
PROGRAM VERIFICATION TECHNIQUES
FOR XML SCHEMA-BASED TECHNOLOGIES

Suad Alagíc, Mark Royer and David Briggs
University of Southern Maine

Department of Computer Science, Portland, ME 04104-9300

Keywords: Types, constraints, XML Schema, PVS, theories, program verification, transaction verification.

Abstract: Representation and verification techniques for XML Schema types, structures, and applications, in a pro-
gram verification system PVS are presented. Type derivations by restriction and extension as defined in XML
Schema are represented in the PVS type system using predicate subtyping. Availability of parametric poly-
morphism in PVS makes it possible to represent XML sequences and sets via PVS theories. Powerful PVS
logic capabilities are used to express complex constraints of XML Schema and its applications. Transaction
verification methodology developed in the paper is grounded on declarative, logic-based specification of the
frame constraints and the actual transaction updates. A sample XML application given in the paper includes
constraints typical for XML schemas such as keys and referential integrity, and in addition ordering and range
constraints. The developed proof strategy is demonstrated by a sample transaction verification with respect
to this schema. The overall approach has a model theory based on the view of XML types and structures as
theories.

1 INTRODUCTION

Research on integration of programming languages
and XML technologies has been based primarily on
integrated type systems. These type systems have
been the basis for the design of XML-oriented pro-
gramming languages (Hosoya and Pierce, 2003; Ben-
zanken et al., 2003) including those that represent
extensions of major object-oriented languages with
XML-oriented types and structures (Gapayev and
Pierce, 2003; Bierman et al., 2004).

Our approach to this integration goes beyond an
integrated type system. We take an advanced and
fairly general type system as the basis, and we ex-
tend it with logic-based constraints. This approach is
justified because of significant recent research efforts
to extend major object-oriented languages with asser-
tions (Leavens et al., 2005; Bierman et al., 2004), and
XML models with constraint capabilities as in XML
Schema (W3C, 2006a).

Constraints are critical for most database technolo-
gies, and XML Schema features some basic con-
straints typical for database systems, such as keys and
referential integrity. Even these basic constraints can-
not be expressed in a type system, let alone more

complex database integrity constraints that are not ex-
pressible within the limited XML Schema constraint
capabilities. Except in particular cases, typical XML
Schema constraints on the range of occurrences of el-
ements cannot be expressed in standard type systems
either. This explains the importance of the research
efforts to extend the paradigm of type systems with
logic-based constraints.

The constraint-based view on the integration of
programming languages and XML opens up the pos-
sibility of using program verification systems to ver-
ify properties related to XML Schema and its appli-
cations. A program verification system is an essential
component of a programming environment that ex-
tends object-oriented languages with assertions, as in
(Barnett et al., 2004). Application of these sophis-
ticated tools to XML technologies that are based on
a type system and are equipped with constraints has
not been investigated. This is the main contribution
of this paper.

The choice of the prover (verification system) in
this research was determined by the fact that PVS has
a sophisticated type system, including subtyping and
bounded parametric polymorphism, and allows usage
of sophisticated logics with higher-order features. A

86
Alagić S., Royer M. and Briggs D. (2006).
PROGRAM VERIFICATION TECHNIQUES FOR XML SCHEMA-BASED TECHNOLOGIES.
In Proceedings of the First International Conference on Software and Data Technologies, pages 86-93
DOI: 10.5220/0001309400860093
Copyright c© SciTePress



PVS specification consists of a collection of theories.
A theory is a specification of the required type sig-
natures (of functions in particular) along with a col-
lection of constraints in a suitable logic applicable to
instances of the theory.

The XML type hierarchy with the root type any-
Type, simple and complex types, and other types de-
rived from those, is represented by a collection of
PVS theories. Type derivations by extension and
restriction in XML Schema (W3C, 2006a; W3C,
2006b) are defined using import of theories and
the PVS notion of predicate subtyping. The XML
Schema rules that govern type derivations are spec-
ified by logic based constraints. This approach is also
applied to XML Schema structures (W3C, 2006b)
such as element, group, and particle, so that each
one of them has a corresponding theory specifying
the typing rules and constraints related to those struc-
tures.

