding, assigns a defect just one 
category, else zero or two categories.   

Based on such direct measures, we derive the 
variables described in the followings, which 
characterize the DT attributes of the OD 
Classification. Let us note that measures in the 
following are given to each specific defect, and then 
applied in the same way in each defect category, 
each programming language, and so on.. 
– Effectiveness (E): percentage of the most 

frequent categorization with respect to the 
universe of categorizations given by subjects for 
this defect. 

– Efficiency (Ec): how many (MFC)s occur per 
time unit, in the average, for this defect. Because 
of the experiment infrastructure that we choose 
(paper supports for data collection; data 
registration enacted by subjects), our decision 
was to collect the task Completion time only, 
rather than the time duration of each elementary 
experiment. Consequently, data from the basic 
experiment are not enough to investigate 
efficiency in deep.  

– Orthogonality (O): what percentage of subjects 
assigned this defect just one category (rather 
than zero or two).  

– Discrepancy (D): this does measure the average 
distance in percentage related to the entire 
population for the same categorization, and is a 
variant of the Agreement’s (Henningsson and 
Wohlin, 2004; El Emam & Wieczorek, 1960) 
one complement. In other word, discrepancy is 
the average probability that a given 
categorization is different from those given by 
other subjects for the same defect.  

– Affinity (A): this expresses a relationship of a 
category with respect to one more category, and 
is a variant of the Confusion’s (Henningsson and 
Wohlin, 2004) one complement. Given two 
categories, the source category CS and the 
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destination category CD, let us take in 
consideration defects, which MFC is CS. The 
affinity of CS with respect to CD, 
A_WRT(CS,CD), measures the percentage of 
CS or CD categorizations given for those 
defects. Formally: 

– ∀d∈DD(Exp): MFC(d) = CS, ∃A_WRT∈ 
[0..100]: (100*p(d) ∈ {CS, CD}=A_WRT); 

                (1) 
where: d is any of the defect set DD in the 
experiment Exp, and p is the probability  
function averaged on all instances of the 
argument defect. A_WRT is not commutative 
(sometimes A_WRT(C1,C2) ≠ A_WRT(C1, 
C2)), and its reflexive closure, A_WRT(C,C), is 
the Effectiveness with respect to category C. 
The affinity between CS and CD, A_Btw(CS, 
CD), is then defined as: 
∀d ∈ DD(Exp): MFC(d) ∈ {CS, CD}, ∃ A_Btw 
∈ [0..100]: (100*p(d) ∈ {CS, CD} = A_Btw); 

    (2) 
Note that ∀(CS, CD), A_Btw(CS,CD) = 
A_Btw(CD, CS), i.e. A_Btw is commutative:. 
Definitions above can be extended to three or 
more categories. 

4 RESULTS AND DATA 
ANALYSIS 

At experiment conduction time, subjects registered 
more than two thousand six hundred data fields, 
which we eventually deposited in a database. Two 
subjects provided exorbitantly distant data from the 
most frequent ones; data analysis identified those 
data as outliers, and consequently we excluded them 
form further analysis.  

In this study all categorizations given by 
subjects, are evaluated, null ones included: in our 
evaluation, null categorizations candidate IBM DT 
definitions for further clarification, or our training 
for improvement. 

4.1 Descriptive Statistics 

Let us consider now orderly relationships between 
each response variable and factors. 

4.1.1 Effectiveness 

We want to describe the evolution of the most 
frequent categorizations as a whole and versus 
expertise, programming languages, and defect 

categories involved, and eventually with respect to 
the task completion time.  

Figure 1 shows subjects given categorizations, as 
averaged on the whole available data. Concerning 
the abscissa, “0” stands for not categorized defects 
(null); “1_MFC” (resp. “1_NMFC”) denotes that the 
subject assigned this defect just the most frequent 
categorization (resp. one category, but different from 
the MFC); “Others” stands for assignment of two 
categories to this defect. Effectiveness (see MFC in 
Figure 1) is 0.69, and variance is 8.  

Figure 2 and Figure 3 relate effectiveness with 
expertise and specific defects, respectively. 

