
A MODEL FOR AUTOMATIC MATCHING OF SECURITY
REQUIREMENTS DURING SEMANTIC WEB SERVICE

DISCOVERY

Andreas Friesen, Danna Feng
SAP Research CEC Karlsruhe,SAP AG,Vincenz-Priessnitz-Str.1 ,D-76131 Karlsruhe,Germany

Keywords: Semantic Web Services, Security, Security Ontology, Security Policy, Security Requirements, Semantic
Discovery, Semantic Selection, QoS.

Abstract: This paper describes a semantic approach for modelling security requirements of requesters and providers of
Semantic Web Services. These semantic descriptions can be used either during semantic service discovery
or service selection phase for automatic compatibility verification of the security requirements of a service
requester and provider. The security requirements model, ontology classifying existing security services and
mechanisms, and a semantic matchmaking method relying on description logics are described in detail. This
work is related to several semantic and non-semantic Web Services standards. The relationship to the most
relevant of them has been worked out.

1 INTRODUCTION

Web Services enabled business systems can be used
by anyone, from anywhere, at any time, and on any
type of platform. Semantic Web Services promise a
higher degree on automation concerning discovery,
invocation, composition, and monitoring of Web
Services. Security and trust are very important
factors for the success of the Semantic Web. In this
work, the security requirements for Semantic Web
Services are described in a manner that the security
mechanisms based on the existing security standards
will be represented in formal logics (to be more
precisely in description logics (Baader, F. et al,
2003)). Description logics are directly supported by
one of the Web Ontology Language (OWL) dialects
OWL-DL (Smith, M. K. et al, 2005). This allows
taking into account the security requirements of
requesters/providers during the Semantic Web
Service discovery or selection phase, i.e., enabling
automatic compatibility verification.

For the representation of different security
mechanisms we have chosen as the basis the Web
Services Security Policy Language (Web Services
Policy Language, 2005) that has collected many
standard security mechanisms. All security
mechanisms are represented as classes in OWL-DL.
The security requirements on the security services

are described either using these classes directly or by
logical combinations of these classes.

At first, we introduce the Web Services Policy
Framework (WS-Policy) (Web Services Policy
Framework, 2005) and Web Services Security
Policy Language (WS-SecurityPolicy) (Web
Services Policy Language, 2005). Then, we describe
our basic concept for realizing security requirements
matching.

The classes of security services and the standard
security mechanisms are then formally described in
an ontology that is used in the expressions of
security requirements of communicating parties.

In order to realize automatic matching of security
requirements, they must be described in a machine
understandable language. WS Policy describes
requirements in the form of policies, policy
alternatives and assertions. We map the concepts
used in WS-Policy to OWL-DL starting from the
work described in (Kolovski, V. et al, 2005) and
extending it.

Finally, an example demonstrates how to
describe security requirements in OWL-DL at the
capability-level and how to test the compatibility
between the requirements of two communicating
parties.

387Friesen A. and Feng D. (2006).
A MODEL FOR AUTOMATIC MATCHING OF SECURITY REQUIREMENTS DURING SEMANTIC WEB SERVICE DISCOVERY.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 387-392
DOI: 10.5220/0001253603870392
Copyright c© SciTePress

2 WEB SERVICES POLICY
LANGUAGE

A Policy for a Web Service consists of facts, or
assertions, and rules that apply to a particular Web
Service. A policy would be used to describe or point
to documents describing the owning business,
associated products, keywords, taxonomies for the
service, security policies, quality of service
attributes, etc. A Policy may be used by the
overarching concerns: security, quality of service,
and management (Web Services Architecture, 2005).

Web Services Policy Framework (WS-Policy)
(Web Services Policy Framework, 2005) provides a
general purpose model and corresponding syntax to
describe the policies of a Web Service. WS-Policy
defines a base set of constructs for expressing the
capabilities, requirements and general characteristics
of entities in a Web Services based system and can
be extended by other Web Services specifications.
The requirements and capabilities of a policy subject
are specified by policy assertions. A policy subject is
an entity (e.g., service provider, service requester,
message, resource, interaction) with which a policy
can be associated. A collection of policy assertions
builds a policy alternative. WS-Policy defines a
policy as a collection of policy alternatives and
offers a normal form for policy expression which is
outlined as follows:

<wsp:Policy …>
 <wsp:ExactlyOne>
 [<wsp:All>
 [<Assertion …> … <Assertion>]*
 </wsp:All>]*
 </wsp:ExactlyOne>
<wsp:Policy>

<wsp:Policy> indicates the beginning of a

policy expression. <wsp:ExactlyOne> defines a
collection of policy alternatives. <wsp:All> defines
a policy alternative – a collection of policy
assertions. The star character * denotes zero or more
occurrences.