Specifying the rules of XML Schema and
application-oriented schemas in terms of PVS the-
ories has several advantages. The first one is that
structural properties are expressed in a type system
that conforms to well-established type systems of pro-
gramming languages with subtyping and parametric
polymorphism. The second advantage is that com-
plex rules specified in the XML Schema documents
in semi-formal English are now precisely specified
in PVS theories in a suitable logic. Likewise, spec-
ification of a variety of constraints in an application
schema is now both required and possible in a more
general formal logic-based framework. The complex-
ity of constraints, the XML Schema rules in particu-
lar, makes the usage of an automated theorem prover
tool useful in detecting human errors that might oth-
erwise go unnoticed.

Of course, the most important advantage is that
PVS allows automated reasoning about a variety of
properties expressed in its theories. This applies even
to application properties and requirements that are not
expressible in XML Schema. Thus, reasoning and
verification are supported in situations when XML
data is processed by a transaction or a general purpose
programming language, as illustrated by a transaction
verification proof strategy presented in the paper.

The most basic constraints in XML Schema are re-
lated to the ranges of occurrences of elements in a se-
quence. A core idea behind type derivations in XML
Schema is that an instance of a derived type may be
viewed as a valid instance of its base type. This in-
cludes the requirement that all constraints associated
with the base type are still valid when applied to an in-
stance of a derived type. The overall approach in con-
structing PVS theories for XML Schema types and
structures is governed by this basic requirement. The
formal model theory based on the view of types as
theories has also been developed with this compatibil-

ity requirement as its cornerstone. This requirement
corresponds to the notion of behavioral subtyping in
object-oriented programming languages (Liskov and
Wing, 1994).

One particularly important application of a prover
technology is verification that a transaction respects
the integrity of a schema equipped with the above type
of constraints. In this paper we present a typical appli-
cation and develop a suitable proof methodology and
implement it in PVS. The pragmatic goal is to make
static deductions that would avoid expensive run-time
violations of database integrity or at least reduce the
amount of dynamic checks by verifying some condi-
tions statically.

The methodology developed in the paper requires
explicit specification of the frame constraints of a
transaction. The frame constraints specify the in-
tegrity constraints which the transaction does not af-
fect. In addition, the active part (the actual update)
that a transaction performs is specified in a declara-
tive, logic-based style, and the verification is carried
out using a proof strategy presented in the paper. This
methodology is independent of a particular transac-
tion language.

2 XML TYPES AS PVS THEORIES

In XML Schema, anyType is the root of the XML
type hierarchy (W3C, 2006a; W3C, 2006b). All
other XML types are directly or indirectly derived
from anyType by restriction or extension. In our
PVS representation two types that are derived di-
rectly from the typeXMLany areXMLsimple and
XMLcomplex. TYPE+ denotes a nonempty type.

XMLany: THEORY
BEGIN XMLany: TYPE+
% body of theory XMLany

END XMLany

XMLsimple: THEORY
BEGIN IMPORTING XMLany

XMLsimple: TYPE+ FROM XMLany
% body of theory XMLsimple

END XMLsimple

A complex type is always derived from some other
type, which may be either simple or complex. The
predicatesrestriction? andextension? in
the theoryXMLcomplex below determine which one
of the two derivation techniques is being used for the
underlying complex type.

A complex XML type is equipped with a set of
attributes and a content. The content of a complex
type is potentially very complex and its structure is,
in our approach, determined in a theory correspond-
ing to the XML notion called particle specified in sec-
tion 3. Three options for an XML content model are

PROGRAM VERIFICATION TECHNIQUES FOR XML SCHEMA-BASED TECHNOLOGIES

87



specified below: a complex type may have empty con-
tent, indicated by the predicateemptyContent?,
simple content indicated bysimpleContent?, or
complex content indicated bycomplexContent?.
If the content is simple, the functionsimpleValue
returns the complex type’s simple value, and if the
content is complex the functioncomplexValue re-
turns its complex value.
XMLcomplex: THEORY
BEGIN

IMPORTING XMLsimple, XMLattribute,
XMLparticle

XMLcomplex: TYPE+ FROM XMLany
attributes:
[XMLcomplex -> XMLset[XMLattribute]]

restriction?: [XMLcomplex -> bool]
extension?: [XMLcomplex -> bool]

emptyContent?: [XMLcomplex -> bool]
simpleContent?: [XMLcomplex -> bool]
simpleValue:

