
USING SIMPLE PUSHLOGIC

David Greaves
University of Cambridge, Computer Laboratory

Cambridge, UK

Daniel Gordon
University of Cambridge, Computer Laboratory

Cambridge, UK

Keywords: Compensation, Model Checking, Code Reflection, Ubiquitous Computing, Control Plane, Application Script-
ing.

Abstract: Pushlogic is a scripting language for a dynamic population of devices (sensors/processors/actuators) and dy-
namic number of concurrent applications in a reliable or safety-critical system. System stability is assured by
idempotency constraints and intrinsic error recovery capabilities arise from the reversible nature of Pushlogic.
It is a constrained language amenable to automated reasoning. It defines ‘re-hydration’ for dynamic binding
of rules to new device instances and a load-time model checker that runs before a new bundle of rules may
join a domain of participation. In a typical application, complex embedded devices are partitioned into passive
components known as ‘pebbles’. API reflection is then used to expose the interfaces offered by the pebbles.
All proactive and interactive behaviour between pebbles or over the network must then be implemented with
Pushlogic and ‘code reflection’, as we call it, exposes this behaviour for automated reasoning.

1 INTRODUCTION

In this paper, we introduce a new scripting language,
called Pushlogic, that generates declarative byte code.
The code can be canned to ROM for embedded appli-
cations, or run on server platforms (e.g. a PDA) for
reliable interaction with a dynamic population of de-
vices and other application scripts.

In software terms, a ‘script’ is a collection of com-
mands to be performed in a particular order under var-
ious conditions. Imperative programming languages,
such as assembly language, Java and the unix shell
language are frequently used for scripting. These lan-
guages are used to control a collection of devices or to
otherwise automate a process. They are unrestricted
in expressibility and hence reasoning about their be-
haviour or their interaction with other such scripts is
hard. When a script phrased in a decidable language
controls and reacts to objects containing undecideable
code (or exhibting unpredicatable behaviour), the sys-
tem becomes undecidable as a whole. Nonetheless, it
is our belief that there are significant benefits from us-
ing decidable code at the highest levels - the level of
application scripting.

Network systems suffer from errors as the result
of intentional and unintentional arrival and depar-

ture of new entities (devices or interacting applica-
tions that control the devices) and from network errors
and disconnects. The BPEL4WS (Schlingloff et al.,
2005), and StAC (Chessell et al., 2002) languages
were designed to provide reliable completion of busi-
ness transactions in this environment. They both pro-
vide Compensation mechanisms that allow the pro-
grammer to structure additional code to be executed
should components of a partial transaction need to be
rolled back. Programs in these languages have been
subjected to automated formal analysis, for instance
using Petri Nets, but they are not any more restricted
than C or Java in their expressiveness, and so auto-
mated solutions encounter the usual problems (decid-
ability etc.). Pushlogic does not require the program-
mer to provide his own compensation code because
only reversible programs are allowed.

Pushlogic also provides means for a device to pub-
lish its proactive behaviour, that is, to announce what
it will do when introduced to an environment. There
are a number of technologies that enable devices to
publish their APIs and to receive commands over the
network, such as WSDL, XMLRPC and UPnP (Mi-
crosoft, 2000). We embrace them, but go further: to
enable automated reasoning about the behaviour of a
device we force the embedded code inside devices to

101Greaves D. and Gordon D. (2006).
USING SIMPLE PUSHLOGIC.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 101-108
DOI: 10.5220/0001250401010108
Copyright c© SciTePress



Compiler 

Object
Bundle

Bundle
Checker

XML reflection
information
via UPnP

Device
Bindings

Object
Bundle

Object
Bundle

Compile
Time

Checker

Re-
Hydration

Re-
Hydration

Re-
Hydration

Source
Bundle

Source
Library

Expert
User Interface

(emacs)

Universal
Rule

Library

Hydrated
Bundle

Hydrated
Bundle

Hydrated
Bundle

Hydrated
Bundle

Execution
Platform

Execution
Platform

Execution
Platform

Domain
standing

rules

Script
Creation
Phase

Compilation
Phase

Binding
and 

Loading
Phases

Execution
Phase

Canned
Storage
Phase

UDP Broadcast Subnet ETC: UDP SOAP GENA

Re-
Hydration

Object
Bundle

DBG

Source
Bundle

Source
Bundle

Domain of Participation

Domain
Manager 

and
Checker

Figure 1: The write/compile/re-hydrate/execute toolchain
for Pushlogic.

be implemented via a declarative bytecode that is ex-
posed alongside the/any command APIs. For execu-
tion, this code may be interpreted or further compiled
to native code. For checking, it must be inspectable
over the network - a facility we call ‘code reflection’.

