
AN EVENT-BASED MODEL FOR WEB SERVICES COORDINATION

Mohsen Rouached
LORIA-INRIA

BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France

Claude Godart
LORIA-INRIA

BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France

Keywords: Web services, Web service composition, composite Event, Event Calculus.

Abstract: The promise of Web services is centered around standard and interoperable means for integrating loosely
coupled Web based components that expose well-defined interfaces, while abstracting the implementation and
platform specific details. The current and more mature core Web services standards SOAP, WSDL and UDDI
provide a solid foundation to accomplish this. However, these specifications primarily enable development of
simple Web services whereas the ultimate goal of Web services is to facilitate and automate business process
collaborations both inside and outside enterprize boundaries. Useful business applications of Web services in
B2B, B2C, and enterprize application integration environments will require the ability to compose complex
and distributed Web services and the ability to formally describe the relationships between the constituent
low-level services.
This paper advocates an event-based approach for Web services coordination. We focused on reasoning about
events to capture the semantics of complex Web service combinations. Then we present a formal language to
specifying composite events for managing complex interactions amongst services, and detecting inconsisten-
cies that may arise at run-time.

1 INTRODUCTION

Web services have been gathering an increasing
amount of attention lately. They have emerged as a
distributed computing paradigm for applications, or
business processes, that interact over the open Inter-
net through the use of standard protocols. Current
Web services standards such as SOAP, and WSDL
provide rudimentary mechanisms for defining interac-
tions amongst services that may be located in different
organizations. While WSDL provides the definitions
for the entry-points of a service, in many cases, in-
teractions between services have more structure than
can be described by just the definition of entry points.
Indeed, to form real B2B or B2C interactions, a set
of services need to work together and be executed
in specified order. Such execution is termed service
composition or choreography. Several standards have
been proposed and are being introduced into prac-
tice, especially BPML, BPEL4WS, and WSCI. How-
ever, these approaches are conceptually no more than
simple extensions of traditional workflow technolo-
gies wherein Web services, which have to cope with
a highly dynamic environment, are used to represent

tasks instead of ad hoc legacy processes. Indeed,
distributed enterprize environments assume that Web
services are not limited to peer-to-peer interactions
between business partners, but that it should be pos-
sible to coordinate interactions of a group of busi-
ness partners. However, the above approaches are
largely limited to rather simple request/response ser-
vices and the Web choreography standards rely on
the XML based RPC which is essentially a one-to-
one mechanism, and is not suitable for coordinating
Web services in complex environments. Addition-
ally, Web service specifications mostly concentrate on
lower levels and do not offer high-level abstractions
to accommodate variations in service invocations and
run-time interactions.

On the other hand, the event-based architectural
style has become prevalent for large-scale distributed
applications due to the inherent loose coupling of
the participants. It facilitates the clear separation of
communication from computation and carries the po-
tential for easy integration of autonomous, heteroge-
neous components into complex systems that are easy
to evolve and scale (Pietzuch et al., 2003). However,
the event-driven technology is not well exploited in

81Rouached M. and Godart C. (2006).
AN EVENT-BASED MODEL FOR WEB SERVICES COORDINATION.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 81-88
DOI: 10.5220/0001244700810088
Copyright c© SciTePress

the context of Web services. Indeed, many existing
initiatives such as WS-Eventing and WS-Notification
restrict subscriptions to single events only and thus
luck the ability to express interest in the occurrence of
patterns of events. However, especially in large-scale
Web applications, event sinks may be overwhelmed
by the vast number of primitive, low-level events,
and would benefit from a higher-level view. Such a
higher-level view is given by composite events that
are published when an event pattern occurs. There-
fore, Web services need to support composite event
detection, in order to quickly and efficiently notify
their clients of new, relevant information in the net-
work. This can improve efficiency and robustness
in the case of widely distributed Web services where
bandwidth is limited and services are loosely cou-
pled. Nevertheless, without composite event detec-
tion, many messages would still be sent unnecessarily,
because specific event combinations or patterns could
not be expressed by recipients.

In this paper, we address the problem of coordi-
nating large-scale Web services by adopting a purely
event-based approach. We propose a distributed ar-
chitecture and a general framework to handle the
event composition in Web services. This frame-
work includes a formal language with well formal se-
mantics to specifying and reasoning about composite
events, which facilitates the detection of several in-
consistencies that may arise at run-time. The remain-
der of the paper is structured as follows. Section 2
describes a car rental scenario used as a running ex-
ample. In section 3 we present our event-based ar-
chitecture. We start by defining events in Web ser-
vices context. Then, we present the proposed model.
Section 4 studies the event composition in distributed
Web service environments. It details a formal lan-
guage for specifying composite events and precises
how this formalism can verify and detect some exam-
ples of inconsistencies that may arise in the running
scenario. In section 5, the related work is discussed.
Finally, section 6 concludes the paper and discusses
some future directions.

