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Abstract: In this paper, we propose an original use of approximate reasoning not only as a mode of inference but also 
as a means to refine a learning process. This work is done within the framework of the supervised learning 
method SUCRAGE which is based on automatic generation of classification rules. Production rules whose 
conclusions are accompanied by belief degrees, are obtained by supervised learning from a training set. 
These rules are then exploited by a basic inference engine: it fires only the rules with which the new 
observation to classify matches exactly. To introduce more flexibility, this engine was extended to an 
approximate inference which allows to fire rules not too far from the new observation. In this paper, we 
propose to use approximate reasoning to generate new rules with widened premises: thus imprecision of the 
observations are taken into account and problems due to the discretization of continuous attributes are 
eased. The objective is then to exploit the new base of rules by a basic inference engine, easier to interpret. 
The proposed method was implemented and experimental tests were carried out. 

1 INTRODUCTION 

Facing the increase of data amount recorded daily, 
the detection of both structures and specific links 
between them, the organisation and the search of 
exploitable knowledge have become a strategic 
stake for decision making and prediction task. This 
complex problem of data mining has multiple 
aspects (Michalski et al., 1983) (Zhou, 2003). We 
focus on one of them: supervised learning. In 
(Borgi, 1999) (Borgi et al. 2001), we have proposed 
a learning method from examples situated at the 
junction of statistical methods and those based on 
Artificial Intelligence techniques. Our method, 
SUCRAGE (SUpervised Classification by Rules 
Automatic GEneration) is based on automatic 
generation of classification rules. Production rules 
IF premise THEN conclusion are a mode of 
knowledge representation widely used in learning 
systems because they ensure the transparency and 
the easy explanation of the classifier (Duch et al., 
2004) (Haton et al., 1991). Indeed, the construction 
of production rules using the knowledge and the 

know-how of an expert is a very difficult task. The 
complexity and cost of such a knowledge acquisition 
have led to an important development of learning 
methods used for an automatic knowledge 
extraction, and in particular for rules extraction 
(Haton et al. 1991) (Duch et al., 2004). 

The learning method SUCRAGE is based on a 
correlation search among the features of the 
examples and on discretization of continuous 
attributes. Rules conclusions are of the form 
«belonging to a class » and are uncertain. In the 
classification phase, an inference engine exploits the 
base of rules to classify new observations and also 
manages rules uncertainty. This reasoning that we 
called basic reasoning allows to obtain conclusions, 
when the observed facts match exactly rules 
premises. 

In this paper, we are interested in an other 
reasoning: approximate reasoning (Zadeh, 1979) 
(Haton et al. 1991) (El-Sayed, et al., 2003). It allows 
to introduce more flexibility and to overcome 
problems due to discretization. Such reasoning is 
closer to human reasoning than the basic one: 
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human inferences do not always require a perfect 
correspondence between facts or causes to conclude. 

In (Borgi et al., 2001), we have proposed a 
context-oriented approximate reasoning. This 
reasoning, used as an inference mode, allows to 
manage imprecise knowledge as well as rules 
uncertainty: according to distance between 
observations and premises, it computes a 
neighborhood degree and associates a final 
confidence degree to rules conclusions. This model 
is faithful to the classical scheme of Generalized 
Modus Ponens (Zadeh, 1979). In this paper, we 
propose to see approximate reasoning under another 
angle. The originality of our approach lies in the use 
of approximate reasoning, not only as a mode of 
inference, but to refine the learning. This reasoning 
allows to generate new rules and to ease in this way 
problems due to discretization and imprecision of 
the observations. The aim is that the new base of 
rules will then be exploited by a basic inference 
engine more easy to interpret. In our model, 
approximate reasoning has then no more vocation to 
be a method of inference allowing to fire certain 
rules but joins in the process of learning itself. The 
software SUCRAGE was extended: new rules 
construction through approximate reasoning was 
implemented. Applications of the extended version 
to benchmark problems are reported. 