Pushlogic object level is a declarative byte code,
designed as an intermediate code for automated rea-
soning using model checkers. Pushlogic object is held
in bundle files containing rules. Rules are either tem-
poral logic assertions or else executable rules that de-
fine a finite state machine or ‘mechanism.’ Bundles
run inside a domain of participation (DoP). Dynamic
storage allocation only occurs when new bundles of
rules are loaded into a running DoP. Bundles arrive
either when a new pebble that requires control ar-
rives, or when a new application is started, expressed
in Pushlogic. Before a bundle can join, the union of
the rules in the new bundle is formed against those
already in the domain. If any of the rules are incon-
sistent or any of the temporal logic rules (existing or
new) will not hold under the combined mechanism,
the bundle cannot be loaded.

We use the term ‘mechanism’ for our combination
of FSMs because it models not only the effect of in-
puts on outputs and internal state, but because a me-
chanical system of levers and cogs can sometimes be
operated in reverse, with pressure applied to an output
causing an ‘input’ to change.

A user-level device, such as a DVD player, is con-
sidered to consist of some number of physical or log-
ical devices, called ‘pebbles’. Pebbles only interact
with each other through an application program coded

as one or more bundles of Pushlogic. Pebbles pro-
vide input and output to various sensors, actuators and
other interfaces. Pebbles are like device drivers, ex-
cept they are first-class entities on the network that
can register their command API and capabilities, so
that they are a resource to be used by any number of
applications.

Pushlogic has been developed for a year or so, and
its first compiler and run time system are becoming
stable. We are now implementing the DoP manager
for our Ethernet-based implementation. The man-
ager provides real-time checking of bundles joining
the DoP and DoP merging. Pushlogic therefore pro-
vides a scripting language for for a dynamic popula-
tion of sensors, actuators and applications suitable for
safety-critical systems. We are also implementing a
Controller Area Network (CAN) (Kaiser and Mock,
1999) version, where, for current applications, device
API reflection will not be needed and all checking is
done before system assembly.

Figure 1 shows the Pushlogic toolchain. Source
bundles are compiled with libraries to generate dry
object bundles that do not refer to specific pebbles
by name. A subsequent re-hydration stage imple-
ments such bindings, and a given bundle may join
the DoP more than once, as illustrated, but using dif-
ferent bindings for each instance. Several bundles
may run on a single execution platform, but the be-
haviour of the system is, as far as possible, the same
as though they were distributed over the network. For
a self-contained device using ROM’d code, such as
the Heating Controller presented later, part of the re-
hydration can be performed before canning the code
to ROM, so that the code is bound to the local pebbles,
and part of it can be done later, for instance to bind to
other devices encountered in the domain at run time.

Our first implementation holds all run-time vari-
ables as fields in the tuples of a distributed tuple
space. Fields range over constant values, local tuples
or remote tuple pointers.

Communication between pebbles and bundles is
through shared fields. The tuple space is navigated
using URIs and heirarchic names with hash symbols
as separators. Network traffic uses our own temporary
protocol, called ETC (evolving tuple core protocol),
that is essentially UDP versions of SOAP RPC and
GENA eventing, found in UPnP (Microsoft, 2000).

A GTK GUI may be connected to any running DoP
to allow variables to be viewed and edited over the
network. Alternatively, it can be run standalone, on
a workstation, with a number of bundles loaded from
the command line. Figure 2 shows a bundle called
Lanterns under the GUI, The output ‘outside#lantern’
is a label and cannot be changed directly with the
GUI. It is updated when the value of this variable
changes. The input ‘mains#supply’ has a menu from
which the user can select ‘on’ or ‘off’. The inout vari-

WEBIST 2006 - INTERNET TECHNOLOGY

102



Figure 2: Lanterns - An Example of Pushlogic under GTK
GUI.

ables ‘hall#light’ and ‘hall#Switch’ can be changed
by the user as well as by a Pushlogic program. Pro-
gram counters and other local variables are stored in
tuples held under the ‘Local’ tab, in a unique sub-
tuple for each bundle instantiated on the platform.
We also have a locally-written universal UPnP con-
trol point, that can perform roughly the same function
for a subnet of UPnP devices. We will shortly merge
the functionality of these two GUIs.

