
ADVANCES ON TESTING SAFETY-CRITICAL SOFTWARE
Goal-driven Approach, Prototype-tool and Comparative Evaluation

Guido Pennella, Christian Di Biagio
MBDA-Italy SpA, Via Tiburtina, Roma, Italy

Gianfranco Pesce
Centro di Calcolo e Documentazione, Università degli Studi di Roma “Tor Vergata”, Via O. Raimondo, Roma, Italy

Giovanni Cantone
Dip. di Informatica, Sistemi e Produzione, Università degli Studi di Roma “Tor Vergata”, Via O. Raimondo, Roma, Italy

Keywords: Software engineering, Distributed and parallel systems, Hard Real-time Systems, Performance-
measurement Tools.

Abstract: The reference company for this paper – a multination organization, Italian branch, that works in the domain
of safety-critical systems – evaluated the major tools, which the market provides for testing safety-critical
software, as not sufficiently featured for her quality improvement goals. Consequently, in order to
investigate the space of possible solutions, if any, the company’s Research Lab. started an academic
cooperation, which leaded to share knowledge and eventually to establish a common research team. Once
we had transformed those goals in detailed technical requirements, and evaluated that it was possible to
realize them conveniently in a tool, we passed to analyze, construct, and eventually utilize in field the
prototype “Software Test Framework”. This tool allows non-intrusive measurements on different hard-soft
targets of a distributed system running under one or more Unix standard OS, e.g. LynxOS, AIX, Solaris, and
Linux. The tool acquires and graphically displays the real-time flow of data, so enabling users to verify and
validate software products, diagnose and resolve emerging performance problems quickly, and enact
regression testing. This paper reports on the characteristics of Software Test Framework, its architecture,
and results from a case study. Based on comparison of results with previous tools, we can say that Software
Test Framework is leading to a new concept of tool for the domain of safety-critical software.

1 INTRODUCTION

This paper expands on a previous work (Di Biagio,
2006b), which investigated the major available
technologies for testing hard real-time software. The
main result of that study was the characterization of
those technologies from the point of view of a
certain company – a multination organization, Italian
branch, which works in the domain of safety-critical
systems.

Based on the results from that study, the
company’s management evaluated the major tools
that the market provides for testing safety-critical
software, as not sufficiently featured for their quality
improvement goals. Consequently, in order to

investigate the space of possible solutions, if any,
the company’s Research Lab. was allowed to start an
academic cooperation, in the aim of sharing
knowledge and eventually establish a common
project and research team. This paper reports on
some results and a product that derived from such an
experience.

Let us briefly present the context of real-time
performance testing, remanding to a technical report
for further details (Di Biagio, 2006a). The usage of a
monitor is strongly recommended for the test of
performance of hard real-time systems (Tsai, 1995)
and quality assurance of new digitalized safety-
critical systems (EPRI, 1994). A monitor is a system
able to observing and analyzing behaviors shown by
another, in case remote, system (a.k.a.: the “target”),

218
Pennella G., Di Biagio C., Pesce G. and Cantone G. (2006).
ADVANCES ON TESTING SAFETY-CRITICAL SOFTWARE - Goal-driven Approach, Prototype-tool and Comparative Evaluation.
In Proceedings of the First International Conference on Software and Data Technologies, pages 218-223
DOI: 10.5220/0001311002180223
Copyright c© SciTePress

comparing the actual states of the target with
expected ones – as produced by the same monitor
performing in the role of “oracle” (Weyuker, 1982)
– or reporting on system failures – as detected by the
same monitor performing in the role of “supervisor”
(Simser, 1996) – respectively. In safety-critical
applications, the system should be monitored by
another safety system to ensure continued correct
behavior. To achieve these goals, observed
behaviors must be quickly accepted or rejected; this
task is quite difficult to enact when complex real-
time systems are involved, and the requested
response time is not in the range of human
capabilities. Additionally, software practitioners
cannot diagnose, troubleshoot, and resolve every
component affecting a critical software performance
by using just manual methods.

The goal (Basili, 1994) of the present paper is
concerned with the purpose of measuring system test
performances. The focus is on measurement of CPU
and memory loads, performance monitoring of
distributed heterogeneous processes and their
threads, intrusiveness, and other key attributes. The
point of view consists in the reference organization
practitioners. The context is the development of
critical software. In particular, we want to proceed
by: (i) expressing the reference company need of
testing safety-critical software in terms of
conveniently feasible features and capabilities; (ii)
developing a new software tool that meet those
needs; (iii) Characterizing that tool, comparing it
with other testing tools, accepting it by a case study,
and eventually (iv) accrediting the tool in field and
continually improving it, based on feedback from
practitioners (Cantone, 2000).