This paper is organized as follows. In section 2, 
the method SUCRAGE is described. More precisely 
we describe the learning phase (rules generation) 
and the classification phase. Only the basic 
inference engine is presented. In section 3, we 
present the approximate reasoning used as an 
inference mode. Section 4 attempts to explain the 
use of approximate reasoning to generate new 
classification rules and its contribution to the 
process of learning. Tests and results obtained by 
computer simulations with two benchmarks are 
provided in section 5. Finally, section 6 concludes 
the study. 

2 THE SUPERVISED LEARNING 
METHOD SUCRAGE 

2.1 Rules Generation 

In this section, we describe the learning phase of the 
supervised learning method SUCRAGE. The 
training set contains examples described by 
numerical features denoted X1, ..., Xi, ..., Xp. These 
examples are labelled by the class to which they 

belong. The classes are denoted y ,y ,...,y1 2 C. The 
generated rules are of the type: 

A1 and A2 and ... and Ak ⎯⎯→ y, α 
where  

Ai: condition of the form Xj is in [a,b], 
Xj: the jth vector component representing an 
observation, 
[a,b]: interval issued from the discretization of 
the features variation domain (here, it is the 
variation domain of the feature Xj), 
y: a hypothesis about membership in a class, 
α: a belief degree representing the uncertainty of 
the conclusion. 
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Figure 1: A partition of the correlated features space. 

Our approach is multi-featured as the features 
that appear in rules premises are selected in one 
piece. This selection is realized by linear correlation 
search among the training set elements (Borgi, 
1999) (Borgi et al., 2001). So the first step consists 
in computing the correlation matrix between the 
components of the training set vectors. Then to 
decide which components are correlated, this matrix 
is thresholded (with a threshold denoted θ). The idea 
is to detect privileged correlations between the 
features and to generate the rules according to these 
correlations. According to Vernazza’s approach, we 
decide to group in the same premises all components 
that are correlated (Vernazza, 1993). 

Next step in building the rules is feature 
discretization. Among the non supervised methods 
of discretization, the simplest one leads to M sub-
ranges of equal width. This method called the 
regular discretization is the one we retain for this 
study. The M obtained sub-ranges are denoted rg_0, 
rg_1, ..., rg_(M-1), these values are totally ordered. 

Once the discretization done, condition parts of 
rules are then obtained by considering for each 
correlated components subset, a sub-interval (rg_i) 
for each component in all possible combinations. 
Indeed the premises of the rules form a partition of 
the correlated components space. Figure 1 illustrates 
such a partition in the case of two correlated features 
(X4 and X5) and with a subdivision size M=4.  
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Each premise that we construct leads to the 
generation of C rules (C: number of classes). The 
rules conclusions are of the form « belonging to a 
class » and are not absolutely certain, that’s why 
each conclusion is accompanied by a belief degree 
α. In this paper, we propose to represent the belief 
degrees by a classical probability estimated on the 
training set (Pearl 90) (Borgi et al. 01) (Borgi, 99). 

2.2 Basic Inference Engine 

The rules were generated for the purpose of a further 
classification use. In classification phase, the base of 
rules is exploited to classify new objects that don’t 
belong to the training set. To achieve this goal, our 
approach consists in using a 0+ order inference 
engine. The inputs of this engine are the base of 
rules previously built and a vector representing the 
object to classify. The inference engine associates 
then a class to this vector.  

We propose two reasoning models. The first one, 
called basic reasoning is presented in this section. 
The second one, the approximate reasoning, will be 
detailed in section 3. The basic reasoning allows the 
inference engine to fire only the rules with which 
the new observation components match exactly. The 
engine classifies each new observation using the 
classical deduction reasoning. It has to manage the 
rules’ uncertainty and take it into account within the 
inference dynamic. Uncertainty management is done 
by computations on the belief degrees of the fired 
rules. Once the rules fired, we have to compute a 
final belief degree associated with each class. For 
this we propose to use a triangular co-norm (Gupta 
et al., 91): the final belief degree associated to each 
class is the result of this co-norm applied on the 
probabilities of the fired rules that conclude to this 
considered class. Experimental tests presented in 
this paper were realized with the Zadeh co-norm 
(max). Finally the winner class associated with the 
new observation is the class for which the final 
belief degree is maximum. 

