
BRIDGING BETWEEN MIDDLEWARE SYSTEMS:
OPTIMISATIONS USING DOWNLOADABLE CODE

Jan Newmarch
Faculty of Information Technology, Monash University

Melbourne, Australia

Keywords: Middleware, UPnP, Jini, Service oriented architecture, downloadable code, proxies.

Abstract: There are multiple middleware systems and no single system is likely to become predominant. There is there-
fore an interoperability requirement between clients and services belonging to different middleware systems.
Typically this is done by a bridge between invocation and discovery protocols. In this paper we introduce three
design patterns based on a bridging service cache manager and dynamic proxies. This is illustrated by exam-
ples including a new custom lookup service which allows Jini clients to discover and invoke UPnP services.
There is a detailed discussion of the pros and cons of each pattern.

1 INTRODUCTION

There are many middleware systems which often
overlap in application domains. For example, UPnP
is designed for devices in zero-configuration environ-
ments such as homes (UPnP Consortium, 2006), Jini
is designed for adhoc environments with the capabil-
ity of handling short as well as long-lived services
(Waldo, 2005) while Web Services are designed for
long running services across the Web (WWW Con-
sortium, 2002). There are many other middleware
systems such as CORBA, Salutation, HAVi etc each
with their own preferred application space, and these
different application spaces will generally overlap to
some extent1.

It is unlikely that any single middleware will be-
come predominant, so that the situation will arise
where multiple services and clients exist but belong-
ing to different middleware systems. To avoid mid-
dleware “silos”, it is important to examine ways in
which clients using one middleware framework can
communicate with services using another.

This issue is not new: the standard approach is to
build a “bridge” which is a two-sided component that
uses one middleware on one side and another middle-
ware on the other. Examples include Jini to CORBA

1The middleware systems we are interested in involve
discovery of services, rather than just transport-level mid-
dleware such as HTTP connecting web browsers and HTTP
servers

(Newmarch, 2001), Jini to UPnP (Allard et al., 2003),
SLP to UPnP, etc. These essentially replace an end-
to-end communication between client and service by
an end-to-middle-to-end communication, where the
middle (the bridge) performs translation from one
protocol to the other.

Newmarch (Newmarch, 2005) has investigated
how a Jini lookup service can be embedded into a
UPnP device to provide an alternative to the bridg-
ing architecture. However, in practical terms this is
an invasive mechanism which requires changes to the
UPnP device and cannot be easily retro-fitted into de-
vices.

Jini (Arnold, 2001) is apparently unique in
production-quality middleware sytems with service
discovery in that rather than giving some sort of re-
mote reference to clients it downloads a proxy object
into the client (the proxy is a Java object). Many of
the obvious security issues in this have already been
addressed by Jini. It has also been claimed that this
will lead “to the end of protocols” (Waldo, 2000). In
this paper we investigate the implications of down-
loadable code for bridging systems, and show that it
can lead to many optimisations.

Some of our work can be applied to middleware
systems which support downloadable code but not
discovery, such as JavaScript in HTML pages.

We illustrate some of these optimisations with a
Jini-to-Web Services bridge and others with Jini- to-
UPnP bridge.

89
Newmarch J. (2006).
BRIDGING BETWEEN MIDDLEWARE SYSTEMS: OPTIMISATIONS USING DOWNLOADABLE CODE.
In Proceedings of the First International Conference on Software and Data Technologies, pages 89-97
DOI: 10.5220/0001310000890097
Copyright c© SciTePress



The principal contribution of this paper is that it
proposes and demonstrates a number of optimisations
that could be considered to be additional architectural
patterns that can sometimes be applied to bridge be-
tween different middleware systems. The validity of
these patterns are demonstrated by discussion of sev-
eral example systems and through an implementation
for bridging between UPnP services and Jini clients.
However, the patterns do have strong requirements on
the client-side middleware: it must be possible to dy-
namically download code to clients and to dynami-
cally determine the content of this downloaded code.