In other work, formal validation of Ladder Logic
and timed transition systems has received significant
attention (Glässer, 1995). Commercial products for
formal validation of reactive control systems against
safety standards are becoming available. e.g. (Reac-
tiveSystems, 2003). Cypress has just released a syn-
thesiser for embedded controller software to eliminate
hand-crafted device drivers and network stacks (Pear-
son, 2005). Formal specification of web resources and
services using ontologies and assume/guarantee rea-
soning is advancing (Monika Solanki, 2003), as are
proof-carrying imperative code tool chains. However,
our practice of converting imperative code to declara-
tive intermediate form seems novel.

2 EXECUTION SEMANTICS

Each executable rule in Pushlogic object is an assign-
ment of the form

f := exp : pbind

where f is a variable in a global, heirarchic name
space (the tuple space paradigm) and exp is a Push-
logic object expression and pbind is information that
assists in reversing the operation of the rule. Fields

may be local to a bundle or shared between the cur-
rent bundle and other bundles and pebbles. Where
shared, they are declared as input, output or inout. In-
put fields are only changed by external bundles and
pebbles. Output fields are changed only by the cur-
rent bundle. Inout fields are changed by the current
bundle and by other bundles and pebbles and also by
timeouts in network protocols.

Each field ranges over a set of constant values, cer-
tain of which may be declared as the safe values of
that field. The values are integers or strings, or the re-
served constants ‘true’ and ‘false’. Where a bundle al-
ters the value of a field held on a remote resource, the
run time system generates network remote write us-
ing the ETC protocol. Where a bundle is sensitive to
changes on remote resources, it uses a periodic soft-
state registration protocol within ETC that causes it to
receive notification of changes for a period (e.g. one
hour). In any domain, an inout field may be set to one
of its non-safe values by at most one bundle or pebble.
Multimedia applications use the notion of third-party
setup, where a field in a source pebble is set to the
same circuit identifier as a field in a sink pebble.

The reference execution model for an executable
Pushlogic rule is that all sub-expressions occurring
in the expression are re-evaluated whenever there are
changes to any of their support. Likewise, changes
to the result of the top expression become scheduled
as updates to the assigned field. Updates are gated,
by which we mean that all updates to fields held on
a common execution platform resulting from a sin-
gle event are batched and made at once (atomically).
Further changes arising from a batch of gated updates
are collected and deferred to the next batch. Our in-
terpreter for the Pebbles project is a direct implemen-
tation of the reference execution model, but it uses
too much RAM for use on low-cost microcontrollers,
where native code should be run from ROM.

A push logic expression may generate a special
value, backstop (⊥). When backstop is assigned to
a field, the field’s value is unchanged. When multi-
ple rules assign to the same field, static analysis must
show that they either generate a common value or else
backstop.

The gated nature of updates to fields held on a com-
mon platform enables certain rule combinations to
operate deterministically when they would not other-
wise. Consider the following pair of rules where d,
d1, and d2 are held on the same execution platform:

d1 := d; d2 := (d&&!d1)?1 :⊥
This pair will reliably set d2 to one whenever d starts
to hold. Without the gated-update constraint, the sec-
ond rule might always be executed after the first rule
and hence the guard would never hold.

The reference execution model implies that the
union of executable rules for a DoP may be thought

USING SIMPLE PUSHLOGIC

103



NULL ENV

Parser

Expand
and Compile

Parallel
Elaboration

Create Binary
Encodings

Create
Push Back Paths

BDD
Package

Equivalence
Checker

Consistency
Checkers

Model
Checker

Executable
Rules

Temporal
Assertions

Source
Code

Library
Code

Bundle
File C Struct Native Code

Convert 
to C

 

I Code

Compile
Time

Assert
Failures

Repeat
until

closure

FAIL

FAIL

Subexpresion
Sharer

Figure 3: Structure of the Pushlogic Compiler.