Table 1 shows effectiveness versus ODC 
categories, and related variances. Table 2 relates 
effectiveness to the programming language of the 
defected segments.  

Figure 4 shows the evolution of effectiveness in 
time. 

4.1.2 Efficiency 

Figure 5 presents efficiency with respect to 
completion time. Table 3 shows statistical summary 
for efficiency. 

4.1.3 Orthogonality 

Figure 6 and Figure 7 relate orthogonality with 
expertise and specific defects, respectively. Table 4 
and Table 5 present orthogonality versus ODC 
categories, and programming language, respectively. 
Table 6 shows statistical summary for 
Orthogonality, and Figure 8 presents the evolution 
of orthogonality in time. 
 

Mean Effectiveness = 69% Variance=8
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Figure 1: Categorizations and Effectiveness (with respect 
to the whole data collected). 
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Figure 2: Effectiveness versus Expertise. 
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Figure 3: Effectiveness per Defect. 

Table 1: Effectiveness versus ODC Categories. 

                 Category 
Effectiveness 

1 2 3 4 5 6 

Average (%) 77 83 48 75 54 82 
Variance  204 156 18 470 237 151

Table 2: Effectiveness versus Programming Language. 

               Language 
Effectiveness 

Java C++ 

Average (%) 61 78 
Variance  402 248 
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Figure 4: Effectiveness in time. 
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Figure 5: Efficiency in time. 

Table 3: Statistical summary for efficiency. 

Efficiency 
Average (MFC/h) 9 

Variance 7,31 
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Figure 6: Orthogonality versus Expertise. 
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Figure 7: Orthogonality per defect. 

Table 4: Orthogonality versus ODC categories. 

                  Category 
Orthogonality 

1 2 3 4 5 6 

Average (%) 98 97 94 98 95 98 
Variance  4 5 7 4 3 2 

Table 5: Orthogonality versus programming language. 

               Language 
Orthogonality 

Java C++ 

Average (%) 96 97 
Variance  6 7 

Table 6: Statistical summary for orthogonality. 

Orthogonality 

Average (%) 97 

Variance 2 
 

0

4

8

12

16

20

24

3500 4500 5500 6500 7500 8500 9500 10500 11500

Time (sec.)

O
rt

ho
go

na
lit

y

 
Figure 8: Orthogonality in time. 

4.1.4 Discrepancy 

Table 7 shows statistical summary for discrepancy. 
In the remaining, this Section presents discrepancy 
with respect to ODC categories (Table 8), 

programming languages (Table 9), expertise (Figure 
9), and seeded defects (Figure 10), respectively. 

Table 7: Statistical summary for Discrepancy. 

Discrepancy 
Average (%) 43 

Variance 1010 

Table 8: Discrepancy versus ODC Categories. 

                   Category
Discrepancy 

1 2 3 4 5 6 

Average (%) 39 28 65 34 60 29 
Variance  44 379 13 591 171 326 

Table 9: Discrepancy versus Programming Language. 

              Language
Discrepancy 

Java C++ 

Average (%) 50 50 
Variance  453 478 
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Figure 9: Discrepancy versus Expertise. 
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Figure 10: Discrepancy per defect. 

4.1.5 Affinity 

Based on the average effectiveness shown above 
(E=0.69), the number of categorizations that differ 
from their (MFC)s is around 818.  
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While it is not possible to include all those 
categorizations in this paper, we can describe their 
tendencies, based on definitions given for Affinity in 
Section 3.2 above: according to expressions (1), 
A_WRT(6, 5)= 90; A_WRT(2, 3)= 95; according to 
expression (2), A_Btw(1, 3, 5)= 90.  

In words, when the MFC is 6 (Relationship) then 
90% of categorizations provided by subjects are 6 
(Relationship) or 5 (Interface/ OO Messages). 

Moreover, when the MFC is 2 (Checking) then 
95% of categorizations provided by subjects are 2 
(Checking) or 3 (Algorithm/Method). 

Furthermore, when MFC is 1 (Assignment/ 
Initialization), 3, or 5 then 90% of categorizations 
provided by subjects are 1, 3, or 5. 

