
A MULTILINGUAL MARKUP TRANSLATION WEB-SERVICE*
An Entry Level Solution to Internationalize XML Markup Vocabularies

Alejandro Bia, Juan Malonda, Federico Botella
CIO, Universidad Miguel Hernández, Elche, Spain

Jaime Gómez
Departamento deLenguajes y Sistemas Informáticos, Universidad de Alicante, Alicante, Spain

Keywords: Internet services, XML markup, multilingual markup , internationalization.

Abstract: Markup is based on mnemonics (i.e. element names, attribute names and attribute values). These
mnemonics have meaning, being this one of the most interesting features of markup. Human understanding
of this meaning is lost when the encoder doesn't understand the language the mnemonics are based on. By
“multilingual markup” we refer to the use of parallel sets of tags in various languages, and the ability to
automatically switch from one to another. We started working with multilingual markup in 2001, within the
Miguel de Cervantes Digital Library. By 2003, we have built a set of tools to automate the use of
multilingual vocabularies (Bia et al, 2003). This set of tools translates both XML document instances, and
XML document validators (we first implemented DTD translation, and then Schemas (Bia et al, 2004). First
we translated the TEI tagset, and most recently the Dublin Core tagset (Bia et al, 2005) to Spanish, and
Catalan. Other languages were added later1. Now we present a Multilingual Markup Website that provides
this type of translation services for public use.

1 PREVIOUS WORK

At the time when we started this multilingual
markup initiative in 2001 there were very few
similar attempts to be found (Pei-Chi WU, 2000).
Today they are still scarce (Bryan, 2002 and Cover,
2005).

Concerning document content, XML provides
built-in support for multilingual documents: it
provides the predefined lang attribute to identify the
language used in any part of a document. However,
in spite of allowing users to define their own tagsets,
XML does not explicitly provide a mechanism for
multilingual tagging.

1.1 The Mapping Structure

We started by defining the set of possible
translations of element names, attribute names, and
attribute values to a few target languages (Spanish,
Catalan and French). We stored this information in
an XML translation mapping document called
“tagmap”, whose structure in DTD syntax is the
following:

<!ELEMENT tagmap (element)+ >
<!ELEMENT element (attr)* >
 <!ATTLIST element
 en CDATA #REQUIRED
 es CDATA #REQUIRED
 fr CDATA #REQUIRED>
<!ELEMENT attr (value)* >
 <!ATTLIST attr
 en CDATA #REQUIRED
 es CDATA #REQUIRED
 fr CDATA #REQUIRED>
<!ELEMENT value EMPTY >
 <!ATTLIST value

* This work is part of the METASIGN project, and has
been supported by the Ministry of Education and
Science of Spain through the grant number: TIN2004-
00779.

1 Translations of the TEI tagset by: Alejandro Bia and and
Manuel Sánchez (Spanish), Régis Déau (French),
Francesca Mari (Catalan), Arno Mittelbach (German)

63Bia A., Malonda J., Botella F. and Gómez J. (2006).
A MULTILINGUAL MARKUP TRANSLATION WEB-SERVICE - An Entry Level Solution to Internationalize XML Markup Vocabularies.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 63-68
DOI: 10.5220/0001257900630068
Copyright c© SciTePress

 en CDATA #REQUIRED
 es CDATA #REQUIRED
 fr CDATA #REQUIRED >

Figure 1: Structure of the original tagmap.xml file.

This structure is pretty simple, and proved useful

to support the mnemonic equivalences in various
languages. It was meant to solve ambiguity
problems, like having two attributes of the same
name in English, who should be translated to
different names in a given target language. For this
purpose, this structure obliges us to include all the
attribute names for each element and their
translations. The problem with this is global
attributes, which in this approach needed to be
repeated, once for each element. This made the
maintenance of this file cumbersome. Sebastian
Rahtz then proposed another structure
(http://cvs.sourceforge.net/viewcvs.py/tei/I18N/teina
mes.xml), under the assumption that an attribute
name has the same meaning in all cases, no mater
the element it is associated to, and accordingly it
would have only one target translation to a given
language. This is usually the case, and although
theoretically there could be cases of double
meaning, as above mentioned, they do not seem to
appear within the TEI. So the currently available
“teinames.xml” file follows Sabastian’s structure.
Note that “element”, “attribute” and “value” appear
at the same level, instead of nested:

<!ELEMENT i18n (element | attribute

| value)+>
<!ELEMENT element (equiv | desc)* >
 <!ATTLIST element
 ident CDATA #REQUIRED >
<!ELEMENT attribute (equiv | desc)*

>
 <!ATTLIST attribute
 ident CDATA #REQUIRED >
<!ELEMENT value (equiv)* >
 <!ATTLIST value
 ident CDATA #REQUIRED >
<!ELEMENT equiv EMPTY >
 <!ATTLIST equiv
 xml:lang CDATA #REQUIRED
 value CDATA #REQUIRED >

In 2004, we discussed the idea of adding brief

text descriptions to each element, the same brief
descriptions of the TEI documentation, but now
translated to all supported languages. This would
allow the structure to provide help or documentation

services in several languages, as another
multilingual aid. This capability was then added to
the “teinames.xml” file structure, although the
translations of the all the descriptions still need to be
completed:

<!ELEMENT desc (#PCDATA) >
 <!ATTLIST desc
 xml:lang CDATA #REQUIRED >

Figure 2: Structure of the teinames.xml file.