3 APPROXIMATE REASONING  

Approximate reasoning, in a general way, makes 
reference to any reasoning which treats imperfect 
knowledge. This imperfection has multiple facets: 
for instance the knowledge can be vague, imprecise, 
or uncertain. In spite of such imperfections, 
approximate reasoning allows to treat this 
knowledge and to end in conclusions. In (Haton et 

al. 1991), approximate reasoning concerns as well 
the imprecision and uncertainty representation as 
their treatment and propagation in a knowledge 
based system. The term approximate reasoning has 
however a particular meaning of a word introduced 
by Zadeh in the field of Fuzzy Logic (Zadeh 1979) 
(Yager, 2000). In this frame, approximate reasoning 
corresponds to Generalized Modus Ponens who is 
an extension of Modus Ponens in fuzzy data. This 
definition of approximate reasoning is not 
contradictory to the first one which is more general 
and concerns all the forms of imperfections. 

The approximate reasoning which we introduce 
is situated in the intersection of these two 
approaches. We are however more close to 
"fuzziers” as far as we remain faithful to the 
Generalized Modus Ponens (Zadeh 1979), but we 
adapt it to a symbolic frame (Borgi 1999) (Borgi et 
al. 01) (El-Sayed et al., 2003). We propose a model 
of Approximate Reasoning which allows to 
associate a final degree of confidence to the 
conclusions (classes) on the basis of an imprecise 
correspondance between rules and observations. 
This reasoning does not fire only the rules the 
premises of which are exactly verified by the new 
observation, but also those who are not too much 
taken away from this observation. Thus, we are in 
the situation described in figure 2. 
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Figure 2: Particular case of Generalized Modus Ponens. 

The consideration of observations close to rules 
premises allows to overflow around these premises. 
More exactly, it allows to extend beyond around the 
intervals stemming from the discretization and to 
ease so the problems of borders due to any 
discretization. So that our approximate reasoning 
can become operational, it is necessary to formalize 
first of all the notion of neighborhood. Then, it is 
necessary to model the approximate inference, that 
is to determine the degree of the final conclusion 
(α’) of the diagram shown on figure 2. 
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3.1 Proximity between Observation 
and Premise 

In works about approximate reasoning, Zadeh 
(Zadeh, 1979) stresses the necessary introduction of 
a distance in order to define neighbouring facts. In 
(Ruspini, 1991), a similarity degree between two 
objects is introduced. In our case, to define the 
notion of neighbourhood we have defined two types 
of measure or distance (Borgi, 1999) (Borgi et al., 
2001). A distance that we call local distance will 
measure the proximity of an observation element to 
a premise element. These distances will then be 
aggregated to obtain a global distance between the 
observation and the whole premise. 

3.1.1 A Local Distance 

We consider, by concern of clearness, the following 
rule: 

X1 in rg_r1 and X2 in rg_r2 and... Xn in rg_rn → 
yt,α 

which groups together in its premise the attributes 
X1, X2, ...,Xn. This rule does not lose in generality: it 
can be obtained by renaming the attributes. 

We note V=(v1,v2,...,vn) the elements of the 
observation concerned by the premise. To compare 
V with the following premise: X1 is in rg_r1 and X2 
is in rg_r2 and ... and Xn is in rg_rn, we begin by 
making local comparisons between v1 and X1 is in 
rg_r1, between v2 and X2 is in rg_r2 ... So we have 
to define the local distances d1, d2, ..., dn of the 
following schema: 
A1 and A2 and ... and An →B with a belief degree α 
A’1 d1-distant of A1
A’2 d2-distant of A2
... 
A’n dn-distant of An

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
                B with a belief degree α’ 