The structure of this paper is as follows: the next
section discusses some general properties of bridging
systems and the following section discusses down-
loadable code in this context. Section 4 introduces
the first of three optimisations, one for transport-level
bridging. Section 5 considers service cache manage-
ment and the following section applies this to the sec-
ond optimisation, for service-level transport. This is
followed by a section on device-level optimisation.
Successive sections deal with event handling and the
implementation of a Jini-UPnP bridge based on these
principles. We then assess the proposals and consider
the value and generality of our work, before a con-
cluding section.

Background knowledge of Jini may be found in
Newmarch (Newmarch, 2001) and on the UPnP home
site (UPnP Consortium, 2006).

2 BRIDGING

Nakazawa et al (Nakazawa et al., 2006) discuss gen-
eral properties of middleware bridges. They distin-
guish three features

• Transport-level bridging concerns translation be-
tween two invocation protocols where a client
makes a request of a service. Examples of invo-
cation protocols include SOAP and CORBA’s IIOP.
Transport-level bridging is concerned with translat-
ing from the invocation of a request to its delivery,
and also between any replies.

• Service-level bridging involves the advertisement
and discovery of services. Examples of discovery
protocol include CORBA’s use of a Naming service
and UPnP’s Simple Service Discovery Protocol.

• Device-level bridging concerns the semantics of
services.

Transport level bridging includes translating be-
tween the data-types carried by each protocol. For ex-
ample for Web Services using SOAP, these are XML
data-types while for Java RMI using JRMP these are
serialisable Java objects. There are usually prob-
lems involved in such conversions. Vinoski (Vinoski,

2005) points to the mismatch between Java data-types
and XML data-types. While he goes on to exam-
ine the consequences for JAX-RPC, the same issues
cause problems converting from SOAP data-types to
Java objects on JRMP. Newmarch (Newmarch, 2005)
discusses the mismatch between UPnP data-types and
Java objects and concludes that the UPnP to Java map-
ping is generally okay but the opposite direction is
not. There is no general solution to the data-mapping
problem, and indeed the use of the so-called ”lan-
guage independent” XML in some middleware sys-
tems appears to have exacerbated this. Services where
the data-types are not convertable cannot be bridged.
This paper does not address this issue.

While the transport protocol is usually end-to-end,
the discovery protocol may be either end-to-end as in
UPnP or involve a third party. Dabrowski and Mills
(Dabrowski and Mills, 2001) term this third-party a
service cache manager (SCM). Examples of such a
manager are the Jini lookup service, the CORBA and
RMI Naming service and UDDI (although this does
not seem to be heavily used). The implications for
service-level bridging involve the discovery protocol:
in an end-to-end discovery system the service-level
bridge will need to understand how to talk directly
to services and/or clients, while with a service cache
manager the bridge will need to understand how to
talk to the service cache manager.

Device-level bridging concerns the meaning of
“service” in different middleware systems, and how
services (and devices) are represented.

In general a bridge system will look like Figure 1.

Figure 1: Typical bridge system.

3 DOWNLOADABLE CODE

There are many examples where code is downloaded
from one computer to execute in another. These
include JavaScript in HTML pages, Safe-Tcl (Levy
et al., 1997) and Erlang (Brown and Sablin, 1999).
Jini as a service-oriented architecture makes use of
RMI to download a proxy object representing a ser-
vice into a client. This changes the nature of the
client/service transport protocol since that is now
managed by the proxy object, not by the client-the

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

90



client just makes local calls on the proxy. The Java
Extensible Remote Invocation framework (Jeri) in
Jini 2.0 allows the proxy and service to use any pro-
tocol that they choose.

Proxy/service communication in Jini can be repre-
sented in Figure 2.

Figure 2: Proxy communication.

The pattern of communication of Figure 2 can also
be employed by JavaScript using the Ajax extensions
(Garrett, 2005), and is used by Google Maps and
Google Mail for example, although the communica-
tion is restricted to HTTP calls.

4 OPTIMISING
TRANSPORT-LEVEL
BRIDGING

Transport-level bridging involves the bridge receiv-
ing messages from a client using the client’s transport
protocol, translating them into messages for the ser-
vice and sending them using the service’s transport
protocol. Responses are handled in a similar way.