WS-SecurityPolicy (Web Services Policy
Language, 2005) indicates the policy assertions with
respect to security features. It defines a base set of
assertions that describe how messages are to be
secured (e.g., Integrity Assertion, Confidentiality
Assertion) and which token types (e.g., X509Token
Assertion, KerberosToken Assertion), cryptographic
algorithms (e.g., AlgorithmSuite Assertion) and
mechanisms should be used.

WS-Policy and WS-SecurityPolicy provide us a
normal form for expressing security policies, but are
not sufficient for automatic matching because of the
lack of semantics.

3 SECURITY MODEL

In this work, we consider a simple Semantic Web
Services model with two actors: Service Requester
and Service Provider. The main focus of the
approach is to capture the security requirements of
the requesters and providers on the Semantic Web
Services at the capability level not at the message
level. We define therefore policy alternatives as
various security requirements alternatives that have
the following services: Authentication,
Authorization, Integrity, Confidentiality and Non-
repudiation. These services are chosen, because they
are most common and important for security
solutions. In the Web Services world, there are many
security standards implemented to realize these
security services. In the Semantic Web Services
world, although there are some security approaches
advertised, a conclusive solution is still expected.

Semantic Web Services are technologically seen
not totally different from Web Services. Quite the
contrary, they are an extension of Web Services. In
(Berners-Lee, T., 1998)(Dumbill, E., 2000) Tim
Berners-Lee points out that the Semantic web
extends the World Wide Web through the use of
standards, mark-up languages and related processing
tools. Figure 1 illustrates the layered architecture of
the Semantic Web.

The first two levels describe the traditional Web.
URI enables the navigation of resources, while
Unicode enables computer to “read” the content of
resources. XML provides a basic format for
structured documents but without particular
semantics. RDF can describe the resources and their
properties and make this information machine
understandable, but is very limited for logical
description of resources and their relationships (e.g.,
negation or intersection). RDF Schema declares the
existence of properties and can constrain the types of
objects they can apply to. The ontology layer offers
more meta-information such as transitive property or
cardinality of the objects. The logic layer enables
describing logic (e.g. union, intersection, predicate

Figure 1: Architecture of Semantic Web.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

388

logic and quantification) in order to realize proof by
using the inference rules defined on the logic layer.

In the light of this architecture, our approach
reuses to a certain degree the security standards and
mechanisms of the Web Services. Based on these
standards, we define an ontology formalizing the
concepts and relationships used to describe security
services and requirements. We describe which
security standards and mechanisms can be used for
each service. These security standards and
mechanisms represent the basic components
(classes) for describing this ontology. By using the
classes defined in this ontology, a service provider
can define the security policies for a Web Service
and a service requester can also describe security
policies of its goal. Furthermore, it is important to
distinguish between supported security requirements
and necessary security requirements. A supported
requirement of an entity (a service provider or a
service requester) means that the entity supports all
mechanisms applied to realizing the services
specified in this requirement. A necessary
requirement of an entity means that the entity
requires some special mechanisms that its potential
communicating party must support. These specially
required mechanisms must be also supported by the
entity itself. Hence, necessary security requirement
is a subset of supported requirement. The policy
matching takes place between necessary
requirements on one side and supported
requirements on the other side. The following
example demonstrates the necessity of the
differentiation between supported requirements and
necessary requirements. If a service requester
supports signature algorithms RSA and DSA, while
a service provider supports signature algorithms
DSA and ECDSA. Without the differentiation
between supported requirements and necessary
requirements, their security requirements should be
compatible, because both of them support at least
one algorithm DSA. In the case that the service
provider provides a certificate with a ECDSA key,
the service requester can not verify signatures
created using this key, because it doesn’t support
ECDSA. This differentiation realizes more
granularities for expression of security requirements.
Figure 2 illustrates this idea.

In the following, it will be showed which
security standards and mechanisms can be used for
describing security services.