Finally, let us spread on data “Others” in Figure 
1, which concern affinity. Columns Ctg1 and Ctg2 
in Table 10 present the alternative categorizations 
that doubtful subjects assigned to defects; the Ocs 
columns show the occurrences of those double 
categorizations. 

Table 10: Defect’s double categorizations (as provided by 
doubtful subjects). 

Ctg1 Ctg2 Ocs Ctg1 Ctg2 Ocs 
1 3 3 3 6 1 
1 5 2 4 5 1 
2 3 3 4 6 2 
3 4 2 5 6 1 
3 5 2 Others 0 

4.2 Hypothesis Testing 

In order to test hypotheses concerning expertise, we 
separate cases where the involved expertise is null 
(0) from remaining ones (expertise measures 1 or 2), 
so having the seeded defects partitioned in two 
groups, GX=0, and GX≠0, respectively. 

4.2.1 Testing hXO0. Expertise does 
Insignificantly Impact on 
Orthogonality: O(GX=0) ≅ O(GX≠0) 

The number of subjects, who assigned one category 
to GX=0 defects, are: (100, 101, 103, 104, 104, 105, 
105, 105, 106, 106, 107, 108), respectively; those for 
GX≠0 are: (103, 106, 107, 108, 109, 109, 109, 109, 
110, 110, 110, 110).   Figure 11 shows the Box-and-
Whisker plots for such series of data. Since the latter 
cannot fit under normal curve at 99% of confidence 
level (in fact, its lowest P-value from Shapiro-Wilks 
test is 0.0051, which is less than 0.01), we applied 
the Mann-Whitney (Wilcoxon) W test to compare 
medians. Since the W test’s P-value is 0.000919, 

which is less than 0.05, there is a statistically 
significant difference between the medians at the 
95.0% confidence level. Consequently, we can reject 
the null hypothesis hXO0 at 95% of significance level. 
In other words, expertise significantly impacts on 
orthogonality of defect categorizations. 
 

Orthogonality vs. Expertise

100 102 104 106 108 110

O

Others

 
Figure 11: Orthogonal classifications versus expertise. 

4.2.2 Testing hXE0. Expertise does 
Insignificantly Impact on 
Effectiveness: E(GX=0) ≅ E(GX≠0) 

The effectiveness values for categorizing GX=0   
defects are (41, 41, 45, 46, 52, 54, 59, 65, 71, 75, 79, 
81), respectively; those for GX≠0 are (74, 77, 79, 81, 
83, 98, 100, 104, 105, 107, 108, 109).   Figure 12 
shows the Box-and-Whisker plots for such series of 
data. Since the latter cannot fit under normal curve 
at 95% of confidence level (in fact, its lowest P-
value from Shapiro-Wilks test is 0.037, which is less 
than 0.05), we applied the W test.  Since the W test’s 
P-value is 0.000194, which is less than 0.05, there is 
a statistically significant difference between the 
medians at the 95.0% confidence level. 
Consequently, we can reject the null hypothesis hXE0 
at 95% of significance level. In other words, 
expertise significantly impacts on effectiveness of 
defect categorizations. 
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Figure 12: Effectiveness versus expertise. 
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4.2.3 Testing hXD0. Expertise does 
Insignificantly Impact on Discrepancy: 
D(GX=0) ≅ D(GX≠0) 

The discrepancy values related to categorizations of 
GX=0 defects are (42, 44, 49, 52, 58, 59, 63, 68, 68, 
70, 71, 74), respectively; those for GX≠0 are (2, 4, 5, 
9, 10, 17, 19, 40, 41, 42, 46, 51).   Figure 13 shows 
the Box-and-Whisker plots for such series of data. 
Since the latter cannot fit under normal curve (in 
fact, its lowest P-value from Chi-Square test is 
0.022, which is less than 0.05), we applied the W 
test. Since the W test’s P-value is 0.000137, which is 
less than 0.05, there is a statistically significant 
difference between the medians at the 95.0% 
confidence level. Consequently, we can reject the 
null hypothesis hXD0 at 95% of significance level. In 
other words, expertise significantly impacts on 
discrepancy between defect categorizations. 
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Figure 13: Level of Discrepancy, treated by experience. 