Many internet protocols specify all components of
the interaction between clients, services and service
cache managers. For example, UPnP specifies the
search and discovery protocols and also the protocol
for procedure call interaction between client and ser-
vice as SOAP. However, as was shown by Java RMI
over CORBA’s IIOP instead of JRMP, and also by
CORBA’s use of Naming and Trader services, there
is no necessary link between discovery and invoca-
tion. As long as a client and service are using the
same invocation protocol they can interact directly.

For UPnP and many systems there is little choice
since the invocation protocol is fixed by the middle-
ware specification. However, Jini 2.0 allows a “plug-
gable” communications protocol. While most sys-
tems would require the client to have the communi-
cations protocol “hard coded” (or loadable from local
files), Jini allows a service proxy to be downloaded
from a lookup service (service cache manager) to a
client, and this can carry code to implement any de-
sired communicaration protocol.

In a similar but less flexible way, the Ajax
XMLHttpRequest object can exchange any type of
data with its originating service. Usually this is XML
data, but could be other types such as JSON (JSON,
2006)

In the most common situations, the service proxy
communicates with its bridge service. However, a
transport-level bridge is just there to translate and
communicate between the client and the service. If
the code to do this translation is moved into the proxy,
then the transport-level component of the bridge ser-
vice becomes redundant. That is, the client makes
local calls on the proxy, which makes calls directly
to the service using the service’s transport protocol.
One leg of the middleware has been removed. This is
illustrated in Figure 3.

Figure 3: Removing one transport step.

This optimisation improves performance by

• removing one serialisation step

• removing one deserialisation step

• removing one network transport leg

In addition, the conversion to the destination pro-
tocol is performed once at the client-side. There
are some systems such as that of Nakazawa et al
(Nakazawa et al., 2006) in which the bridge performs
conversion from source data-types to an intermediate
“standard” type and from there to the destination type.
This (or even just conversion from source transport
data-types to destination transport data-types) intro-
duce possibilities for semantic problems which are
mitigated by a single conversion step at the client-
side.

This pattern has been used by Newmarch (New-
march, 2006) to show how a Jini client can communi-
cate with a Web Service. The proxy uses SOAP, the
transport protocol for the Web Service. The conver-
sion from Java data-types to XML data-types is per-
formed by the JAX-RPC package (which cannot do
a perfect conversion job, as mentioned earlier). The
role of the bridge is just there to advertise the Web
Service to the Jini federation and to upload a proxy to
the Jini lookup service.

This pattern can also be used by Jini clients to talk
to CORBA services, since Jini can directly generate
proxies that use IIOP.

Casati (Casati, 2006) shows how JavaScript down-
loaded into a browser can talk directly to Web
Services instead of the more usual HTML-Servlet-
Web Service (or similar) bridge (as typified by

BRIDGING BETWEEN MIDDLEWARE SYSTEMS: OPTIMISATIONS USING DOWNLOADABLE CODE

91



the web sitewww.xmethods.com ). Casati em-
ploys theXMLHttpRequest object which allows a
browser to communicate with an HTTP server asyn-
chronously. This is usually used to exchange data be-
tween the browser and original page server. But as
Web Services typically use SOAP over HTTP, Casati
gives JavaScript for the object to be used as a proxy
to talk directly to the Web Service.

In a later section we discuss how we use this pattern
for a Jini client to talk to a UPnP service.

5 SERVICE CACHE MANAGER

Service cache managers are expected to store “ser-
vices” in some format and deliver them to clients. The
stored service can be a simple name/address pair as in
naming systems such as Java RMI or CORBA, com-
plex XML structures linked to WSDL URLs for Web
Services in UDDI directories, or other possibilities.
The Jini lookup service stores service proxy objects,
along with type information to locate them.

When clients and services are trying to locate a ser-
vice cache manager, there is often an assumed sym-
metry, that the client and service are searching for the
same thing. In our examples above, this occurs in all
of naming services, UDDI registries and Jini lookup
services.