[(simpleContent?) -> XMLsimple]
complexContent?: [XMLcomplex -> bool]
content:

[(complexContent?) -> XMLparticle]
complexValue:
[(complexContent?) ->

XMLsequence[XMLelement]]
% constraints for simpleRestrict
% and complexRestrict
% constraints for simpleExtend
% and complexExtend
END XMLcomplex

The above theory is a simplification of the XML
Schema for presentation purposes. In PVS nota-
tion, (p?) denotes a type whose elements satisfy
the predicatep. The omitted constraints are de-
scribed below. ThesimpleRestrict constraint
specifies the XML rule for deriving a complex type
with simple content from another complex type with
simple content. The core property is that any con-
straint that holds for all instances of the base type
must also hold for the derived complex type. In
other words, the derived type is only allowed to fur-
ther restrict the constraints in the base type. Like-
wise, thecomplexRestrict constraint applies to
types with complex content derived by restriction.
The predicaterestricts defined in the theory
XMLparticle allows only strengthening the con-
straints from the base type with no changes to the un-
derlying structure.

The simpleExtend constraint specifies the
XML rule for deriving a complex type by exten-
sion from a simple type. In this case the under-
lying simple value remains the same. The only
change is in possibly adding attributes. The constraint
complexExtend specifies the XML rule for ex-
tending complex types with complex content. This

constraint refers to the predicateextends defined
in the theoryXMLparticle which specifies valid
structural extensions of the content of the base type
into the content of the derived type.

3 XML STRUCTURES

XML structures are composed of attributes, elements,
groups, etc. The general XML notion for specify-
ing XML content is particle (W3C, 2006b). The sub-
typing relationships among XML types and the types
specifying XML structures are represented in figure
1.

XMLany

XMLsimple XMLcomplex

Types derived 
from XMLsimple

Types derived 
from XMLcomplex

XMLparticle XMLterm

XMLgroupXMLelement

XMLsequenceGroup

XMLchoiceGroup

XMLallGroup

Specific element types

XMLset

XMLsequence

Types and Structures

XMLattribute

Figure 1: XML types and structures.

The PVS theoryXMLparticle given below
specifies the main features of XML structures. The
structural part of a particle is described by its term that
is returned by the functionparticleTerm. The
number of allowed occurrences of the term in a par-
ticle is specified by two functions,minOccurs and
maxOccurs. The associated range constraint speci-
fies the constraint on the range of occurrences.

A term may be an element or a group, hence
XMLelement andXMLgroup are defined as XML
subtypes ofXMLterm. There are three types of
groups: a sequence group, a choice group, and an
all group, hence the predicatessequenceGroup?,
choiceGroup?, and allGroup?. A sequence
group is a sequence of particles. A choice group spec-
ifies a selection of one out of a finite number of parti-
cles. An all group specifies a set of elements that may
appear in any order.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

88



XMLparticle: THEORY
BEGIN

IMPORTING XMLany, XMLattribute,
XMLsequence, XMLset

XMLparticle: TYPE+
XMLterm: TYPE+

particleTerm: [XMLparticle -> XMLterm]
minOccurs: [XMLterm -> nat]
maxOccurs: [XMLterm -> nat]
unbounded: nat
% range constraint

XMLelement: TYPE+ FROM XMLterm
element?: [XMLterm -> bool]
elementName: [XMLelement -> string]
elementValue: [XMLelement -> XMLany]

XMLgroup: TYPE+ FROM XMLterm
sequenceGroup?: [XMLgroup -> bool]
choiceGroup?: [XMLgroup -> bool]
allGroup?: [XMLgroup -> bool]
groupParticles: [XMLgroup ->

XMLsequence[XMLparticle]]
% specification of extends
% and restricts predicates
END XMLparticle

The predicatesextends andrestricts spec-
ify valid extensions and restrictions of XML particles.
Theextends constraint specifies that the extension
is either equal to the original particle or simply ex-
tends the original particle by appending another parti-
cle. Therestricts constraint specifies that a par-
ticle that extends another particle is equal to the origi-
nal one and the only change that is allowed is restrict-
ing the range of the original particle. Otherwise, this
condition is applied recursively where the term of the
particle and the restriction base term are requested to
be either the same element or the same type of a group
and the corresponding elements in their underlying
sequence of particles are requested to satisfy the re-
strict predicate. For presentation purposes, the above
is a simplification of the very complicated conditions
specified in XML Schema.