5 DISCUSSION 

5.1 Experiment Results 

5.1.1 Effectiveness 

Based on Figure 1, the percentage of most frequent 
categorizations is in average 69%. This seems quite 
a small value for effectiveness, which also means 
that there seems to be high subjectivity in defect 
categorization when trained/untrained novice 
programmers are involved. Again Figure 1 shows 
that those programmers perform quite dissimilarly, 
since variance (8) is very high - one third of the 
seeded defects (24) - as also shown by Figure 3 and 
Table 1.  

Figure 1 also shows that single non-MFC 
classifications (1_NMFC) are in number ten times 
greater than the doubtful ones (Null + Others). In 
our understanding, this means that novices seem 

unconscious of consequences that their limited 
knowledge of ODC DT could have. Another view is 
that IBM should improve the presentation of ODC 
DT, in order to help practitioners to distinguish 
among categories more easily.  

Based on Figure 2, it seems that effectiveness is 
strongly related to expertise. In fact, effectiveness 
grows from 54% up to 89% as the given training 
grows. Based on that slope, the trend for 
effectiveness is 100%, which expert professionals 
should be able to approach.  The impact of expertise 
on results explains, in our understanding, the 
variance previously observed with aggregated data.  
This also asserts that data in Table 1 should not be 
utilized to evaluate the impact of defect category on 
effectiveness, and, similarly, data in Table 2 should 
not be used to evaluate the impact of programming 
languages on effectiveness. 

Finally, based on Figure 4, effectiveness seems 
independent from the completion time, when this is 
limited to 3 hours. 

5.1.2 Efficiency 

The amount of time a subject employed to enact a 
categorization is around 5 minutes in average.  

Based on date in Table 3, the mean time for an 
MFC categorization is 6.66 minutes (9 MFC/hour), 
and variance is 7.3 MFC/hour.   

Since variance is similar to the average, it seems 
that efficiency is highly subjective with novice 
programmers. Let us recall that it was not possible to 
collect the duration time during the basic 
experiment; consequently, we cannot investigate 
efficiency more deeply. 

5.1.3 Orthogonality 

Based on Table 6, which data are again not yet 
disaggregated with respect to expertise, 
orthogonality is 97%, while variance is 2.  This 
expresses that, in the average, programmers 
commonly percept ODC with respect, and tend to 
provide just one classification per defect, whatever 
is their expertise. However, taking in consideration 
data disaggregated by expertise (Figure 6), with 
novices, orthogonality grows from 95% up to 99.3% 
as expertise grows.  

Based on Table 5, aggregated data show no 
difference of C++ and Java versus orthogonality. 

Finally, based on Figure 8, orthogonality seems 
independent from the completion time, when this is 
limited to 3 hours. 
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5.1.4 Discrepancy 

Subjects had to select a category out of seven 
(including null). In theory, the maximum value for 
discrepancy is 86%, which occurs when all 
selections are equally probable; it is the probability 
that six categories are selected out seven (less scale 
factor 100). The minimum of discrepancy is 0%, 
which occurs in case of complete agreement 
between subjects for each categorization. Table 7 
shows 43% discrepancy (and 1010 variance!), as 
registered in average for our basic experiment, again 
with respect to data not yet disaggregated by 
expertise. That value is exactly the mean between 
the discrepancy’s minimum and maximum theoretic 
values; as a result, ODC seems to be quite dependent 
from the categorizers’ subjectivity, when 
trained/untrained novices are involved.  

Based on Figure 9, which relates to data 
disaggregated by expertise, it seems that discrepancy 
is strongly related to expertise. In fact, discrepancy 
decreases from 60% up to 17% as the given training 
grows. Based on that slope, the trend for discrepancy 
is the theoretic minimum (0%), which expert 
professionals should be able to approach. The 
impact of expertise on results explains, in our 
understanding, the very large value previously 
observed for variance, when aggregated data were 
considered.   

Based on Table 9, aggregated data show no 
difference of C++ and Java versus discrepancy. 
Again, discrepancy seems independent from the 
completion time, when this is limited to 3 hours. 