Once found though, clients and service do differ-
ent things: services register whereas clients look for
services. The JiniServiceRegistrar for exam-
ple contains two sets of methods, one for services
(register() ) and one for clients (lookup() ).
UDDI similarly has two sets of messages, but there
are more of them since UDDI has a more com-
plex structure (Bellwood, 2002). Conceptually,
there should be one protocol for services discovering
caches and another for clients discovering them, with
different interfaces exposed to each.

6 OPTIMISING SERVICE-LEVEL
BRIDGING

The standard bridge acts as a client to one discovery
protocol and as service to the other. For example, in
a Jini/UPnP bridge (Allard et al., 2003) UPnP device
advertisements are heard by a bridge acting as a UPnP
control point, which re-advertises the service as a Jini
service. In addition, it also acts as a transport-level
bridge.

As a second optimisation we propose folding the
service cache managers into the bridge, to just leave
service-level bridging as in Figure 4.

Figure 4: Optimised service-level bridging.

As an illustration of this, we have built a lookup
service as a service-level bridge which listens for
UPnP device advertisements on one side. It can han-
dle device registration and device farewells and will
deal with device renewals, timing out if they are not
received. In this respect it acts like a UPnP control
point, but unlike a control point it does not send any
action calls to the UPnP device or register itself for
events. The other side of the service-level bridge han-
dles requests from Jini clients, primarily a discovery
request for the lookup service.

The lookup service will act like a normal Jini
lookup service as far as the Jini client is concerned
and return a lookup service proxy. The Jini client will
be a normal Jini client and uses the lookup service
to search for a service using the standard Jini API. If
the lookup service knows of UPnP devices that de-
liver the service, it will prepare a proxy for the UPnP
device and send it back to the Jini client.

This optimisation is only useful in conjunction with
the first one. Transport-level bridging or its replace-
ment will still need to be in place. If there is no re-
placement then little is gained by separating transport-
level and service-level bridging. However, when the
transport-level bridge is replaced by a smart proxy
then it is possible to just keep the service-level bridge.

This is at present a practical restriction on the ap-
plicability of this pattern, since there do not appear
to be many middleware systems in practical use apart
from Jini that support both downloadable proxies and
discovery services. However, this could be expected
to change with future development of more advanced
service oriented frameworks (for example, see Ed-
wards (Edwards et al., 2005)).

7 DEVICE-LEVEL BRIDGING

Different middleware systems have different basic
ideas of services. Many systems such as CORBA,
Jini and WebServices only have the notion of services.
Others like UPnP and Bluetooth have devices. UPnP
devices contain a number of services (and possibly
other devices, recursively).

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

92



The different systems give different meanings to
discovery. For example, the UPnP on/off light is a
BinaryLight device containing aSwitchPower
service. Jini has no concept ofBinaryLight ’s
and can only look for aSwitchPower service.
So a Jini client cannot search for a binary light
device but only some subset (as a collection) of the
service interfaces offered. On the other hand, UPnP
advertises the binary light device and the services,
but with separate messages for each service, rather
than as a group. UPnP devices usually only have
one service although some may have more. For ex-
ample, an internet gateway device may have several
services and embedded devices. This device has
a total service list of Layer3Forwarding ,
WANCommonInterfaceConfig ,
WANDSLLinkConfig andWANPPPConnection .
In general, a Jini service may implement a number
of service interfaces, and a Jini client may request a
service that simultaneously implements a number of
interfaces.

In the case of UPnP, services are described by XML
documents, while Jini services are described by Java
interfaces. We have defined a standard mapping from
UPnP services to Jini services. For example, the
UPnP service description for aSwitchPower ser-
vice is
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:...">

...
<actionList>

<action>
<name>SetTarget</name>

<argumentList>
<argument>

<name>newTargetValue</name>
<relatedStateVariable>Target
</relatedStateVariable>
<direction>in</direction>

</argument>
</argumentList>

</action>
...

</actionList>
...

</scpd>

Our mapping translates this into the Java interface
(along with a suitable definition ofTarget )
public interface SwitchPower

extends Remote {
void SetTarget(Target newTargetValue)

throws RemoteException;
...