In the remaining of the present paper, Section 2
transforms the reference organization’s needs and
goals in required testing features. Section 3 presents
the philosophy, architecture, and functionalities of
Software Test Framework (STFW), a new prototype
tool, which is based on those features. Section 4
shows results from a case study, which involved the
STFW. Section 5 briefly compares STFW with
major professional tools that the market provides.
Section 6 presents some conclusions and points to
future research.

2 TESTING FEATURES

There is not enough room here to report on the
interview-based requirement elicitation process that
we enacted with the customer stakeholders (rhe
reference company’s software practitioners and
project managers). Anyway, based on the expected
use cases and the resulting requirements, a list of

testing features (F) follows, which, in our view,
characterizes a software test framework and is able
to satisfy the needs that the reference organization
expressed. Each of the shown features is augmented
with the F’s: (i) function or capability, (ii)
measurement model applied (in round brackets), (iii)
relative importance or weight, as expressed by the
involved stakeholders [in square brackets] (values
are not shown; see Section 5).
F1 Heterogeneous targets monitoring (N|(Y,

heterogeneous target types) [w1].
F2 Average CPU percentage used during data

acquisition on a target system. CPU and
memory (see F3) occupancies are calculated
under their maximum load, i.e. when all
possible data are required for acquisition, and
the acquisition interval is the one suggested by
the tool producer, respectively (%) [w2].

F3 Memory occupancy on a target system (MB)
[w3].

F4 Persistent data repository and management
(N|Y) [w4].

F5 Tailor the test system to suit special user needs
or purposes (N|Y) [w5].

F6 Un-intrusiveness (Intrusiveness: time for data
acquisition in seconds) [w6].

F7 Distributed targets monitoring. TCP/IP over
Ethernet (N|Y) [w7].

F8 Plug-in architecture (N|Y) [w8].
F9 System CPU (idle and used) percentage

measurement (N|(Y, %)) [w9].
F10 System memory load (free and occupied)

measurement (N|(Y, MB)) [w10].
F11 Process CPU (idle and used) percentage

measurement (N|(Y, %)) [w11].
F12 Process memory load (free and occupied)

measurement (N|(Y, MB)) [w12].
F13 Thread CPU (idle and used) percentage

measurement (N|(Y, %)) [w13].
F14 Thread memory load (free and occupied)

measurement (N|(Y, MB) [w14].
F15 Support multi platform for all the major

operative systems (N | (Y, Checkbox for
LynxOS, Solaris, AIX, Linux, POSIX etc.,
respectively)) [w15].

F16 Allow regression testing (N|Y) [w16]
F17 Utilize software sensors (N|Y) [w17].
Cost (0|*$) [w18].

3 SOFTWARE TEST
FRAMEWORK

Software Test Framework is a complex analysis tool
that deals with capturing resource occupation data of
one or more target systems.

ADVANCES ON TESTING SAFETY-CRITICAL SOFTWARE - Goal-driven Approach, Prototype-tool and Comparative
Evaluation

219

3.1 Architecture

In order to introduce minimal perturbation in the
target system, STFW is developed for performing
flexibly non-intrusive as-accurate-as-possible
measurements. These results are achieved by
employing a distributed architecture, which works
on different computers in such way that only the
measurements operations are performed on the
target system, leaving the most complex elaborations
and activities, such as the graphical plot, to other
computers. Figure 1 shows the architecture of
STFW. STFW is build-up by three macro-units:
• Target: it resides on each target machine and is

responsible of the execution of the
measurements and the optimization of the
sensor. Target is build-up by two sub-units:

 Test Manager (TM): its task is to
opportunely tailor the Sensor.

 Sensor: its task is to acquire information.
• Analysis System: it does not reside on a target

computer but on a different machine. The
Analysis System is responsible of the analysis,
interpretation and visualization, both in real and
in deferred time of data, which the instances of
Sensor send. The Analysis System is build-up
by three sub-units:

 Data Manager: it is responsible for the
interpretation of information sent by
Sensor. The Data Manager also forwards
the Data Plotter.

 Data Plotter: is able to graphically plot
data that Data Manager sends.

 GUI (Graphical User Interface): sends Test
Manager the information to acquire, as
specified by the user.

• Repository: it historicizes test related data. The
Repository does not reside on a target computer
but on a different machine.