of as an assertion over the system state. The asser-
tion holds at all times that the system is passive, and
when any event occurs that breaks the assertion, the
mechanism implements corrective action so that the
assertion once again holds. Inout fields are essen-
tially outputs that can unilaterally change back to one
of their safe values. The interpreter contains a sec-
ond set of rules to evaluate every operator or function
application in reverse, so that a change of an inout
can be ‘pushed back’ to another inout or local field,
so that once again, a consistent state prevails. This is
the Pushlogic implementation of compensation. The
pbind provides information to specify the compensa-
tion behaviour where there is more than one possi-
ble way to interpret a rule in reverse. For example,
with logical NOT, no indication is required, because
the new value is obvious at push back time. On the
other hand, for the comparison operator, when pushed
back to hold, it is sufficient to specify one operand
to push back on, since it must be pushed back to the
current value of the other operand. But, when com-
parison is pushed back to false, a value and operand
must be specified, since, in general, there are many
possible values that will make a comparison not hold.
For logical AND, when pushed back to false, which
operand to push on must be specified, since either
will do, whereas to push logical AND to hold may re-
quire both its arguments to be changed. For the con-

ditional expression operator, the condition may have
to be changed and also the value of that side of the
operator may have to be changed.

For model checking, the next state relation must be
constructed from the executable rules. In this rela-
tion, a hidden input variable is created for every pos-
sible pushback, which is every safe value of every in-
out field. This is called a pushback input. Additional
clauses are added to the next state relation to represent
that at most one of the pushback inputs of each inout
may hold at any one time, and that when it holds, the
variables altered by that pushback have the constant
values determined by the union of pbind fields. The
temporal logic assertions are checked at compile time
for the bundle in isolation. In future, they will also
be checked by the domain controller as it loads the
bundle into a live DoP, or when a pair of DoPs are
merged.

To ensure that all states are stable (and not os-
cillators), the system also implements an ‘Idempo-
tency Constraint’. This states that any Pushlogic pro-
gram will result in no further output changes if ‘ex-
ecuted’ more than once without change of any input
field. (This rule is the basis for the loop unwinding
in the source compiler.) A rule such as track :=
(p)?track + 1 : track would not generally be ad-
missable, because the number of increments executed
while p holds is not defined, but carefully-constructed
integration is allowed. For example, anything that
is tantamount to the following differentiate/integrate
rule pair is permissible:

d1 := d; track := (d&&!d1)?track + 1 : track

The idempotency constraint is checked in our source
compiler by symbolic evaluation (described below),
and will be checked by the domain manager. The dif-
ferentiation construction is required sufficiently fre-
quently that it is built into the Pushlogic Source Com-
piler, described next. The above two object rules are
then written as if (↑d) track := track+1;
with the automatic allocation of a hidden variable to
replace d1.

3 PUSHLOGIC SOURCE
COMPILER

Although rules are frequently a useful way to express
desired behaviour, many applications are most easily
coded in an imperative programming style. Rather
than expecting the user to manually convert his no-
tions of application behaviour into Pushlogic object
rules, a compiler for imperative-style expression of
applications is used. We note that imperative pro-
grams deal essentially with sequential changes of

WEBIST 2006 - INTERNET TECHNOLOGY

104



state, whereas logical predicates over application pro-
grams deal in terms of the visible, accumulated results
of these changes.

‘Pushlogic Source’ is a block-structured,
imperative-like, programming language, but with no
dynamic storage allocation. It is less fundamental
to our approach than the object form, because a
variety of source forms could be envisaged that
would generate compatible object for various niche
applications.

A Pushlogic Source program is an unordered list
of declarations, function definitions and executable
statements. The statements are all started in paral-
lel when the compiled object bundle is loaded. A
statement may be a sequential block, thereby provid-
ing an escape to the normal imperative programming
paradigm.

It is our goal to support as many features found in
common OO imperative high-level languages as pos-
sible, while still producing output that can be repre-
sented as Pushlogic object rules and checked automat-
ically at load time. The currently available forms in-
clude integer arithmetic, without arrays, function call
with compile-time unwind of all recursions, nested
static object instances and the full C/Java set of im-
perative and control-flow constructs.