More precisely it comes to determine the 
following distances di: v1 is d1-distant from rg_r1, 
…, vn is dn-distant from rg_rn where the distance is 
the formal translation of the neighboring concept. 
Rule premise (Ai) associates discrete values (rg_0, 
rg_1, ...,rg_(M-1)) to observation components. But 
observations (A’i or vi) have numerical values. In 
order to compare them, we introduce a numerical-
symbolic interface (Borgi 99). We split each interval 
rg_k into M sub-intervals of equal range, denoted 
σ0, σ1, .... We thus have a finer discretization, and 
we obtain M*M sub-intervals (σ0, σ1 ..., σM*M-1.). 
Figure 3 illustrates such sub-intervals obtained with 

M=3. 
We can associate to each numerical value vi the 

sub-interval σt to which it belongs. The distance di 
between vi and rg_ri is then defined as the number 
of sub-intervals of type σ separating σt from rg_ri. 
Of course, di is 0 if vi is in rg_ri. Thus, we obtain the 
distance vector D=(d1,d2,…,dn) associated to every 
pair (observation, premise) or (observation, rule). 

3.1.2 A Global Distance  

In order to make approximate inferences, we want to 
aggregate the different local distances di. The result 
of this aggregation is a global distance that we note 
g-distance, and on which we wish to confer some 
properties (Borgi, 1999). One property that we 
impose to that distance is to be very sensitive to little 
variations of neighboring facts. This global distance 
that measures distance between approximately equal 
vectors can be insensitive when facts are very far 
from each other. This g-distance has to either 
measure the proximity between two nearby facts, or 
indicate by a maximal value, that they are not 
nearby. This is a proximity measure, and not a real 
distance. This distance is represented by an integer 
in [0, M-1]. In order to take into account the value 
dispersion, we do not use tools like min-max 
functions but we propose an aggregation based on a 
“dispersion” function SD:  

SD: [0..M-1] ⎯⎯→ IN 

  k     ⎯⎯→ SD(k) =  ∑
=

−
n

i
kd

1

2
)i(

SD(k) allows, in a way similar to the variance, to 
measure the dispersal of the local distances di 
around k. We have then defined a global distance g-
dist as follows: 
g-dist: [0..M×(M-1)]n ⎯⎯→ [0..M-1] 

           (d1,d2, ...,dn)   ⎯⎯→  ))]k(min(max[
1

0
1 SS D

M

k
D

−

=

−

The global distance is presented with more 
details in (Borgi 1999) and (Borgi et al. 2001). We 
have notably proved that the proposed aggregated 
distance satisfies the above mentioned property. 

We can notice that it is possible to have g-
distance equal to 0, even if the distance vector is not 
null. In other words, it is possible to have a global 
distance equal to 0 for an observation that does not 
satisfy the considered rule. 
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3.2 Approximate Inference 

The use of approximate inference supposes that a 
meta-knowledge exists in the system and allows it to 
run. In our case the meta-knowledge gives the 
possibility to bind imprecision (observation and 
premise of rule) to uncertainty (conclusion degree). 
This meta-knowledge has two complementary 
aspects: the first hypothesis says that a weak 
difference between observation and premise induces 
that the conclusion part is not significantly modified. 
For every rule, a stability area exists around the 
premise of the rule. The second and stronger 
hypothesis says that if the distance between 
observation and premise increases, then uncertainty 
of the conclusion increases too. A maximal distance 
must give a maximal uncertainty (in our case, it 
corresponds to the minimal belief degree, i.e. a 
probability equal to zero) (Borgi, 1999). 

The conclusion degree is weakened in 
accordance with the global distance. In our model, 
belief degrees (α) associated with rules are 
numerical, so it is hoped to conserve a numerical 
final degree (α’) for the whole coherence. To 
compute the final belief degree α’of a conclusion 
via the approximate reasoning, given the global 
distance d (symbolic) between the premises and the 
observation and α the belief degree (numerical) of 
the conclusion of the fired rule, we propose the 
following function F : 

F : [0,1] × [0..M-1] ⎯⎯→ [0,1] 

               (α,d) ⎯⎯→ )
1

1.(
−

−
M

dα  

This formula includes the two aspects of the 
meta-knowledge hypothesis mentioned above. It is 
easy to observe that little imprecisions (in cases 
where d=0) do not modify uncertainty. On the other 
hand, a maximal distance (d=M-1) induces a 
complete uncertainty (α’=0). We note that we find 
back the basic reasoning in the limit case d=0. 