The most interesting features and capabilities of
STFW are:
• STFW supports regression test
• STFW supports data repository
• STFW supports threads monitoring
• Sensor is a tailor-made software
• Sensor is not intrusive
• Acquisitions form different targets are

synchronous in the same conversation
(Anderson, 1983).

3.2 Usage

STFW is very easy to use. After the installation

Figure 1: Architecture of STFW.

of the required software on Target, Analysis System,
and Repository, a user is able to start with tests of
any kind and proceed step by step. In the first step,
the user chooses the information needed (concerning
CPU, memory, and so on), the duration of the whole
test, and the sampling interval by means of the
STFW graphical user interface. In the second step,
the user sets the IP addresses of the Target and
Repository sub-systems. Now, the user is allowed to
start the test. After a small time (1 – 20 sec), in
which the Test Manager (TM) configures Sensor to
acquire only the specified information (Sensor loads
only the needed modules), data plotting is started on
the user screen and, in parallel, the repository is
populated.

The user, during the first step, can load and
launch a historicized test: as result, the user is
allowed to compare two different tests in the same
plot, the historicized one, and the other one in
running. Moreover, once a test is finished, the user
can choose graphical or numerical presentation of
results; plots are presented for each acquisition time.

3.3 Regression Test

STFW provides EXnee, which is an integrated and
enhanced version of Xnee. This is a free software
tool, which is able to record and playback all events
used by the X Server. So, each time a user moves
the mouse or digits a button on the keyboard, Xnee
records these events and is then able to reproduce all
the related actions. In this way, Xnee is able to
replicate in the system the effects of all the activities
performed by the user in the same temporal
sequence.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

220

After a session of events is recorded, an STFW
user can reproduce that session every time it is
needed. Let us consider, for instance, a user, who
starts the execution of a (critical) software, and then
begins to interact with it. Of course, if the user
makes decision to change that software, Xnee allows
that user (and all the authorized colleagues) to start
replication of all those interactions. Once that such a
replication has been started, Xnee is able to proceed
autonomously (the physical presence of user is no
more requested) by replicating events of user-system
interactions and identifying differences in behaviors,
if any, due to the injection of software changes since
the last build (regression test).

3.4 Tailoring

Concerning the consumer side, STFW is
configurable to the different operational
environments. In order to allow the (static)
specialization of STFW to the particular operational
environment, some parameters are specified for the
framework (i.e. operating system, process
monitoring, thread monitoring etc.); parameters are
easily handled, due the STFW modular structure.

3.5 Intrusiveness

Intrusiveness represents for a software application
the OS load. It is complementary to, and can be
quantified in terms of, CPU percentage and amount
of memory used by the application software itself in
situation of maximum performance.

STFW is able to guaranty CPU occupancy under
1%, while acquire data with a minimal interval of 1
second. Let us note that major tools suggest
acquiring data on the target system with sampling
period not less than 3 or 10 seconds, respectively.
Such a STFW advantage derives from its tailoring
features (see Section 3.4) and the system
architecture of the Target module.

3.6 Parallelism, Synchronization
and Heterogeneity

Based on the architecture of our tool (see Section
3.1), STFW supports data acquisition in parallel
from different heterogeneous targets. On a target
machine, a test is build-up by a configuration phase
and a subsequent conversation phase for data
acquisition. When all the Sensors have been
configured, they synchronize on the reception of a
start message. Following the reception of this
message, all Sensors start to acquire their data and
finally sending those data to the consumer.

Let us note that, in order to compare consistent
data, starting and completing synchronously
acquisitions from different targets is an essential
requirement. Because the end of a communication
time-window is in the control of the consumer, it is
enough to start (multi-point to point)
communications at the “same” time, as STFW
actually does (notice that latencies - as introduced
both by the TCP/IP over Ethernet, and the OS
scheduler – are negligible in common test
environments, compared to sampling interval).

3.7 Data Repository

The whole information, as each Sensor acquires, is
stored in a relational data base (DB). In order to
keep intrusiveness in control, the DB is installed on
the computer that hosts the Analysis System, or any
other machine but different from the ones where
Sensors are installed.

Storing data in a repository is useful because it
allows reusing previous test cases, analyzing
previous results, and comparing such previous
results with those generated by running test cases.

3.8 Process and Thread Monitoring

STFW is able to acquire information about processes
and threads, as in the followings:
• PID: Process Identifier
• TID: Thread Identifier
• PPID: Parent PID
• S: Status; can be Ready, Running or Waiting
• MO: Memory occupancy; is the sum of the

amount of memory allocated for the stack, the
executable file, and data.