}

The service-level bridge will need to be able to
translate from one representation to the other. A di-
rect approach is to store a table mapping each ser-
vice. In the case of UPnP and Jini, the table would
just hold UPnP service names matched to Java class

files. At this stage, the service-level bridge will be
responsible for creating the proxy, and to do this it
needs the class files for the service interfaces. While
it would be fine for the bridge to have class files for
the set of “standard” devices and services maintained
by the UPnP Consortium, it would not allow for new,
unknown services to be managed.

New UPnP services would require the service-
transport bridge to examine in detail the UPnP service
description and generate source code for the Java in-
terface. Then compile this on the fly using a local Java
compiler (such asjavac or Kirby’s dynamic com-
piler (Kirby, 2005)). This is similar to dynamic com-
pilation of JSP and servlets by servlet engines such
as Tomcat. The resultant class files can be cached
against repeated use.

Similar mechanisms may be needed for bridging
between any middleware systems where new and un-
known services may be presented to the service-level
bridge. This will depend on what information is re-
quired by the bridge in order to create a proxy.

8 OPTIMISING DEVICE-LEVEL
BRIDGING

In the architecture proposed so far, the service-level
bridge needs to be able to generate a proxy to rep-
resent the original service. For a Jini client, this re-
quires class files on the lookup service for the Java
interfaces, and for unknown service types these will
need to be generated by the bridge. This will involve
detailed introspection of the service descriptions and
use of a Java compiler. While dynamic compilation
of JSP pages demonstrates that this is feasible, it nev-
ertheless has overheads.

The Jini client on the other hand has to know the
service interface, otherwise it cannot ask for a ser-
vice proxy. So if knowledge of the Java interfaces
can be deferred to the client side, then it just becomes
a lookup of already instantiated classes. The name of
the interface is all that is required for the client to find
the interface class2 .

The Jini lookup service already downloads a proxy
to the client to represent it. This has not been shown
in the figures so far as it is a Jini-specific (but stan-
dard) detail. Usually this proxy just makes remote
calls back to the lookup service. However, just like
any downloaded code, the proxy can be designed to
perform any functions on the client side (subject to
security constraints). In particular, on a lookup oper-
ation the proxy could just pass back to the lookup ser-

2The client has to know the interfaces it is interested in.
It should not know the implementation classes. This is ad-
dressed in the implementation section.

BRIDGING BETWEEN MIDDLEWARE SYSTEMS: OPTIMISATIONS USING DOWNLOADABLE CODE

93



vice enough to allow a match to be made, and on suc-
cess the lookup service could pass back just enough
for the lookup service’s proxy to create a proxy for the
original service. In the case of a UPnP/Jini bridge, the
minimal information is the names of the interfaces re-
quired, and the returned information just needs to be
the URL of the UPnP device description. These are
enough for a proxy to be created on the client-side
that can talk to the UPnP service. See Figure 5 for the
final system.

Figure 5: Optimised service-level bridging.

9 EVENT HANDLING

The discussion so far has used the remote procedure
call paradigm. However, there are other possibilities
such as an asynchronous callback mechanism where
the service makes calls back to the client. This is eas-
ily handled by the proposed systems, as the proxy just
registers itself as the callback address.

10 IMPLEMENTATION OF
OPTIMISED JINI-UPNP
BRIDGING

There is an open source implementation of UPnP
devices and control points by CyberGarage (Konno,
2006). This is very closely modelled on the UPnP
Device Architecture specification (UPnP Consortium,
2006a). It exposes an API to allow a client to cre-
ate aControlPoint which can listen for device
announcements, to determine the services within the
device and it has methods to prepare parameters and
make action calls on UPnP services. It also supports
getting device information such as friendly name and
registering as listener for state variable change events.

We use this in our lookup service to monitor UPnP
devices and keep track of the services that are avail-
able, as well as device information.

The CyberGarage API treats UPnP devices and ser-
vices using a DOM-oriented model, unlike the SOA-

oriented manner of Jini. We use the UPnP to Java
mapping discussed earlier to translate between the
two representations.