Executable sequences are composed in parallel.
Each sequence may be considered to be enclosed in
an infinite while loop that has its own thread that
executes the rule as fast as possible, but with all such
threads performing their assignments in synchronism.
Sequential composition of behavioural statements is
introduced with the block construct, denoted with
C-like open and close braces. A further level of
parallelism is possible inside a sequential block be-
cause parallel assignment is supported: e.g. (a, b) :=
(e1, e2).

The internal flow of the compiler is shown in Fig-
ure 3. The input is parsed and converted to imper-
ative intermediate code using conventional compiler
techniques. Function calls are expanded in line. For
each sequence in the source code a section of I-code is
generated. I-code consists of labels, gotos, waits, as-
signments, resultis statements (used for returned val-
ues in the middle of inlined tasks and functions) and
conditional branches. For each sequence, a run-time
program counter is defined. At the object code level,
these program counters act just like other local vari-
ables, and their values range over the labels in that
sequence. Threads with fewer that two wait state-
ments require a constant value in their run-time pro-
gram counter and so these program counters are elim-
inated at compile time. There is no run-time spawn-
ing or joining of threads (although the illusion of this
could be provided from a static set of threads us-
ing pre-processing techniques). Temporal logic as-
sertions in the source code are split off and held sep-

arately. Safety assertions may be guarded by nested
if statements and by the current value of the program
counter.

The I-code is embedded in a binary-decision di-
agram (BDD) package by generating binary encod-
ings of every variable (field), constant and operator.
This then enables an equivalence checker to be used
to compare any pair of expressions or check that a
predicate is a tautology or invalid.

An entry point is defined as any entry point to a se-
quence of I-code or the location immediately after any
wait instruction. Parallel symbolic evaluation is then
conducted, until closure, or failure if more than 100
iterations is needed. This consists of starting in a null
environment and evaluating from each entry point to
collect symbolically the assigns to every variable, in-
cluding program counters, up until a wait statement
or the thread loops back to its initial entry point.

While more than one assign is made to a variable,
by different threads, such as v := e1; v := e2;, the
assignments are combined in pairs using the follow-
ing rule

v := (e1 =⊥)?e2 : e1;
check(e1 = e2 ∨ e1 =⊥ ∨e2 =⊥);
This gives a single expression for every assigned vari-
able. If the check fails, the compilation fails because
the operations are incompatible.

After the first elaboration from all entry points, the
process is repeated using the environment created by
the first. Code guarded by differentiators will not
have any consequences on the second or subsequent
elaborations. After each elaboration, the equivalence
checker is used to detect any changes in any symbolic
value, and if there are, then another iteration is com-
menced. Before each new iteration, occurrences of
⊥ in the expression for a variable in the environment
are replaced with the symbolic value for that variable
calculated on the iteration before. This exactly mod-
els the gating implemented by the nominal behaviour
at runtime (which is the actual behaviour when inter-
preted and which is emulated by code structure when
compiled native).

After a closed set of symbolic assignments has
been computed, push back paths are created through
the right-hand-side expressions from any field whose
mode is ‘inout’. For each safe value of an inout field,
a path is traced backwards through the expression tree
that will cause generation of that value. These paths
extend back though local variables used as intermedi-
ate values in any computation. For all safe values of
all bearing inouts, the same path must work for each
local variable. This constraint can cause some novel
error messages. The paths are stored in the push back
indication section of each rule. Currently, the com-
piler chooses amongst various possible pushback op-
tions and writes its decision to a report file, but we
might change this so that user pragmas must be pro-

USING SIMPLE PUSHLOGIC

105



vided to select behaviour when more than one method
of compensation is possible.

The resulting object-level executable rules are op-
timised by spotting common subexpressions and in-
serting cross-references to allow the evaluations to be
shared at runtime on the interpreter. The output code
is stored in a bundle file, along with the assertions.
It is also written to a C struct file that contains some
initialised C arrays, for direct canning into ROM. In
the future, the declarative byte code can also be con-
verted to C to be run as native ROM code instead of
being interpreted on the execution platform (thereby
saving expensive RAM on embedded devices).