• CPUO: CPU occupancy; is the percentage of
CPU used.

TID does not apply to processes. In case of
threads, MO evaluates the stack size (a thread shares
text and data with its parent process).

4 CASE STUDY

Let us present results from a case study, where we
compared in real-time the behaviors of two
applications running on two Single Board Computer
(SBC). Monitored attributes were the system’s target
CPU occupancy, and the full information associated
to the execution of two processes, Ubench 2.0 and
Sensor, respectively. The Ubench job consists in
computing senseless mathematical operations for 3
minutes, and then, in the successive 3 minutes,
performing senseless memory allocation and de-

ADVANCES ON TESTING SAFETY-CRITICAL SOFTWARE - Goal-driven Approach, Prototype-tool and Comparative
Evaluation

221

allocations (Ubench, 2006). The job of Sensor
consists in auto-monitoring activities.

We conducted the case study in the reference
company’s industrial environment, built-up by three
calculus nodes, as in the followings: (1) Thales –
Vmpc6a Single Board Computer (SBC) with Lynx
OS, (2) Concurrent - Intel SBC with Linux Red Hat
Enterprise, and (3) x86 PC with Windows XP.
Those nodes are one to each other connected
through an Ethernet LAN.

Each SBC was arranged to perform in the role of
target system, and had its own Test Manager and
Sensor installed. The Windows PC was arranged to
perform in the role of consumer, and hosted the
graphical console. Hence, we proceeded with the
case study by starting Test Managers (i.e. writing
“./testman” on the bash consoles) and the GUI (i.e.
double clicking the exe file in the PC window).
Following the start of the GUI, we passed to
configure the targets by entering “CPU”, “Ubench”
and “Sensor” and then pressing the OK button.
When the Sensors were compiled, installed and
ready to send data, we pressed the START button
and then two plotting windows appeared on the PC
screen, which showed the required information only.

Figure 2 shows an instance of process-
monitoring windows in STFW.

5 COMPARATIVE ANALYSIS

In Table 1 we compare STFW with three major
professional tools (Di Biagio, 2006a), (Di Biagio,
2006a).

Table 1 shows the limits of commercial
measuring tool with respect to STFW.

In fact, for all the attributes of the evaluation
model less the memory occupancy on a target (F3),
STFW shows the same or better values than the
other tools.

Consequentlu, in order to compare those
technologies, we do not need to weight those
attributes and develop a synthetic indicator: the
advantage of STFW would persist to any practical
set of weights chosen.

Anyway, the reader should notice that STFW is
just a prototype (but in its second internal release).

While Table 1 is auto-explicative in terms of
comparative analysis, let us use this opportunity to
present some further considerations.

In our view, the measuring tools available are
“heavy” both for data-producers and data-
consumers. They admit the worst configuration only,
so that they acquire all possible data.

Figure 2: Process-monitoring windows in STFW.

Table 1: Characterization of T12, T2 and T3 monitoring
tools (N≡0|Y≡1; Li ≡ Linux 2.6; Ly ≡ Lynx; S ≡ Solaris).

F m T1 T2 T3 STFW
F1 0..1 0 0 0 1
F2 % 3 60 3 1
F3 MB 1 0 0,5 <2
F4 0..1 0 0 0 1
F5 0..1 0 0 0 1
F6 (sec.) 3 10 1 1
F7 0..1 0 1 0 1
F8 0..1 0 0 0 1
F9 0..1 1 1 1 1
F10 0..1 1 1 1 1
F11 0..1 1 0 0 1
F12 0..1 1 0 0 1
F13 0..1 0 0 0 1
F14 0..1 0 0 0 1

F15 OS
list

Li, Ly,
S, AIX Li S Li, Ly,

S, AIX
F16 0..1 0 0 0 1
F17 0..1 0 0 0 1
Cost 0..*$ 0 $$$ 0 0

Consequently, the installation of all their data-

acquisition modules is permanently requested. As a
result, consumers receive data that they never
requested. As a further result, the intrusiveness is
unnecessary high; in fact, it is proportional to the
amount of data acquired. Instead, STFW is a
framework, fully tailor-made: tailoring introduces
improvements both on the producer side
(unnecessary modules are not loaded), and the
consumer side (only explicitly requested data is
processed and represented to the consumer).