Authentication: Authentication can be realized
by using security token, e.g., KerberosToken or
X509Token. Furthermore, the communicating
parties can also be authenticated by using their
digital signatures or only by using a random value
depending on the used token type.

Integrity: Using KerberosToken or X509Token
combined with digital signature can provide data
integrity protection.

Confidentiality: Several Encryption algorithms
support confidentiality.

Non-Repudiation: Non-Repudiation can be
guarantied by using digital signature and timestamp
or/and a random value.

Authorization is currently a subject for further
work. There are some considerations about
authorization such as using RelToken (Rights
Expression Language) (Web Services Security,
2005), XACMLToken (eXtensible Access Control
Markup Language) (eXtensible Access Control
Markup Language, 2005), SAML (Security
Assertion Markup Language) (Web Services
Security, 2003), and the credential based access
control suggested in (Agarwal, S. et al, 2004).

Figure 3 illustrates the simplified class diagram
of the concepts (taxonomy) used to specify security
requirements in the security model.

4 REPRESENTING WEB
SERVICE SECURITY
REQUIREMENTS IN OWL-DL

The previously indicated assertions defined in WS-
SecurityPolicy are only for expressing security
constraints and capabilities and suffer from a lack of
formal semantics. The intent of this work is to
realize the automatic matching of available security
requirements between communicating parties which
must be described with machine understandable
metadata. A taxonomy describing security concepts
has been defined in the last section. By using the
basic elements – the classes defined in this
taxonomy, WS-SecurityPolicy can be described in a
machine understandable language.

An approach of mapping the WS-Policy
language into the description logic fragment of the
Web Ontology Language (OWL-DL) has been
proposed in (Kolovski, V. et al, 2005). An
investigation about ontology based specification of
Web services policies has been described in

Figure 2: The basic concept.

A MODEL FOR AUTOMATIC MATCHING OF SECURITY REQUIREMENTS DURING SEMANTIC WEB SERVICE
DISCOVERY

389

(Grimm, S. et al, 2004). We reuse parts of these
approaches and extend them in order to describe
Web Services security requirements.

WS-Policy involves policy assertions and
combinations of assertions. Therefore, by describing
the assertions as atomic propositions and the
combinations of the assertions by conjunction/
disjunction, it is possible to map the policy language
constructs into logic. This mapping defines a clear
semantics for the WS-Policy structures.

wsp:ExactlyOne means that at least one of the
alternatives in the policy must be supported by a
service requester, so that this policy can be
supported by the requester. However, the requester
can only apply exactly one valid policy alternative.

wsp:All means all of the policy assertions
mentioned in this policy alternative must be
supported by a requester. Thus, it is a logic
conjunction and can be expressed as an OWL
intersection.

The normal form of WS-Policy can be
represented in OWL as follows:

Policy ≡ UnionOf (PolicyAlternative1, …
PolicyAlternativen) (n ≥ 0)
PolicyAlternativei ≡ IntersectionOf
(Assertion1, … , Assertionm) (0 ≤ i ≤ n,
m ≥ 0)

In our proposal, the mapping is extended to
supply description of security requirements as policy
alternatives. Security policy can be treated as a
policy that is represented by the union of various
security requirements. Each of them can consist of

five previously mentioned security services, which
can be described as policy assertions. However, in
the future the model can be extended to support
additional security services. A formal description of
a security requirement in DL is as follows:

SecurityRequirement ⊑
((≤1 hasAuthentication.Authentication)

⊓ (≤1 hasAuthorization.Authorization)
⊓ (≤1 hasIntegrity.Integrity)
⊓ (≤1 hasConfidentiality.
 Confidentiality)

⊓ (≤1 hasNonRepudiation.
 NonRepudiation))

At first, a security requirement contains each
security service exactly one time, if the requirement
supports it. The specification of a specific
requirement (specialization of SecurityRequirement)
is then represented in this case with “=1”. Each
security service described in this definition as
assertion can be represented as a logical expression
of various security means or mechanisms. How to
describe assertions in DL will be shown below.
Secondly, in the case that a party can not support
one or more of these five services, its security
requirement must not contain these services. Thus
“≤1” is applied to the common specification instead
of “=1”. In the specification of this requirement, the
unsupported security service must be represented as
“⊥” – the bottom concept. In OWL-DL this concept
is described with owl:Nothing. Finally, it is also
possible that a specialization of SecurityRequirement
can support all of the restrictions defined for a

Figure 3: Class diagram of security services (simplified).