2 THE MULTILINGUAL
MARKUP WEB SERVICE

By means of a simple input form, the markup of a
structured file can be automatically translated to the
chosen target language. The user can choose a file to
process (see figure 3) by means of a "Browse"
button.

Currently, only TEI XML document instances
are allowed. In the near future, the translation of TEI
DTDs, W3C-Schemas and Relax-NG Schemas will
be added, and later, other markup and metadata
vocabularies will be supported, like Docbook (Allen
et al, 1997) and DublinCore (http://dublincore.org/).

WEBIST 2006 - INTERNET TECHNOLOGY

64

Figure 3: The Multilingual Markup Translator form.

The system uses file extensions to identify the

type of file submitted. Allowed file extensions are:
.xml for document instances, .dtd for DTDs, .xsd
for W3C Schemas, and .rng for RelaxNG schemas.

The document to be uploaded must be valid and
well-formed. If the document is not valid, the
translation will not be completed successfully, and
an error page will be issued. Once the source file has
been chosen, the user must indicate the language of
the markup of this source file, as well as the target
language desired for the output. This is done by
means of radio buttons.

It would not be necessary to indicate the
language of the markup of the source file if it was
implicit in the file itself. We thought of three ways
to do this:

- To use the name of the root tag to indicate the
language of the vocabulary of the XML document.
In this way, TEI.2 would be standard English based
TEI, TEIes.2 would indicate that the document has
been marked up using the Spanish tagset, and in the
same way TEIfr.2, TEIde.2, TEIit.2 would indicate
French, German, and Italian, for instance.

- To add an attribute to the root element, to
indicate the language of the tagset, for instance:
<TEI.2 markupLang = “it”> would indicate that the
markup is in Italian.

- Use the name of the DTD to indicate the
language of the tagset. TeiXLite.dtd would be
English, while TeiXLiteFr.dtd would be the French
equivalent.

Option 3 is by far the worst method, since a
document instance may lack a DOCTYPE
declaration, and there may be lots of customized TEI
DTDs everywhere with very different and
unpredictable names. However, options 1 and 2 are
reasonably good methods to identify the language of

the markup. Consensus is needed to make one of
them the common practice.

3 IMPLEMENTATION DETAILS

For the website pages we used JSP (dynamic pages)
and HTML (static pages), and these are run under a
Tomcat 5.5 web server. For the translations, we used
XSLT, as described in (Bia et al, 2003)

3.1 Automatic Generation of
Markup Translators Using
XSLT

The XSLT model is thought to transform one input
XML file into one output file (see figure 4), which
could be XML, HTML, XHTML or plain text, and
this includes program code. It does not allow the
simultaneous processing of two input files.

Figure 4: The XSLT processing model.

There are certain cases when we would like to

process two input files altogether, like markup
translation (see figure 5).

Figure 5: The ideal transformation required.

As XSLT does not allow this, two alternatives

occurred to us, both comprising two transformation
steps.

The first approach is to automatically generate
translators. Douglas Schmidt said: “I prefer to write
code that writes code, than to write code” (Schmidt,
2005). This is what we have done for the

A MULTILINGUAL MARKUP TRANSLATION WEB-SERVICE - An Entry Level Solution to Internationalize XML
Markup Vocabularies

65

MMWebsite, i.e. to pre-process the translation map
in order to generate an XSLT translation script
which includes the translation knowledge embedded
in its logic. Then this generated script can perform
all the document-instance translations required. The
mapping structure supports the language
equivalences for various languages, so we should
generate a translator for every possible pair of
languages. Whenever the mapping structure is
modified, a new set of translators must be generated.
Fortunately, this is an automated process (se figure
6).

The other alternative would be to merge the two
input files into a new single XML structure, and then
to process such file which would contain both the
XML document instance, and the translation
mapping information (see figure 7). This implies
joining the two XML tree structures as branches of a
higher level root.

Although this approach may prove useful for
some problems, we did not use it for the
MMWebsite, because the file merging preprocessing
must be done for each file to translate, increasing the
web service response time. Using preprocessed
translators instead proved to be a faster solution.