With respect to other monitoring technology, two
turning points make STFW a new concept tool.
Concerning the target machine, STFW reduces the
occupancy of the system resources in term of
memory and CPU percentage occupied, because
only user-required data is acquired (no overload of
the system resources), and memory allocation is

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

222

minimal (only the requested modules are loaded,
which correspond to the requested data). Concerning
the consumer side, this is allowed to choose a-priori
the data to acquire, so not having to discriminate a
posteriori among all the received information for the
interesting data.

6 CONCLUSION AND FUTURE
WORK

We have presented the philosophy, architecture and
features of a new tool, STFW, for testing time-
behavior of safety-critical systems, and briefly
compared that tool with major system performance
measurement tools, as available from the market, to
the best of our knowledge. STFW resulted to be
much more supportive than other tools for our
reference professional engineers. The most
important features, which make STFW really a
competitive tool, are: (i) Tailor-made non-intrusive
data sensing; (ii) Synchronous conversations for
acquiring state information from distributed targets;
(iii) Repository of test cases for reuse, and their
results for comparative analysis; (iv) Thread
monitoring, (v) Ability to perform regression test.

Thanks to STFW, each product can be validate
and verified in real-time by monitoring and
comparing results from different tests, and
reproducing complete scenarios build-up by
different machines. Next step will be to extend
STFW to VxWorksTM (VxWorks, 2006), the
worldwide known OS for real-time system, and the
most utilized for the control of automata.

REFERENCES

Anderson T. and Knight J.C., A Framework for Software
Fault Tolerance in Real-Time Systems, IEEE Trans.
Soft. Eng., Vol. SE-9, no.3, pp.355- 364, 1983.

Basili, V. R., Caldiera, G., and Rombach, H. D., The Goal
Question Metric Approach, Encyclopedia of Software
Engineering, Wiley&Sons Inc., 1994.

Di Biagio C., Pennella G., and Cantone G., Comparing
Tools for Testing Critical Software. The Case Study of
“Software Framework 2.0”, TR 20060426.1, MBDA
Italy, 2006.

Di Biagio C., Pennella G., Lomartire A., and Cantone G.,
An Introduction to Characterization of Monitors for
Testing Safety-Critical Software, Procs. of ICSOFT 06
(these Proceedings), Setubal, 2006.

Cantone, G., and Donzelli P., Production and
Maintenance of Goal-oriented Measurement Models,
International Journal of Software Engineering &

Knowledge Engineering, World Scientific Publishing
Company, Vol. 10, No. 5, pp. 605-626, 2000.

EPRI, Handbook for verification and validation of digital
systems, Vol.1: Summary, EPRI TR103291, Vol.1,
1994.

IEEE, IEEE/EIA 12207.0-1996 Industry Implementation
of International Standard ISO/IEC 12207: 1995
(ISO/IEC 12207) Standard for Information
Technology Software Life Cycle Processes, in
IEEE/EIA 12207.0-1996, 1998, pp. i-75.

Leveson. N. G., Software safety: Why, what, and how.
Computing Surveys,18(2):125-163, June 1986.

Isaksen U., Bowen J. P., and Nissanke N., System and
Software Safety in Critical Systems, December 1996.

Lilja D. J., Measuring Computer Performance, Ed.
Cambridge University Press, 2000.

QUEST SPOTLIGHT™ http://wm.quest.com/library/
docs/spotlightwindows/SpotlightWindows.pdf (last
access, March 2006).

Simser D. and R.E. Seviora, Supervision of Real-Time
Systems Using Optimistic Path Prediction and
Rollbacks, Procs. Int’l Symp. Software Reliability
Eng. (ISSRE), pp. 340–349, Oct. 1996.

SOLARIS PERFORMANCE METER™ 2.0.0
http://docsun.cites.uiuc.edu/sun_docs/C/solaris_9/SUNWa

be/CDEUG/p125.html (last access, March 2006).
TOP™ - William LeFebvre’s

http://www.uwsg.iu.edu/UAU/system/top.html (last
access, March 2006).

Tsai J.J., Yang S.J., Monitoring and Debugging of
Distributed Real-Time Systems, J.J. Tsai and S.J.
Yang, eds., IEEE CS Press, 1995.

Ubench 2.0™ ,
http://www.phystec.com/download/ubench.html (last
access, March 2006).

Weyuker E.J., On Testing Non-Testable Programs, The
Computer J., vol. 25, no. 4, pp. 465–470, 1982.

VxWorks, http://www.windriver.com (last access, April
2006).

ADVANCES ON TESTING SAFETY-CRITICAL SOFTWARE - Goal-driven Approach, Prototype-tool and Comparative
Evaluation

223