In our implemention, we use the JavaProxy
class to give a dynamic proxy. This proxy imple-
ments all of the services on a UPnP device that are re-
quested by the client. The proxy is supplied with the
device URL so that it can access the device descrip-
tion. This description contains the URLs for action
calls, for registering listeners and for the presentation.
The Jini proxy requires an invocation handler. We use
the CyberGarage classes to build a generic handler
to deal with SOAP calls to the device. The Cyber-
Garage classes and this handler are downloaded from
the bridge to the client. This avoids the need for the
bridge to know the service interfaces at all and allows
the client to only know the service interfaces.

The proxy implementation uses the CyberGarage
library, but only for the control components of the
CyberGarage ControlPoint. That is, it is used to pre-
pare and make SOAP action calls and to register and
listen for UPnP events. However, it does not listen
for devices, since that is done by the bridging lookup
service. When a method call is made on the service
proxy it uses the control point to make a SOAP remote
procedure call.

Our current implementation relies heavily on the
CyberGarage library, but only on the control point
code. The device advertisement code is not used.
Only a part of the control point code is used by the
bridging lookup service to monitor devices while an-
other part is used by the service proxy to make action
calls and listen for events. However, the CyberGarage
code is tightly interwoven, and it was not possible to
use only the relevant parts. The lookup service has
to import almost all of the library, as does the ser-
vice proxy. It should be possible to produce a lighter-
weight version for each with only the required partial
functionality.

11 ASSESSMENT

Any “optimisation” often has both positive and nega-
tive sides. We try to offer a balanced viewpoint on the
advantages and disadvantages of our pattern

11.1 Transport-level Optimisation

In transport-level optimisation, we place the code
to perform service invocation directly in the proxy
downloaded to the client. The principal advantages
of this are

• perfomance improvement by removing one seriali-
sation step

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

94



• perfomance improvement by removing one deseri-
alisation step

• perfomance improvement by removing one net-
work transport leg

• reducing the risk of semantic mismatches between
client and service data-types by reducing the num-
ber of data conversion steps.

The ma jor disadvantage is that code has to be down-
loaded to the client that is capable of talking directly
to the service. This is generally downloaded from an
HTTP server. Some examples follow

• Casati(Casati, 2006) gives JavaScript that can be
downloaded to a web browser such as Firefox or IE
that can make function calls on Web Services. This
requires just 10kbytes of JavaScript source code.
This relies on the extensive libraries and support
within the browsers for many of the library calls
made.

• Newmarch (Newmarch, 2006) discusses a Jini
proxy that can make function calls on Web Ser-
vices. The particular implementation used there
makes use of the Apache Axis objectsCall ,
QNameandService . These classes and all the
classes they depend on are substantial in size–over
900kbytes. There are clear redundancies in this: for
example, there are many classes which deal with
WSDL document processing, and this is not needed
by the proxy.

• For the Jini UPnP proxy discussed here, the Cy-
berGarage classes are used. These classes are
270kbytes in size. However, the jar file also con-
tains the source code for the package. Remov-
ing these reduces the size to 160kbytes and a spe-
cialised version could be even smaller. Cyber-
Garage also requires an XML parser to interpret
SOAP responses. The default parser (Xerces) and
associated XML API package are over 1Mbyte in
size which is substantial for an HTTP download.
The kXML package can be used instead, and this
is a much more reasonable 20kbytes and there is
even a light version of this. This gives a total of
180kbytes which is acceptable for any Jini client–
the reference implementation of Sun’s lookup ser-
vice takes 50kbytes just by itself.

The actual amount of code downloaded depends on
the complexity of the proxy and the degree of support
that already exists in the client. These three examples
show variations from 10kbytes to nearly 1Mbyte.

11.2 Service-level Optimisation

The standard bridge requires upto two service cache
managers, one for each discovery protocol. In ad-
dition, the bridge has to act as a client to discover

the original service and as a service to advertise to
the original client. Service-level optimisation reduces
this to two halves of two SCMs: one half to listen to
service adverts, the other half for the original client to
discover the service. UPnP does not have an SCM and
control points listen directly to service adverts, which
reduces the savings somewhat.