4 APPROXIMATE REASONING 
TO LEARN NEW RULES 

In this part, we present the use of approximate 
reasoning not as a mode of inference to exploit rules 
in classification phase, but as a means to refine the 
learning. The use of approximate reasoning during 
the learning phase consists in generating new rules 
the premises of which are widened. The method 
consists in generating rules by using the basic 
approach described in section 2 then to look 

"around" the rules to verify if we cannot improve 
them or add better rules. The objective is then to 
exploit this base of rules thanks to a basic inference 
engine by hoping to obtain results close to a basic 
generation of rules exploited by an approximate 
engine. 

For reasons of legibility and simplicity, we shall 
call the rules generation realized by SUCRAGE in 
its initial version the basic generation. The 
generation of rules completed by the construction of 
new rules via approximate reasoning will be called 
approximate generation. 

4.1 Method with a Constant 
Number of Rules 

This approach can be summarized by: "from an 
observation situated near the rules which we 
generated with the basic method of SUCRAGE, we 
verify if we cannot widen every rule to a rule of 
better quality". This is made always by using the 
same whole learning set. 

To consider that an observation O is near a rule 
R, we have to define a g-threshold, it is the maximal 
value authorized by g-distance(O, R). 

For every observation O near a rule R (the 
mother rule) and having the same conclusion (class) 
as the rule R, we are going to build a new rule (the 
daughter rule Rdaughter): 

- the premise of Rdaughter is that containing 
Premise(R) and O the most restrictive possible and 
convex by using the ranges (rg_ri) and the sub-
intervals of type σ, 

- the class of the conclusion do not change, 
- the belief degree of Rdaughter is recomputed on 

the whole training set according to the new premise. 
This new assessment of the belief degree of the 
daughter rule built through approximate reasoning 
allows integrating this reasoning into the learning 
process. 

The sentence "Premise containing Premise(R) 
and O the most restrictive possible and convex by 
using the ranges (rg_ri) and the sub-intervals of type 
σ" means that to create the new premise, we start 
from the ancient premise and we add to all the 
conditions that O does not verify the intervals of 
type σ which would allow O to verify it. Rdaughter 
contains in its premise the same attributes as the 
mother rule R but with wider values. For instance, as 
shown in figure 3, in the case of a discretization 
with M=3, if the given value Oi ∈σ4 and the 
condition is Xi is in rg_0 then the new condition will 
be Xi is in rg_0 ∪ σ3 ∪ σ4 (by supposing naturally 
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that the condition of threshold on the global distance 
is verified).  

 
 
 
 
 

Figure 3: An example of construction of a new rule 
condition. 

In the construction procedure of a new rule 
which we presented, a couple (observation, rule) 
verifying certain properties gives birth to a new rule. 
Among the mother rule and all the daughter rules we 
can generate, only the one who has the strongest 
belief degree is kept. Thus the initial number of 
rules does not change. 

4.2 Method with Addition of Rules 

We try here to widen the method of generation of a 
new base of rules so that the best rule is not the only 
one kept in the base. For that purpose, we use the 
"raw force" and we add in the base of rules all the 
rules that we can generate from each: a rule can then 
lead to several new rules and either as previously to 
a unique rule (that of stronger degree). This method 
allows to create a wide base close to data but this 
base, because of its size, becomes illegible as for 
interpretation by an expert. It becomes then 
necessary to optimize the size of the base of rules 
(Duch et al., 2004) (Nozaki et al. 1994). 

5 TESTS AND RESULTS 

The system SUCRAGE that we initially developed 
allows the generation of rules by the method 
presented in section 2.1 as well as their exploitation 
by an inference engine. This engine uses a basic 
reasoning or approximate one (Borgi, 1999) (Borgi 
et al., 2001). We completed this system by a module 
of rules generation via the approximate reasoning. 
We tested this new application on two learning 
bases stemming from the server of Irvine's 
University: those bases are Iris data and Wine data.