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

390

specific security service. That is, this requirement
can support all kinds of security mechanisms defined
for that security service. In this case the
specialization of the SecurityRequirement does not
define further constraints on the security service.

Each assertion can be mapped directly into a
general class of OWL-DL or a class with restriction
that is described by using object properties and other
classes.

For the matching of two policies, we define two
policies as compatible, if Policy1 ⊓ Policy2 is
satisfiable.

The following example illustrates an
authentication requirement. The compatibility test of
the requirements of service requester and service
provider is also outlined.

In this example, authentication is realized by
using XML Signature (XML-Signature Syntax and
Processing, 2005). For simplified description, except
signature algorithms (only asymmetric algorithms),
the other algorithms such as digest algorithms,
canonization algorithms and transform algorithms
usually also needed for XML Signature are not
further specified.

First, we define the supported security
requirements of service requester and service
provider.

PolicyRequirementProviderSupported ⊑
((∃ hasAuthentication.AuthProvider1) ⊓
SecurityRequirement)

PolicyRequirementRequesterSupported ⊑
((∃ hasAuthentication.AuthRequester1) ⊓
SecurityRequirement)

They both support authentication services

realized by XML Signature, whereat the provider
supports XMLSig2, and the requester supports
XMLSig1.

AuthProvider1 ⊑
((=1 hasDigitalSignature.XMLSig2) ⊓
Authentication)

AuthRequester1 ⊑
((=1 hasDigitalSignature.XMLSig1) ⊓
Authentication)

XMLSig1 uses algorithms ECDSA or RSA for
ciphering, while XMLSig2 supports only algorithms
RSA or DSA.

XMLSig1 ⊑ ((=1 hasCipher.(RSA ⊔ ECDSA))
⊓ (XMLSignature))

XMLSig2 ⊑ ((=1 hasCipher.(RSA ⊔ DSA) ⊓
(XMLSignature))

The service provider has a certificate signed with
DSA, while the service requester has a certificate
signed with RSA. In this case, the service provider
requires signature algorithm DSA as his necessary
requirement, while the service requester requires
RSA as his necessary requirement. The necessary
requirements must be a subset of supported
requirements.

XMLSigNecessary1 ⊑ ((=1 hasCipher.RSA
(XMLSignature))

XMLSigNeccessary2 ⊑ ((=1 hasCipher.DSA)
⊓ (XMLSignature))

Based on the definition of compatibility of
policies as indicated above and the differentiation of
supported requirement and necessary requirement,
we define two security requirements as compatible,
if:
• ProviderSupported ⊓ RequesterNecessary is

satisfiable, and
• ProviderNecessary ⊓ RequesterSupported is

satisfiable.
XMLSig1 ⊓ XMLSigNecessary2 is not satisfiable.

Therefore, the security requirements of the provider
and the requester are not compatible.

5 CONCLUSIONS AND FUTHER
RESEARCH DIRECTIONS

In this work, a model for describing Web Services
security requirements at the capability level was
built. This model illustrates our basic idea for
realization of automatic matching of security
requirements in the Semantic Web Services world,
and has been prototypically implemented and tested
using Protégé (The Protégé Ontology Editor and
Knowledge Acquisition System, 2005) with OWL
plug-in and Racer (Racer System, 2005).
Furthermore, a user friendly interface has been
implemented, with which the security requirements
can be reasonably described and matched.

The subjects of further work are summarized as
follows:

At this time, there are no broadly-adopted
specifications for web services security. In this
work, many web services security recommendations
and standards of W3C and OASIS were treated as
basics for the ontology described in this paper.
However, it enables the developer to extend this

A MODEL FOR AUTOMATIC MATCHING OF SECURITY REQUIREMENTS DURING SEMANTIC WEB SERVICE
DISCOVERY

391

ontology with more security mechanisms according
to more security requirements.

As described previously, this model will be
extended with authorization capability.

The model described in this paper is a simplified
model that contains two communicating parties:
service requester and service provider, and the
composed services are not considered within the
scope of this paper, which can be involved in the
further implementation.