On the downside, it is necessary to write parts of
service cache managers. Although this is not inher-
ently difficult, knowledge of how to do this and API
support by middleware systems is not so widespread
as for writing simple clients and services. Jini has the
necessary classes, but there are no tutorials on how
to write a lookup service. CyberGarage has support
for control points, but this is tightly woven with the
device code and so contains redundant code.

In addition, the need to possibly perform introspec-
tion on service descriptions, to generate appropriate
client-side definitions and to compile them are disad-
vantages.

11.3 Device-level Optimisation

This optimisation gains by removal of some code (in-
trospection, generation of interfaces and compilation)
completely. On the other hand, code to generate the
proxy is just moved into the client. In the case of Jini,
most of this code is already present in the client from
the Jini libraries and does not represent much of an
overhead. For other systems it may be more costly.

11.4 Generality

The design patterns discussed in this paper rely on a
number of properties of the two middleware systems
in order to be applicable

• it must be possible for a service cache manager to
be used in each middleware system. In practise this
is not an onerous provision and it can be applied
even to systems such as UPnP which do not require
an SCM.

• There must be a (sufficiently good) mapping of
the datatypes from service system to client system.
This allows UPnP services to be called from Jini
clients, but would limit the scope of Jini services
that could be invoked by UPnP clients. As another
example, the flexibility of XML data-types means
that it should be possible to mix Jini clients with
Web Services, and Jini services with Web Service
clients.

• It must be possible to download code from the
SCM to run in either the client or service. In
our case study, we have downloaded code to the
client that understands the service invocation pro-
tocol, but it would work equally well if code could

BRIDGING BETWEEN MIDDLEWARE SYSTEMS: OPTIMISATIONS USING DOWNLOADABLE CODE

95



be downloaded to the service that understands the
client invocation protocol. Without this, the recip-
ient would already need to know how to deal with
a foreign invocation protocol, which would largely
defeat the value of the pattern.

The third point is the most difficult to realise in
practise. Many languages support dynamic code ex-
ecution: most interpreted languages have an equiva-
lent of theeval() mechanism, through to dynamic
linking mechanisms such as dynamic link libraries
of compiled, relocatable code.However, the only ma-
jor language supporting dynamic downloads of code
across a network appears to be Java, and the princi-
pal middleware system using this is Jini. Given some
level of dynamic support, adding network capabilities
to this is not hard: the author wrote a few pages of
code as proof of concept to wrap around the Unix C
dlopen() call to download compiled code across
the network into a C program.

12 VALUE OF WORK

The value of mixing different middleware systems
can be seen by a simple example. Through UPnP,
various devices such as hardware-based clocks and
alarms can be managed. A stock exchange service
may be available as a Web Service. A calendar and di-
ary service may be implemented purely in software as
a Jini service. Using the techniques described in this
paper, a Jini client could access all of these. Acting
on events from UPnP clocks to trigger actions from
the Jini diary the client could query the Web Service
stock exchange service and ring UPnP alarms if the
value of the owner’s shares has collapsed.

In addition to extending the use of clients and ser-
vices, there are also some side benefits:

• Jini has suffered by a lack of standards work for
Jini devices and device services, with a correspond-
ing lack of actual devices. This work allows Jini to
”piggyback” on the work done now and in the fu-
ture by the UPnP Consortium and to bring a range
of standardised devices into the Jini environment.
Jini clients will be able to invoke UPnP services in
addition to services specifically designed for Jini.

• UPnP is a device-centric service architecture. It al-
lows clients to use services on devices, but has no
mechanism for UPnP clients to deal with software-
only services since they cannot be readily ex-
pressed in UPnP. Work is ongoing within the UPnP
Consortium to bring WSDL descriptions into the
UPnP world. Jini clients on the other hand are ag-
nostic to any hardware or software base, and can
mix services of any type.