The BDD package is also used as a compile-time
model checker to test the embedded assertions. As-
sertions that fail at compile time when a bundle is
checked in isolation, or against a standard library
and testbench should normally be corrected before
attempting to load the code into a live DoP. The
BDD package used is the original C code from SMV
(McMillan, 2000) ported as a shared object to be
loaded by Moscow ML. The fixed-point iterations
used in model checking are all recoded in ML. The
compiler amounts to 9K lines of ML and 15K lines of
C.

Where a section of code does not intrinsically sup-
port a push back operation, it may be associated with
a fuse variable by enclosing it in a fuse statement.
For example, consider the following invalid code, that
uses an enumeration type with one safe value and two
unsafe values:

sort set mytype = { S: US1 US2 };
input x : mytype;
inout y : mytype;
y : = x;

The problem is that if y makes a unilateral change
from US1, say, to S, which it is free to do, since it is
an ‘inout’, then no push back is possible because x
is an ‘input’ that cannot be changed from inside the
bundle.

The solution is to enclose the rule inside a fuse.
This fuse is able to ‘blow’ should y make a push back.

input x : mytype;
inout y : mytype;
fuse F1;
{ y : = x; } fuse F1;

forever { wait F1; sleep_secs(5);
F1 := false; }

The fuse declaration defines a boolean variable
with both values safe and to be set false on bundle
load. The fuse statement is just syntactic sugar, be-
cause the line ‘{ y : = x; } fuse F1;’ is rewritten
during initial expansion as ‘if (!f1) y : = x;’. The
fuse declaration, however, does have a special effect:
during pushback path creation, the fuse is chosen at
last resort and only marked for push back update if

Display
Mode

UP
DOWNFAST

UP
OVERRIDE

Furnace
Relay

Pump
Relay

Room
Thermostat

Tank
Thermostat

Furnace
Thermostat

(Home
Ethernet)

Hardware
Interlock

Display
Pebble

Keypad
Pebble

FAST
DOWN

Timer
Pebble

Pushlogic Interpreter

Canned Application Bundles

Control 
Pebble

ETC
UDP
Stack

Pushbuttons 4 Digit
Display

Hot Water LED

Heating LED

Molly: H8S Embedded Processor
Ethernet/Flash/ROM/RAM/

Ethernet
MAC/PHY
Interface

Embedded OS

HVAC INTERFACE
Power
Supply

CPU
Counter/timer

HC-Control HC-UI

Figure 4: Heating Controller Components.

there is no other pushback path available. Only the
inner-most fuse of any nested fuse blocks acts on the
enclosed code.

The reset behaviour is enclosed inside a forever
statement, equivalent to ‘while (1)’ and not needed
since all push logic sequential sections are enclosed
inside an implied forever. It resets the fuse five sec-
onds after it has blown (see later for more detail of
sleep secs). If y refuses to accept the current
value at this time, the fuse blows again. In general,
other code can be sensitive to this fuse, to log or sound
alarms and so on.

As mentioned, for checking, everything is currently
converted to a binary encoding and a BDD checker is
used, but in the future other forms of checkers can
be tried, based on a mix of normal forms, Presburger
Arithmetic (Presburger, 1929) or CVC (David Dill,
2004). Undecidable arithmetic and other uncheckable
constructs must currently be manually partitioned out
and placed in pebbles, so that they are not subject
to checking. In the future, we may add additional
markups to the source language to allow delineated
embedding of undecidable code. The outputs from
undecideable statements would be considered like
other non-deterministic inputs to the system, but per-
haps augmented with so called fairness constraints
that force both options to be considered in liveness
analysis.

4 EXAMPLES

We have not completed sufficient work to know fi-
nally whether Pushlogic meets all of its design goals,
but we have implemented a number of full example
devices, including an Alarm Clock, a DVD player,
a Heating Controller, a Juke Box and various GUIs,
physical keypads, lights and switches. These de-

WEBIST 2006 - INTERNET TECHNOLOGY

106



vices have been implemented as a collection of Peb-
bles with internal canned applications written in Push-
logic. A number of additional application scripts have
been written that cause the devices to interact (e.g.
play music from the DVD instead of sounding the
alarm clock buzzer).

As a first example, Figure 4 shows the structure of
our Heating Controller. This has been built and is
about to be installed in a real house. It physically con-
sists of a processor with ROM, RAM, Ethernet and
Power Supply, a display and keypad, and a HVAC in-
terface block. Architecturally, it consists of control,
timer, display and keypad pebbles and a pair of Push-
logic object bundles that implement the functionality.
The HVAC interface has solid state relays to control
pump and furnace, input from tank and room ther-
mostats.