The matching of security requirements is at the
capability level of web services. Finally, we
proposed ontology for modelling security
requirements and capabilities of security services,
which can be treated as basis to describe security
services as part of QoS in OWL-S (OWL Web
Ontology Language for Services (OWL-S), 2005) in
future work.

REFERENCES

Agarwal, S., Sprick, B., and Wortmann S. (2004).
Credential Based Access Control for Semantic Web
Services. Retrieved November 20, 2005, from
University of Karlsruhe, Institute of Applied
Informatics and Formal Description Methods (AIFB)
web site: http://www.aifb.uni-karlsruhe.de/WBS/sag
/papers/Agarwal_Sprick_Wortmann-CredentialBased
AccessControlForSemanticWebServices-
AAAI_SS_SWS-04.pdf.

Baader, F., Calvanese, D., McGuinnes, D., Nardi, D., and
Patel-Schneider, P. (2003). The Description Logic
Handbook: Theory, Implementation and Applications.
Cambridge University Press.

Berners-Lee, T. (1998, September). Semantic Web Road
map. Retrieved November 25, 2005, from
http://www.w3.org/DesignIssues/Semantic.html.

Dumbill, E. (2000, December 6). Berners-Lee and the
Semantic Web Vision. Retrieved November 25, 2005,
from http://www.xml.com/pub/a/2000/12/xml2000/
timbl.html.

eXtensible Access Control Markup Language (XACML)
Version 2.0. Oasis standard. (2005, Feb. 1) Retrieved
October 12, 2005, from http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-
spec-os.pdf.

Grimm, S., Lamparter, S., Abecker, A., Agarwal, A.,
Eberhart, A. (2004). Ontology based Specification of
Web Service Policies. Retrieved November 20, 2005,
from University of Karlsruhe, Institute of Applied
Informatics and Formal Description Methods (AIFB)
web site: http://www.aifb.uni-
karlsruhe.de/WBS/sag/papers/Grimm_Lamparter_Abe
cker_Agarwal_Eberhart-
OntologyBasedSpecificationOfWebServicePolicies-

SemanticWebServicesAndDynamicNetworks-
Informatik04-04.pdf.

Kolovski, V., Parsia, B., Katz, Y., and Hendler, J. (2005).
Representing Web Services Policies in OWL-DL.
Retrieved November 24, 2005, from
http://www.mindswap.org/papers/2005/Policy-
ISWC05.pdf.

OWL Web Ontology Language for Services (OWL-S).
November 2, 2004. Retrieved November 25, 2005,
from http://www.w3.org/Submission/2004/07/.

Racer system. Retrieved November 27, 2005, from
http://www.racer-systems.com/de/index.phtml.

Smith, M. K., Welty, C., McGuinness D. L. (Feb, 2004).
OWL Web Ontology Language Guide. W3C
Recommendation. Retrieved November 8, 2005, from
http://www.w3.org/TR/owl-guide/.

The Protégé Ontology Editor and Knowledge Acquisition
System. Retrieved October 12, 2005 from
http://protege.stanford.edu.

Web Services Architecture. November 14, 2002. W3C
working draft. Retrieved November 25, 2005, from
http://www.w3.org/TR/2002/WD-ws-arch-
20021114/id2616445.

Web Services Policy Framework (WS-policy). September,
2004. Retrieved September 4, 2005, from
http://schemas.xmlsoap.org/ws/2004/09/policy/.

Web Services Security Policy Language (WS-
SecurityPolicy).July, 2005. Retrieved September 7,
2005, from
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/w
s-securitypolicy.pdf.

Web Services Security: Rights Expression Language
(REL) Token Profile. December 19, 2004. Oasis
Standard. Retrieved October 5, 2005, from
http://docs.oasis-open.org/wss/oasis-wss-rel-token-
profile-1.0.pdf.

Web Services Security: SAML Token Profile. February
21, 2003. OASIS Working Draft 06. Retrieved
November 14, 2005, from http://www.oasis-
open.org/committees/download.php/1048/WSS-
SAML-06.pdf.

XML-Signature Syntax and Processing. February, 2002.
W3C Recommendation 12. Retrieved November 16,
2005, from http://www.w3.org/TR/2002/REC-
xmldsig-core-20020212/Overview.html.

WEBIST 2006 - WEB INTERFACES AND APPLICATIONS

392