An abbreviated theoryXMLtags given below
shows how the tag language associated with an XML
structure (element, term, or particle) is defined. The
tag language of a particle constrains the sequence of
elements of the particle. The typeXMLtags is spec-
ified as a set of sequences of tags along with the stan-
dard operators for regular languages: union, concate-
nation and iteration. This theory contains constraints
specifying the semantics of these operators. More
importantly, this theory also contains constraints that
specify recursively the tag language of a particle,
which is expressed in terms of the tag language of
a term and theminOccurs andmaxOccurs con-
straints of the particle. The tag language of a term
(also specified recursively) is based on the rules for

constructing the tag language for the group operators
which make use of the operators of theXMLtags the-
ory (specifically,conCat for sequence andunion
for choice). These rules are omitted due to their com-
plexity.

XMLtags: THEORY
BEGIN

IMPORTING XMLparticle
XMLtag: TYPE+ FROM string
XMLtags: TYPE+ =

XMLset[XMLsequence[XMLtag]]
conCat: [XMLtags, XMLtags -> XMLtags]
star: [XMLtags -> XMLtags]
starPlus: [XMLtags -> XMLtags]
% constraints for union, concatenate
% and star
seq: [string -> XMLsequence[XMLtag]]
elementTags(e): XMLtags =

singleton(seq(elementName(e)))
particleTags: [XMLparticle -> XMLtags]
termTags: [XMLterm -> XMLtags]
% constraints for termTags
% and particleTags
END XMLtags

4 COMPATIBILITY OF TYPE
DERIVATIONS

The approach developed in this paper has a formal ba-
sis in model theory that has been applied to a variety
of programming and database paradigms (Goguen,
1991; Alagíc and Kouznetsova, 2002; Alagić and
Bernstein, 2002; Alagić and Briggs, 2004).

The first component of this particular model the-
ory is a formal definition of a type equipped with
logic based constraints that matches the PVS notion
of a theory and captures XML Schema types and
structures along with constraints. The relationships
among types equipped with constraints such as those
expressed by type derivations in XML Schema are
represented as morphisms of theories. In fact, the core
of the model theory captures precisely XML Schema
type derivations ensuring that the compatibility con-
ditions expressed by XML constraints are satisfied in
those derivations.

The key notion of the model theory is the satisfac-
tion of constraints. Specification of a type structure
equipped with constraints requires an interpretation
in terms of sets of instances along with operations on
those instances. This interpretation is called a model.

A type theoryTh = (Σ, E) consists of a type sig-
natureΣ and a finite setE of Σ sentences. A sentence
is a closed formula, i.e., a formula with all variables
quantified.

Given a theory(Σ, E), Mod(Σ) denotes a collec-
tion of Σ models and|= denotes the satisfaction re-

PROGRAM VERIFICATION TECHNIQUES FOR XML SCHEMA-BASED TECHNOLOGIES

89



lation between models andΣ sentences. AΣ model
provides an interpretation of the signatures of func-
tions given inΣ. The fact that a modelM satisfies a
sentencee is thus denoted as

M |= e.
If ThA = (ΣA, EA) andThB = (ΣB , EB) are

type theories,φ : ThA → ThB is a theory mor-
phism iff φ : ΣA → ΣB is a type signature morphism
such that for allΣB modelsMB , MB |= EB implies
MB |= φ(e) for all sentencese ∈ EA.

A theory morphism maps a sentencee from the
source theoryThA to the target theoryThB in such
a way that the transformed sentenceφ(e) fits into the
target theory, i.e., it belongs to the set of all sentences
of the target theory. This is a semantic requirement
rather than a typing requirement.

Import of theories in PVS is a specific case of a
theory morphism in which the signatureΣA is a sub-
signature ofΣB andEA is a subset ofEB .

The relationship of a theoryThB representing an
XML Schema type derived from another type repre-
sented by a theoryThA is expressed in PVS by com-
bining import of theories and the PVS notion of pred-
icate subtyping.