The HC-Control bundle contains code to drive the
output relays on and off at up to eight different pro-
grammed times, whereas the HC-UI bundle enables
the programmed and current clock times to be in-
spected and edited via the front panel. Remote adjust-
ment of the heating times is possible over the network,
for instance, by running a second instance of the HC-
UI on another platform, either with a second physical
display and keypad, or under the GTK GUI. A remote
process running on a server can be used to keep the
time clock accurate, if desired, using the ETC proto-
col writes over the network.

There are multiple levels of interlock that ensure
safe operation of the system. At the lowest level, the
furnace thermostat is hardwired in series with the fur-
nace gas valve, outside the controller. The controller
hardware interlock contains logic gates that disable
the furnace if both the tank and room thermostats are
open. The control pebble (device driver) mirrors the
interlock, causing a pushback on the furnace control
field when both thermostats are open. The embedded
application software, in the form of the canned Push-
logic script, can be seen not to operate the furnace un-
til one or other of the thermostats is closed. Finally,
the script contains the following saftey statement that
is checked at compile time, that goes further than the
hardware interlock, because it also asserts about the
Pump relay.

always

(Heating#Sense#RoomThermostat==0 &&

Heating#Sense#TankThermostat==0) =>

Heating#Control#Furnace==0 &&

Heating#Control#Pump== 0;

When the two bundles of the heating controller
are checked together, a number of small BDDs are
formed and discarded during the elaboration phase
of the compiler, which takes about two seconds on
a 1GHz laptop running linux The consistency check
generates a BDD that treats each executable rule as
an assertion. This BDD has 58 primary inputs, and
uses about fifty-thousand nodes. The next-state re-

lation used for model checking has over 100 inputs
because of the primed versions of each state variable,
but is about the same size. These currently each take 5
seconds to form. Once formed, a number of liveness,
safety and reachability assertions can be checked in
rapid succession. A profile agent that handles both
the ML and shared libraries has been implemented,
so we have a firm grasp of where the time is being
used.

We illustrate liveness checking using the following
bundle that causes a variable called locked to be false
for 5 seconds after a variable called button holds.

def

bundle ButtonLock() {

input v#keys#button : { false:true};

output v#locks#unlocked : { false:true };

forever {

wait (button);

unlocked := true;

sleep_secs(5);

unlocked := false;

wait (!button);

}

local locked := !unlocked;

live unlocked, locked;

}

It makes a call to the following timer library func-
tion, that blocks the thread for a period, using the
timer pebble provided on all execution platforms. As
explained, there is no notion of thread in the final
bytecode because all function calls are inlined during
compilation and all thread constructs are converted
to executable rule form. The live statement is an as-
sertion that the locked variable should never become
stuck at one value permanenty.

fun sleep_secs(t)
{
local until : { 0..59 };
with (__local_timer)
{ until := (#time_now#second + t);

wait(#time_now#second FQGT until);
}

}

The timer code places the unblocking time in the
local variable until and then blocks. The FQGT
operator is builtin and performs a greater-than com-
parison that behaves sensibly as the arguments over-
flow in their field provided their initial difference is
less than half the range. In the future, we would like
to use a wider field than seconds (0 to 59) so that we
can sleep, say, for many thousand milliseconds. How-
ever, larger fields consume more BDD primary inputs
and BDD nodes, which are currently at a premium.
We shall also consider automatic switching to a lifted
form for modelling the sleep call, where it is held as a
single wait statment on a fresh variable. This is sim-
pler to model, provided there are few of these con-
structs, but complexity will eventually mount up in

USING SIMPLE PUSHLOGIC

107



meta-constraints over the fresh variables that model
the possible firing orders.