5.1.5 Affinity 

Based on data elaboration that we presented above 
(see Section 4.1.5), it seems that categories 
“Assignment/ Initialization”, “Algorithm/Method”, 
and “Interface/OO Message” are one each other 
strongly affine. Moreover, category “Interface/OO 
Message” is frequently provided in place of 
“Relationship”, and the same for 
“Algorithm/Method” with respect to “Checking”. 
This, in our understanding, calls for training 
improvement by emphasizing on dissimilarities 
among those categories. 

5.2 Threats to Validity 

This empirical study has a number of limitations that 
should be taken into account when interpreting its 
results.  

Concerning the internal validity (Wohlin et al., 
1978) (i.e. the degree to which conclusions can be 
drawn about the causal relationship between 
independent variables and dependent variables), it 
should be noted that we utilized a very limited 
number of defect samples: 12 per language, hence 
two defects per category. Moreover, while the task 
completion time assigned was quite small, and 
subjects were continually in control of observers 
during the conduction of the experiment, we cannot 
guaranty absence of interactions between 
participants; in fact, these were student, who we 
partially graded for their performance; in the 
experiment cultural context, a student is appreciated, 
who passes his solutions to colleagues. Furthermore, 
our training emphasized on Java language, and the 
real experience and expertise of subjects with C++ 
was not in control.   

Another limitation of this study is related to the 
external validity (Wohlin et al., 1978), i.e. the degree 
to which the results from this study can be 
generalized. It cannot be assumed a priori that the 
results of a study generalize beyond the specific 
environment and context in which it was conducted. 
In fact, subjects involved with the basic experiment 
are sophomores in OO Programming, who should 
not be considered as novice professional 
programmers. Moreover, the experiment software 
artifacts that we utilized in the basic experiment are 
small segments of code, which should not be taken 
to represent real software. Finally, we utilized paper 
supports both for experiment artifacts and forms, 
while realism asked for electronic-supported code, 
and electronic-network-supported form distribution, 
and data collection.  

6 CONCLUSIONS AND FUTURE 
WORKS 

This paper has presented an empirical investigation 
on the (IBM)’s ODC-DT attribute for software 
defect categorization. Foci of the investigation have 
been the classification effectiveness, efficiency, 
orthogonality, discrepancy, and affinity with respect 
to practitioners’ subjectivity (110 students 
performing in the role of experiment subjects), 
defects individuality (6 DT categories of seeded 
defects), and software artifacts’ coding language 
(Java and C++). Results shown include averages for 
time for defect categorization (≅5 minutes), 
effectiveness (69%), and orthogonality (97%). 
Results also show that subject’s expertise seems to 
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impact very significantly on all the results, and 
subjects with enough expertise should be able to 
easily approach the theoretic best value for 
effectiveness, as for orthogonality and discrepancy. 
Our consequent expectation is that there should be 
objectivity in defect categorization, whether enacted 
by software practitioners. However, such an 
expectation still needs empirical evidence. Further 
results show that, when time spent in categorizing 
defects lasts between 1 and 3 hours, the 
effectiveness, orthogonality, and discrepancy are not 
affected by the time duration of the classification 
section. Moreover, results show that the 
programming language of coded artifacts, and the 
defect nature seem to impact insignificantly on 
effectiveness, orthogonality, and discrepancy. 
Finally, our results show that there are some 
categories that tend to confuse subjects; this, in our 
understanding, calls for improving definitions of 
those ODC DT categories, as actually given by IBM. 
Namely, those categories are “Interface/OO 
Message” and “Relationships”. Further confusing 
categories are “Assignment/Initialization” and 
“Algorithm/Method” on one side, and 
“Algorithm/Method” and “Checking” on the other 
side, which confirm previous results (Henningsson 
and Wohlin, 2004). 
Our plan for the future is first to extend the size of 
our defect repository, place the material in electronic 
format, and contact IBM experts in the aim of 
receiving their categorizations of our defect samples 
(to use as the reference “correct” categorizations), 
and then to proceed with replicating the experiment 
with professionals both in a controlled environment, 
and through the Web. This should also provide the 
precise timing of each categorization, and help to 
investigate efficiency in deep. 
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