This representation technique has the following
form in the PVS notation.

A: THEORY
BEGIN
% body of theory A
END A

B: THEORY
BEGIN IMPORTING A

B: TYPE FROM A
% body of theory B

END B

The statementB: TYPE FROM A that definesB
as a PVS subtype ofA is equivalent to a definition of
a predicateB pred:[A -> bool] and definingB
as a type that satisfiesB pred.

PVS also supports bounded parametric polymor-
phism. Full details are elaborated in (Alagić et al.,
2006).

Two parametric PVS theoriesXMLset and
XMLsequence are not given in the paper but are
used to specify a set of attributes and a sequence of
elements. These theories are represented by adapting
parametric theories for sets and sequences from the
standard PVS prelude.

5 APPLICATION SCHEMAS

In this section we specify a sample schema equipped
with a variety of constraints that include unique-
ness, referential integrity, ordering, and ranges of val-
ues. The theoryXMLprojectManagement con-

tains specification of a sequence of contracts and a se-
quence of projects. The corresponding theories make
subtle use of options available in the PVS type sys-
tem, illustrated in the theoryXMLproject.

The three components of this specification are: the
type information associated with an element type, the
type signatures of accessor functions, and the con-
straints. The type information for subelements and
attributes is represented by record types. However,
because of repetition of subelements,XMLproject
type itself is not represented as a record, since that
would not be an accurate representation with respect
to XML. The repetition is expressed viaminOccurs
and maxOccurs constraints and also by specify-
ing the tag language ofXMLproject. In ad-
dition to the above two components (type struc-
ture and constraints), the third component consists
of accessor functions that apply to an instance of
an XMLproject. Note that the accessor function
contracts returns a sequence ofXMLcontract
elements.

XMLproject: THEORY
BEGIN

IMPORTING XMLcomplex, XMLcontract,
XMLstring, XMLattribute

XMLproject: TYPE+ FROM XMLelement

XMLprojectElements: TYPE =
[# leader: string, funds: real,

contract: XMLcontract #]
XMLprojectAttributes: TYPE =

[# projectId: string #]

projectElements: [XMLproject ->
XMLprojectElements]

projectAttributes: [XMLproject ->
XMLprojectAttributes]

leader: [XMLproject -> string]
contracts: [XMLproject ->

XMLsequence[XMLcontract]]
funds: [XMLproject -> real]

fundsConstraint(p: XMLproject): bool =
(funds(projectElements(p))) >= 1000000

contractElementsConstraint(p:
XMLproject): bool =

minOccurs(contract(
projectElements(p)))>= 1 AND

maxOccurs(contract(projectElements(p)))
= unbounded

elementTags(p: XMLproject): XMLtags =
conCat(singleton(seq("leader")),

conCat(singleton(seq("funds")),
starPlus(singleton(seq("contract")))) )

END XMLproject

The theoryXMLprojectManagement specifies
two constraints typical for XML Schema. The

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

90



uniqueness constraint specifies that contract num-
bers uniquely determine contracts in the sequence of
contracts. Thereferential constraint specifies
that contracts of projects in the sequence of projects
exist in the sequence of contracts. In addition to the
above two, theordering constraint specifies that
contracts appear in the sequence of contracts in the
increasing order of their contract numbers. There is
also a self-explanatoryfundsRange constraint.

XMLprojectManagement: THEORY
BEGIN

IMPORTING XMLcomplex, XMLcontract,
XMLproject, XMLsequence, XMLschema
XMLprojectManagement:

TYPE+ FROM XMLschema

projects: [XMLprojectManagement ->
XMLsequence[XMLproject]]

contracts: [XMLprojectManagement ->
XMLsequence[XMLcontract]]

M: VAR XMLprojectManagement
p: VAR XMLproject
c: VAR XMLcontract

uniquenessConstraint(M): bool =
(FORALL (c1,c2: XMLcontract):

member(contracts(M),c1)
AND member(contracts(M),c2) AND

contractNo(contractAttributes(c1)) =
contractNo(contractAttributes(c2))