This limitation, which is proper of the XSLT
processing model, could be avoided by using a
standard programming language like Java instead.

3.2 How We Actually Do It

The mapping document which contains all the
necessary structural information to develop the
language converters is read by the transformations
generator, which was built as an XSLT script. XSL
can be used to process XML documents in order to
produce other XML documents or a plain text
document. As XSL stylesheets are XML, they can
be generated as an XSL output. We used this feature

to automatically generate both an English-to-local-
language XSL transformation and a local-language
to English XSL transformation for each of the
languages contained in the multilingual translation
mapping file. In this way we assured both ways
convertibility for XML documents (see figure 8).

For each target language we also generate a
DTD or a Schema translator. In our first attempts,
this took the form of a C++ and Lex parser. Later,
we changed the approach. Now we first convert the
DTD to a W3C Schema, then we translate the
Schema to the local language, and finally we can
(optionally) generate an equivalent translated DTD.
This approach has the advantage of not using
complex parsers (only XSLT) and also solves the
translation of Schemas. In our latest implementation,
the user can freely choose amongst DTD, W3C
Schema and RelaxNG, both for input and output,
allowing for a format conversion during the
translation process.

Many other markup translators can be built to
other languages in the way described here.

4 CONCLUSIONS

Amongst the observed advantages of using markup
in one’s own language are: reduced learning times,
reduction of errors and higher production. It may
also help spread the use of XML vocabularies like
DC, TEI, DocBook, and many others, into non-
English speaking countries. Cooperative
multilingual projects may benefit from the
possibility of easily translating the markup to each
encoder's language. Last, but not least, scholars of a
given language feel more comfortable tagging their
texts with mnemonics based on their own language.

Figure 6: Pre-generation of a translating XSLT script, to then translate the document instance.

WEBIST 2006 - INTERNET TECHNOLOGY

66

Figure 7: Merging the two files before applying XSLT.

Figure 8: Schema translation using XSLT.

A MULTILINGUAL MARKUP TRANSLATION WEB-SERVICE - An Entry Level Solution to Internationalize XML
Markup Vocabularies

67

5 FUTURE WORK

Multilingual Help Services: As already said, brief
descriptions for elements and attributes in different
languages have been added to the mapping structure.
This allows for multilingual help services, like
generating a glossary in the chosen language of the
elements and attributes used in a given document, or
a given DTD/Schema. We are working on adding
this feature.

REFERENCES

Allen, T., Maler, E. and Walsh, N., 1997. DocBook DTD,
© 1992-1997 HaL Computer Systems, Inc., O'Reilly
& Associates, Inc., Fujitsu Software Corporation, and
ArborText, Inc, http://www.ora.com/davenport/

Bia, A., Sánchez-Quero, M. and Déau, R., 2003.
Multilingual Markup of Digital Library Texts Using
XML, TEI and XSLT. In XML Europe 2003
Conference and Exposition, Organized by
IDEAlliance, 5-8 May 2003, Hilton Metropole Hotel,
London, p. 53, http://www.xmleurope.com/

Bia, A., Sánchez-Quero, M., 2004. The Future of Markup
is Multilingual, ACH/ALLC 2004: Computing and
Multilingual, Multicultural Heritage. The 16th Joint
International Conference of the Association for
Literary and Linguistic Computing and the
Association for Computers and the Humanities, 11-16
June 2004, Göteborg University, Sweden, p 15-18,
http://www.hum.gu.se/allcach2004/AP/html/prop119.
html

Bia, A., Malonda, J. and Gómez, J, 2005. Automating
Multilingual Metadata Vocabularies. In DC-2005:
Vocabularies in Practice, Eva Mª Méndez Rodríguez
(ed.), p. 221-229, 12-15 September 2005, Carlos III
University, Madrid. ISBN 84-89315-44-2.
http://dc2005.uc3m.es/

Bryan, J., 2002. KR’s Multilingual Markup, TechNews
Volume 8, Number 1: January/February 2002
http://www.naa.org/technews/TNArtPage.cfm?AID=3
880

Cover, R., 2005. Markup and Multilingualism, last visited
online 2005-4-25 at Cover Pages:
http://xml.coverpages.org/multilingual.html

Pei-Chi WU, 2000. Translation of Multilingual Markup in
XML, 2000 International Conference on the theories
and practices of Electronic Commerce, Part II, Session
14, pages 21-36, Association of Taiwan Electronic
Commerce, Taipei, Taiwan, October 2000.
http://www.atec.org.tw/ec2000/PDF/14.2.pdf

Schmidt, D., 2005. Opening Keynote, MoDELS 2005:
ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems, Montego
Bay, Jamaica, 2-7 October 2005.

WEBIST 2006 - INTERNET TECHNOLOGY

68