Here is a bundle that is incompatible with the But-
tonLock: both cannot be loaded into the same DoP.
To explain this, first we must mention that we have
not fully implemented the re-hydration stage yet, and
so hardcoded identifiers, such as the IP address of
the other bundle’s platform are currently hardcoded
in the source files. The button variable was originally
free to change at any time but becomes constrained
by the second bundle to only change while the un-
locked variable holds. The system cannot be unlocked
without the button being pressed, and hence the live
assertion in the Button listing fails. This will in fu-
ture be spotted by the DoP manager, but currently can
only be spotted by the compiler checking against pre-
compiled bundles that are to hand.

def bundle B2() {

pebble r = tup://128.232.1.45/v;

input d#q : bool;

r#keys#button := r#locks#unlocked && d#q;

}

5 CONCLUSION

This work was carried out under the CMI
Goals/Pebbles project (Umar Saif, 2003). It has
produced a strawman application scripting language
that supports code reflection. The current interpreter
runs on unix, bare PC motherboard, our embedded
CPU cards and linux. A native-compiler that gener-
ates PIC assembler code and operates over the CAN
bus (instead of Ethernet) is also being implemented.
This will be less RAM hungry. We have completely
implemented the top-level application code for
several simple consumer devices (e.g. the alarm
clock, DVD player, and so on). Work is ongoing
on larger programs, such as TiVo PVR and voice
mail, and in other areas, such as drinks machine,
automotive (using CAN) and elevators. Our language
has a number of novel features, including idempotent
execution and the mechanism concept, where reverse
execution is used to help handle network errors or
device self-reset. Arrays and RPC are shortly to be
tested out.

Future work is needed to analyse temporary er-
ror states during network races and to provide break-
before-make form guarantees where Pushlogic is used
to disable one server or device while enabling another.

The domain checker concept is well developed, but
practical implementation is only just starting. We
also plan to work on federation of DoPs based on
known obligations and constraints of adjacent do-
mains (Lupu E, 1997).

Our assertions currently do not contain quantifiers
that range over devices or possible values of fields.

As new devices and new versions of devices with ex-
tended variable domains can be inserted into a live
DoP, certain negated existential forms will have to be
restricted in order to preserve monotonicity.

Finally, we are seeking collaboration with an in-
dustrial partner where we can evaluate our ideas in
practice and combine them with conventional safety-
critical approaches, such as coverage testing.

REFERENCES

Chessell, M., Griffin, C., Vines, D., Butler, M., Ferreira, C.,
and Henderson, P. (2002). Extending the concept of
transaction compensation. IBM Syst. J., 41(4):743–
758.

David Dill, S. B. (2004). CVC lite. Technical report, Stan-
ford University.

Glässer, U. (1995). Systems level specification and model-
ing of reactive systems: Concepts, methods, and tools.
In EUROCAST, pages 375–385.

Kaiser, J. and Mock, M. (1999). Implementing the real-time
publisher/subscriber model on the controller area net-
work (can). In ISORC ’99: Proceedings of the 2nd
IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, page 172, Wash-
ington, DC, USA. IEEE Computer Society.

Lupu E, S. M. (1997). Conflict analysis for management
policies. In 5th Int Symp Integrated Network Manage-
ment IM’97. Chapman Hall.

McMillan, K. (2000). The smv language manual. Technical
report, Carnegie-Mellon University.

Microsoft (2000). Universal plug and play device architec-
ture, version 1.0. Technical report, Microsoft.

Monika Solanki, e. a. (2003). Introducing composition-
ality in webservice descriptions. In Proceedings of
3rd ANWIRE workshop on adaptable services, DAIS-
FMOODS.

Pearson, J. (2005). Embedding systems at a higher level.
Electronic System Design.

Presburger, M. (1929). Ober die vollstndigkeit eines gewis-
sen systems der arithmetik ganzer zahlen, in welchem
die addition als einzige operation hervortritt. Comptes
Rendus du I congrs de Mathmaticiens des Pays Slaves,
pages 92–101.

ReactiveSystems (2003). Model-based testing and valida-
tion of control software with reactis. Technical Report
2003-1, Reactive Systems.

Schlingloff, B.-H., Martens, A., and Schmidt, K. (2005).
Modeling and model checking web services. Elec-
tronic Notes in Theoretical Computer Science: Issue
on Logic and Communication in Multi-Agent Systems,
126:3–26.

Umar Saif, S. W. e. a. (2003). A case for goal-oriented pro-
gramming semantics. In UbiComp 03, System Support
for Ubiquitous Computing Workshop at the Fifth An-
nual Conference on Ubiquitous Computing.

WEBIST 2006 - INTERNET TECHNOLOGY

108