IMPLIES c1 = c2)

referentialConstraint(M): bool =
(FORALL (p,c): (member(projects(M),p) AND

contract(projectElements(p)) = c)
IMPLIES

(EXISTS (c1:XMLcontract):
(member(contracts(M),c1) AND

(contractNo(contractAttributes(c1)) =
contractNo(contractAttributes(c))))))

orderingConstraint(M): bool =
(FORALL (c1,c2: XMLcontract,

n1,n2: below(length(contracts(M)))):
member(contracts(M),c1) AND
member(contracts(M),c2) AND

contractNo(contractAttributes(c1)) <=
contractNo(contractAttributes(c2)) AND

nth(contracts(M))(n1) = c1 AND
nth(contracts(M))(n2) = c2

IMPLIES n1 <= n2)

fundsRange(M): bool =
(FORALL (n: below(length(projects(M)))):

fundsConstraint(nth(projects(M))(n)))

consistent(M): bool =
uniquenessConstraint(M) AND
referentialConstraint(M) AND

orderingConstraint(M) AND

fundsRange(M)
END XMLprojectManagement

6 TRANSACTION
VERIFICATION

In this section we show how transactions are specified
in a declarative, logic-based style, and demonstrate a
proof strategy applied to verify the transaction safety
with respect to the schema constraints.
XMLprojectTransaction is a transaction

theory that contains specification of both the frame
constraint and the actual update that the transaction
performs. The frame constraint specifies which of the
integrity constraints are not affected by the transac-
tion. This particular transaction only updates contract
funds and hence it has no impact on the uniqueness,
referential, and ordering constraints.

Explicit specification of the frame constraints is es-
sential in our proof strategy and guides the prover ap-
propriately. The actual update that the transaction per-
forms is specified in a declarative fashion as a predi-
cate over a pair of object states, the states before and
after transaction execution. A transaction is then a bi-
nary predicate specified as a conjunction of its frame
constraint and the actual update constraint.

XMLprojectTransaction: THEORY
BEGIN

IMPORTING XMLprojectManagement
M1,M2: VAR XMLprojectManagement

frameAx(M1,M2): bool =
(uniquenessConstraint(M1) IMPLIES

uniquenessConstraint(M2)) AND
(referentialConstraint(M1) IMPLIES

referentialConstraint(M2)) AND
(orderingConstraint(M1)

IMPLIES orderingConstraint(M2))

update(M1,M2): bool =
length(projects(M1)) =
length(projects(M2)) AND

FORALL (n:below(length(projects(M2)))):
(funds(projectElements(

nth(projects(M2))(n))) =
funds(projectElements(

nth(projects(M1))(n)))+ 100000)

transaction(M1,M2): bool =
frameAx(M1,M2) AND
update(M1,M2)

END XMLprojectTransaction

In order to prove that a transaction conforming
to the above theory maintains the integrity of the
XMLprojectManagment database, the following
theory is constructed. To simplify the proof, a simple

PROGRAM VERIFICATION TECHNIQUES FOR XML SCHEMA-BASED TECHNOLOGIES

91



update lemma is proved first. The integrity theorem is
then proved using the update lemma.

VerifyProjectTransaction: THEORY
BEGIN

IMPORTING XMLprojectTransaction
M1,M2: VAR XMLprojectManagement

updateLemma: LEMMA fundsRange(M1) AND
update(M1,M2) IMPLIES fundsRange(M2)

Integrity: THEOREM FORALL (M1,M2):
consistent(M1) AND transaction(M1,M2)

IMPLIES consistent(M2)
END VerifyProjectTransaction

Consider an example of a characterization of a
transaction update that violates the referential in-
tegrity constraint and hence itsIntegrity theorem
fails. Let us definebadUpdate as

badUpdate(M1,M2): bool =
length(projects(M1)) > 0 AND

projects(M2) = projects(M1) AND
length(contracts(M2)) = 0

This update does not affect the sequence of projects
but it deletes all contracts which is an obvious vi-
olation of referential integrity. The PVS attempted
proof of theupdateLemma leads to a contradiction
demonstrating violation of integrity.

7 RELATED RESEARCH

The types as theories view is based on (Goguen,
1991). This view is also the basis of previous re-
sults on behavioral compatibility problems for object-
oriented languages (Alagić and Kouznetsova, 2002),
generic data model management (Alagić and Bern-
stein, 2002), and semantics of objectified XML
(Alagić and Briggs, 2004).