Both middleware systems have limitations–in the

case of Jini, in the types of services that can be ac-
cessed, and in the case of UPnP, in the range of ser-
vices that can be offered. Other middleware systems
will have similar limitations. For example, Web Ser-
vices tend to deal with long-lived services at well-
known addresses whereas Jini can handle transient
services

13 CONCLUSION

We have proposed a set of alternative architectures to
bridge between different middleware systems which
uses a service cache bridge and a downloadable proxy
understanding the service or client invocation proto-
col. In addition, we have used this between Jini and
UPnP and we have automated the generation and run-
time behaviour of this proxy from a UPnP specifi-
cation. This has been demonstrated to give a sim-
ple solution for UPnP services and Jini clients. The
techniques are applicable to any client protocol which
supports downloadable code and any service protocol.

REFERENCES

Allard, J., Chinta, V., Gundala, S., and Richard III, G. G.
(2003). Jini meets upnp: InProceedings of the Appli-
cations and the Internet (SAINT).

Arnold, K. (2001).The Jini Specification. Addison-Wesley.

Bellwood, T. (2002). Uddi version 2.04 api speci-
fication. Retrieved July 7, 2006 fromhttp:
//uddi.org/pubs/ProgrammersAPI-V2.
04-Published-20020719.htm .

Brown, L. and Sablin, D. (1999). Extending erlang for safe
mobile code execution. InLecture Notes in Computer
Science, vol 1726.

Casati, M. (2006). Javascript soap client. Retrieved July
7, 2006 fromhttp://www.codeproject.com/
Ajax/JavaScriptSOAPClient.asp .

Dabrowski, C. and Mills, K. (2001). Analyzing proper-
ties and behavior of service discovery protocols using
an InProc. Working Conference on Complex and Dy-
namic Systems Architecture.

Edwards, W. K., Newman, M. W., Smith, T. F., Sedivy, J.,
and Izadi, S. (2005). An extensible set-top box plat-
form for home media applications.IEEE Transactions
on Consumer Electronics, 4(51).

Garrett, J. J. (2005). Ajax: a new approach to web
applications. Retrieved July 7, 2006 fromhttp://
www.adaptivepath.com/publications/
essays/archives/000385.php .

JSON (2006). Json in javascript. Retrieved July 7, 2006
from http://www.json.org/js.html .

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

96



Kirby, G. (2005). Dynamic compilation in
java. Retrieved July 7, 2006 fromhttp:
//www-ppg.dcs.st-and.ac.uk/Java/
DynamicCompilation .

Levy, J. Y., Ousterhout, J. K., and Welch, B. B. (1997). The
safe-tcl security model. Technical report, Sun Mi-
crosystems. Retrieved July 7, 2006 fromhttp://
research.sun.com/technical-reports/
1997/abstract-60.html .

Nakazawa, J., Edwards, W., Tokuda, H., and Ra-
machandran, U. (2006). A bridging frame-
work for universal interoperability in pervasive sys-
tems. In ICDCS. Retrieved July 7, 2006
from www-static.cc.gatech.edu/ ˜ keith/
pubs/icdcs06-bridging.pdf .

Newmarch, J. (2001). A Programmers Guide to Jini.
APress.

Newmarch, J. (2005). Upnp services and jini clients. In
ISNG, Las Vegas.

Newmarch, J. (2006).Foundations of Jini 2 Programming.
APress.

UPnP Consortium (2006). Upnp home page. Retrieved July
7, 2006 fromhttp://www.upnp.org .

Vinoski, S. (2005). Rpc under fire.IEEE Internet Comput-
ing.

Waldo, J. (2000). The end of protocols. Retrieved
July 7, 2006 from http://java.sun.com/
developer/technicalArticles/jini/
protocols.html .

Waldo, J. (2005). An architecture for service ori-
ented architectures. Retrieved July 7, 2006
from http://www.jini.org/events/
0505NYSIG/WaldoNYCJUG.pdf .

WWW Consortium (2002). Web services home page. Re-
trieved July 7, 2006 fromhttp://www.w3.org/
2002/ws .

BRIDGING BETWEEN MIDDLEWARE SYSTEMS: OPTIMISATIONS USING DOWNLOADABLE CODE

97