To compare the different results, we used the 
same test methods with the same parameters values 
for the classification system (size of subdivision M, 
correlation threshold θ). We used a ten order cross-
validation (Kohavi, 1995). The obtained results are 
presented and analyzed in this part. 

5.1 Results of the Method with a 
Constant Number of Rules 
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of new rules construction via the approximate 
reasoning according to the approach with a constant 
number of rules. The first tests were made with g-
threshold=0 or g-threshold=1 which seem the only 
reasonable values. Values superior to 2 would throw 
a search which we could not consider as near the 
rule. The analysis of the results and the emission of 
hypotheses to explain them can be made by 
examining the shape of the generated rules. We 
distinguish two cases in function of g-threshold (0 
or 1). 

The case g-threshold=0 gives results (rates of 
good classification) almost identical to the basic 
generation (followed by an exact inference), so they 
are almost identical to results presented in column 
"Basic Generator, Basic Inference" of table 1. On 
the tested data, there are only very few changes 
between rules generated basically and 
approximately. This is mainly due to the following 
report: it is impossible, for a premise containing a 
number strictly lower than 3 attributes to have g-
dist=0. All the rules containing 2 attributes in their 
premise can not be improved. 

Let us focus now on the case g-threshold=1. 
Table 1 presents the rates of good classifications 
obtained with each of the three possible approaches: 
- column « Approx. Gen.-1, Basic Inference »: rules 
were generated by SUCRAGE then new rules were 
built via approximate reasoning, with a value of g-
threshold=1. The base of rules is then exploited by a 
basic inference engine. 
- column « Basic Gen., Basic Inference »: rules were 
generated by SUCRAGE in its initial version. The 
rules base is then exploited by a basic inference 
engine. 
- column « Basic Gen., Approx. Inference »: rules 
were generated by SUCRAGE in its initial version. 
The base of rules is then exploited by an 
approximate inference engine. It is the results of this 
method that we hope to approach (even improve) by 
using approximate reasoning to build new rules. 

With Iris data, we can see that the results of the 
approximate generation are close to those obtained 
with the approximate inference. Moreover, these 
results are very similar to those obtained with the 
basic generator followed by basic reasoning. Thus, it 
is not very interesting in view of the supplementary 
computations needed. 
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With the WINE data, the results are very 
interesting: approximate generation of rules allows 
improving the case of a basic generation followed 
by an approximate inference (a single case of 
identical results). There is also improvement with 
regard to a basic generation followed by a basic 
inference. 

Table 1: Method with a constant number of rules. 

Method 
 
 
Parameter 

Approx. 
Gen-1, 
Basic 
Inference  

Basic 
Gen., 
Basic 
Inference 

Basic 
Gen., 
Approx. 
Inference  

IRIS data 

M=3 
θ=0.9 

98.00 97.33 97.33 

M=3 
θ=0.8 

96.67 95.33 96.67 

M=5 
θ=0.9 

93.33 94.00 94.00 

M=5 
θ=0.8 

90.67 90.67 93.33 

WINE data 
M=3 
θ=0.9 

88.75 88.75 88.75 

M=3 
θ=0.8 

88.20 87.09 87.64 

M=5 
θ=0.9 

92.68 90.92 91.50 

M=5 
θ=0.8 

93.27 92.05 92.05 

For g-threshold=1, the observation "around" the 
rules is not insufficient any more here (case g-
threshold=0) but can be too much: we sometimes 
witness the creation of double rules. The observation 
near a rule can go up to another basic rule which 
was already generated, it is then the strongest which 
is going to win. We can have here a loss of 
information. The algorithm tends then to create an 
absorption of weak rules by strong rules rather than 
an extension of the strong rules. 

5.2 Results of the Method with 
Addition of Rules 

Table 2 presents the results obtained with the second 
method of new rules generation via the approximate 
reasoning: this time every new generated rule is 
added to the initial base of rules. The column 
 "Approx. Gen. Add., Basic Inference" of this table 
contains the results obtained with this approach, the 

title of the last two columns is unchanged in 
comparison with table 1. In addition, every cell 
contains the rate of good classifications followed by 
the number of rules between brackets (for this 
method the number of rules takes importance). 