A classical result on the application of theorem
prover technology based on computational logic to
the verification of transaction safety is (Sheard and
Stemple, 1989). Other results include (Benzanken
and Schaefer, 1997), usage of Isabelle/HOL (Spelt
and Even, 1999), and PVS (Alagić and Logan, 2004).

A variety of recent results address the problems
of integration of a type system for XML with stan-
dard type systems (Gapayev and Pierce, 2003; Ben-
zanken et al., 2003; Hosoya and Pierce, 2003; Hosoya
et al., 2005; Bierman et al., 2004; Simeon and Wadler,
2003). However, these results are confined to the
problems of an integrated type system, and do not ad-
dress the issue of logic-based constraints, which is a
distinctive feature of our work.

A variety of results are available on constraints for
XML such as (Fan and Simeon, 2003; Buneman et al.,
2002; Kuper and Simeon, 2001). We consider XML

constraints associated with a type system (Alagić and
Briggs, 2004), and provide a prover technology to rea-
son about constraints. This is probably the most dis-
tinctive feature of our work with respect to other re-
lated results.

In a separate piece of research (Alagić et al., 2006)
we make use of a temporal logic specified by a suit-
able PVS theory in order to prove properties of object-
oriented programs. This makes it possible to apply the
prover technology to constraint based object-oriented
technologies such as JML (Leavens et al., 2005) and
to technologies that integrate the object-oriented tech-
nology with XML (Bierman et al., 2004).

8 CONCLUSIONS

Our experience in using PVS shows that intuitive ver-
ification techniques, even if they are largely formal,
are inadequate. We discovered over and over again
that in human generated proofs there are many as-
sumptions that are not carefully specified while cor-
rectness of proofs depends critically upon those as-
sumptions. One advantage of a prover is that it re-
quires careful specification of all the relevant con-
straints and assumptions, otherwise the most obvious
simple properties are not provable.

Another issue is that PVS does not check consis-
tency of a collection of axioms. This means that
systems of axioms should be avoided when possible
since they may be inconsistent and hence the proofs
would not be valid. This is why a definitional style has
been used in the paper, specifying a variety of con-
straints as formulas, and using PVS to prove that the
desired properties follow from these definitions.

A further conclusion is that tools such as PVS are
not easy to use and require expertise and experience.
A valid research goal is to develop proof strategies for
particular tasks following the guidelines in (Owre and
Shankar, 2005; Archer et al., 2003). For a transaction
verification proof strategy, a critical issue was sepa-
ration of frame constraints from the logic-based spec-
ification of the actual updates. This strategy avoids
expanding and rewriting the frame constraints and
makes it possible to focus on the details of the proof of
the active part of a transaction. In order to make these
tools usable by typical programmers, a high-level user
friendly interface based on suitable proof strategies is
really required.

From the research viewpoint the availability of a
fairly sophisticated type system in PVS which in-
cludes a particular form of subtyping and bounded
parametric polymorphism was essential. This made it
possible to use the PVS predicate subtyping to specify
the semantic compatibility conditions of type deriva-
tions in XML Schema and represent sequences of ele-

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

92



ments and sets of attributes using parametric theories.
Higher-order features of PVS also proved to be very
important.

The compromise between static and dynamic
checking amounts to treating constraints that are
meant to be checked at run-time as axioms and prov-
ing the remaining ones as theorems. The proofs will
be valid as long as the truth of the axioms is guar-
anteed at run-time. At the same time the constraints
that are proved as theorems under the above assump-
tions will not be checked at run-time. This improves
efficiency of dynamic checking of constraints and re-
liability of transactions.

REFERENCES

Alagić, S. and Bernstein, P. A. (2002). A model the-
ory for generic schema management. InProceedings
of DBPL 2001, Lecture Notes in Computer Science,
2397, pp. 228 - 246. Springer.

Alagić, S. and Briggs, D. (2004). Semantics of objectified
XML. In Proceedings of DBPL 2003, Lecture Notes
in Computer Science, 2921, pp. 147-165. Springer.

Alagić, S. and Kouznetsova, S. (2002). Behavioral com-
patibility of self-typed theories. InProceedings of
ECOOP 2002, Lecture Notes in Computer Science,
2374, pp. 585-608. Springer.