Table 2: Method with addition of rules. 

Method 
 
 
Parameter 

Approx. 
Gen. Add., 
Basic 
Inference  

Basic 
Gen., 
Basic 
Inference 

Basic 
Gen., 
Approx. 
Inference 

IRIS data 

M=3 
θ=0.9 

97.33  
(61.4) 

97.33 
(23.5) 

97.33 
(23,5) 

M=3 
θ=0.8 

96.67 
(123.6) 

95.33 
(21.5) 

96.67  
(21.5) 

M=5 
θ=0.9 

95.33 
(119.1) 

94.00 
(37.7) 

94.00  
(37.7) 

M=5 
θ=0.8 

94.67 
(303.9) 

90.67 
(39.7) 

93.33  
(39.7) 

WINE data 

M=3 
θ=0.9 

90.45 
(245.2) 

88.75 
(96.7) 

88.75  
(96.7) 

M=3 
θ=0.8 

89.93 
(214) 

87.09 
(97.9) 

87.64 
(97.9) 

M=5 
θ=0.9 

89.35 
(388.2) 

90.92 
(152.4) 

91.50  
(152.4) 

M=5 
θ=0.8 

91.57 
(343.8) 

92.05 
(152.2) 

92.05 
(152.2) 

The analysis of these results shows that they are 
very correct at the level of good classifications rate: 
with the approximate generator with addition the 
rates of good classifications are generally improved 
or maintained in comparison with the basic 
generator followed by a basic inference as well as 
the basic generator followed by an approximate 
inference. With the WINE data, two cases of light 
depreciation are to be noted. 

On the other hand, the number of generated rules 
increases very widely. Moreover, it is evident that 
we generate many useless rules, even harmful rules 
entailing a decline of the results. A work to reduce 
the number of rules becomes here indispensable as 
well to eliminate the harmful rules that for reasons 
of legibility of the base of rules (Nozaki et al. 1994) 
(Duch et al., 2004). A work was realized in this 
sense: we used Genetic Algorithms to reduce the 
size of the base of rules without losing too much 
performance. This approach tested in the case of 
basic generation of rules led to very interesting 
experimental results (Borgi, 2005). 
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6 CONCLUSION 

The supervised learning method SUCRAGE allows 
to generate classification rules then to exploit them 
by an inference engine which implements a basic 
reasoning or an approximate reasoning. The 
originality of our approach lies in the use of 
approximate reasoning to refine the learning: this 
reasoning is not only considered any more as a 
second running mode of the inference engine but is 
considered as a continuation of the learning phase. 
Approximate reasoning allows to generate new 
wider and more general rules. Thus imprecision of 
the observations are taken into account and 
problems due to the discretization of continuous 
attributes are eased. This process of learning 
refinement allows to adapt and to improve the 
discretization. The initial discretization is regular, it 
is not supervised. It becomes, via the approximate 
reasoning, supervised, as far as the observations are 
taken into account to estimate their adequacy to 
rules and as far as the belief degrees of these new 
rules are then computed on the whole training set. 
Moreover the interest of this approximate generation 
is that the new base of rules is then exploited by a 
basic inference engine, easier to interpret. Thus 
approximate reasoning complexity is moved from 
the classification phase (a step that has to be 
repeated) to the learning phase (a step which is done 
once). The realized tests lead to satisfactory results 
as far as they are close to those obtained with a basic 
generation of rules exploited by an approximate 
inference engine. 

The continuation of the work will focus on the 
first method of new rules generation (with constant 
number of rules) to make it closer to what takes 
place during approximate inference. The search for 
other forms of g-distance can turn out useful notably 
to be able to obtain results of generation between the 
g-threshold value 0 (where we remain too close to 
the observation) and the g-threshold value 1 (where 
we go away too many "surroundings" of the 
observation). The second method, which enriches 
the base of rules with all the new rules, is penalized 
by the final size of the obtained base. An interesting 
perspective is to bend over the manners to reduce 
the number of rules without losing too much 
classification performance.  
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