Alagić, S. and Logan, J. (2004). Consistency of Java trans-
actions. InProceedings of DBPL 2003, Lecture Notes
in Computer Science, 2921, pp. 71-89. Springer.

Alagić, S., Royer, M., and Crews, D. (2006). Tem-
poral verification of Java-like classes. InPro-
ceedings of the ECOOP 2006 FTfJP Workshop
(Formal Techniques for Java like Programs).
http://www.disi.unige.it/person/AnconaD/FTfJP06/.

Archer, M., Vito, B. D., and Munoz, C. (2003). Developing
user strategies in PVS: A tutorial. InProceedings of
STRATA 2003.

Barnett, M., Rustan, K., and Schulte, W. (2004). The Spec#
programming system: an overview. InMicrosoft Re-
search 2004, also in Proceedings of CASSIS 2004.

Benzanken, V., Castagna, G., and Frisch, A. (2003). Cduce:
An XML-centric general-purpose language. InPro-
ceedings of ICFP 2003, pp. 51-63. ACM.

Benzanken, V. and Schaefer, X. (1997). Static integrity con-
straint management in object-oriented database pro-
gramming languages via predicate transformers. In
Lecture Notes in Computer Science, 1241, pp. 60-84.
Springer.

Bierman, G., Meijer, E., and Schulte, W. (2004). The
essence of data access incω. In Microsoft Research.

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W.-
C. (2002). Reasoning about keys for XML. InPro-
ceedings of DBPL 2001, Lecture Notes in Computer
Science, 2397, pp.133-148. Springer.

Fan, W. and Simeon, J. (2003). Integrity constraints for
XML. In Journal of Computer and System Sciences
66, pp. 254-291.

Gapayev, V. and Pierce, B. (2003). Regular object types. In
Proceedings of ECOOP 2003, Lecture Notes in Com-
puter Science, 2743, pp. 151-175. Springer.

Goguen, J. (1991). Types as theories. InG. M. Reed, A.
W. Roscoe and R. F. Wachter, Topology and Category
Theory in Computer Science, pp. 357-390. Clarendon
Press, Oxford.

Hosoya, H., Frisch, A., and Castagna, G. (2005). Paramet-
ric polymorphism for XML. InProceedings of POPL
2005, pp. 50-62. ACM.

Hosoya, H. and Pierce, B. (2003). XDuce: A typed XML
processing language. InACM Transactions on Inter-
net Technology, 3(2), pp. 117-148. ACM.

Kuper, G. M. and Simeon, J. (2001). Subsumption for XML
types. InProceedings of ICDT, Lecture Notes in Com-
puter Science, 1973, pp. 331-345. Springer.

Leavens, G. T., Poll, E., Clifton, C., Cheon, Y., Ruby, C.,
Cook, D., Muller, P., and Kiniry, J. (2005).JML
Reference Manual. http://www.cs.iastate.edu/ leav-
ens/JML/, Iowa State, draft edition.

Liskov, B. and Wing, J. M. (1994). A behavioral notion
of subtyping. InACM Transactions on Programming
Languages and Systems, pp. 1811-1841. ACM.

Owre, S. and Shankar, N. (2005).Writing PVS proof strate-
gies. SRI International, http://www.csl.sri.com.

Sheard, T. and Stemple, D. (1989). Automatic verification
of database transaction safety. InACM Transactions
on Database Systems 14, pp. 322-368. ACM.

Simeon, J. and Wadler, P. (2003). The essence of XML. In
Proceedings of POPL 2003, pp. 1-13. ACM.

Spelt, D. and Even, S. (1999). A theorem prover-based
analysis tool for object-oriented databases. InLec-
ture Notes in Computer Science, 1579, pp 375 - 389.
Springer.

W3C (2006a).W3C: XML Schema Part 0: Primer. W3C,
http://www.w3.org/TR/xmlschema-0/, second edition.

W3C (2006b). W3C: XML Schema Part 1: Structures.
W3C, http://www.w3.org/TR/xmlschema-1/, second
edition.

PROGRAM VERIFICATION TECHNIQUES FOR XML SCHEMA-BASED TECHNOLOGIES

93