2 RUNNING EXAMPLE

Throughout this article, we will illustrate our ideas
with an interesting running example. We consider a
car rental scenario that involves four complementary
services. A car broker service (CBS) which acts as a
broker offering its customers the ability to rent cars
provided by different car rental companies directly
from car parks at different locations. CBS is imple-
mented as a service composition process, which in-
teracts with car information services (CIS), and cus-
tomer management service (CMS). CIS services are

provided by different car rental companies and main-
tain databases of cars, check their availability and al-
locate cars to customers as requested by CBS.

CMS maintains the database of the customers and
authenticates customers as requested by CBS. Each
car park also provides a car sensor service (CSS) that
senses cars as they are driven in or out of car parks and
inform CBS accordingly. The end users can access
CBS through a user interaction service (UIS).

Typically, CBS receives car rental requests from
UIS services, authorizes customers contacting CMS
and checks for the availability of cars by contact-
ing CIS services, and gets car movement information
from CSS services.

However, due to the autonomous nature of services
and the run-time requirements monitoring, many
complications may arise. For example, CBS can ac-
cept a car rental request and allocate a specific car to
it if, due to the malfunctioning of a CSS service, the
departure of the relevant car from a car park has not
been reported and, as a consequence, the car is consid-
ered to be available by the UIS service. Through this
example, we aim to precise how Web services inter-
actions can be specified and formalized using events,
and how this specification could facilitate their moni-
toring at run-time.

3 EVENT BASED WEB SERVICE
COORDINATION

The services will interact by responding to commu-
nal events. We are not interested in the intra-service
interaction between the different business objects that
make out a single service, but we focused on provid-
ing a formal framework for coordinating distributed
and autonomous Web services . Then, if a such
framework could be applied to inter-services interac-
tion, the local business objects of each service can be
considered as small atomic services themselves and
therefore it can be applied to intra-service interaction
recursively. Accordingly, this approach can be eas-
ily generalized into an n-level system since the num-
ber of parties that participate in an event can be eas-
ily increased by just adding another service that sub-
scribes to the event, without having to redesign the
entire chain of one-to-one message exchanges. Let us
now introduce the notion of events and describe the
role that can play in Web services interactions.

3.1 Events in Web Services

Events can be simply perceived as occurrences that
happen over time, and can be independent or not from
each other. They are represented by structured mes-
sages which are exchanged between the event genera-

WEBIST 2006 - INTERNET TECHNOLOGY

82

tor and any number of event receivers, and carry con-
textual information in which the event is described,
plus the circumstances in which it occurred (event
context). Such contextual information may be an ex-
plicit part of the event representation, or can be im-
plicitly deduced from said circumstances. The sig-
nificance of business events is ensured by assigning
types to these events. The type of an event is mod-
eled by its body, which incorporates a data structure
representing the context in which the event was gen-
erated. In our framework, three event types could be
distinguished:

• The invocation of an operation by a partner service.
These events are represented by terms of the form
Q.ServiceName.OperationName(parameters).
For example, the event
Q.CBS.ReleaseKey(car,customer,Park) precises
that CBS invokes an operation in UIS that signifies
the release of a car key to a customer.

• The reply following the execution of an op-
eration that was invoked by a partner service.
These events are represented by terms of the form
R.ServiceName.OperationName(parameters). For
example, the event R.CSS.Depart(car,park) is a
reply event that signifies the exit of the car from
the car park. If the previous event did not occur,
the event Q.CBS.Available(car,park) must be gen-
erated to CIS in order to check the availability of
the requested car.

• The assignment of a value to a variable. These
events are represented by terms of the form
AS.AssignmentName(assignmentId). For exam-
ple, if the URL of a service (for example CSS
or CIS) has to be changed, an assignment event
AS.AssignementURL(NewURL) is generated.

In next section, we show how to use these events to
manage and monitor interactions between Web ser-
vices.

3.2 Web Services Interactions

Web services interactions are based on the simultane-
ous participation in shared events. Event notifications
are not propagated one-to-one but are broadcast in
parallel to all services that have an interest in relevant
event. Then, the updates that result from a given busi-
ness event are to be coordinated throughout the en-
tirety of all interested services that participate in that
event. This broadcasting paradigm is fully compati-
ble with current Web service standards such as SOAP,
WSDL and UDDI.

Since each Web service operates as an autonomous
and separate entity and is not subject to a form of
centralized monitoring, we associate to each service
a local event history, and to each group of services

an event space. The event history represents events
that occurred or they are assumed to be occur whereas
the event space represents a group of collaborating
services which interact by exchanging events from
their local event histories, and changes over time as
services join or leave the collaboration. Each event
space is represented by a monitor, which operates as
an UDDI-like registry for advertising and discovering
events that may be published or subscribed to by the
participating services. As soon as a relevant event is
published, the monitor will dispatch it to subscribed
participants, after which they may consume the event
once it conforms to prescribed policies. Service poli-
cies such as security policies and access controls are
beyond the scope of this paper, but are planned as very
important topics for future research.

The monitor may be allocated to one of the par-
ticipants according to some criteria. For example, in
the rent car scenario, we can specify an event space
formed by the CBS, CIS, CSS and UIS. The monitor
is delegated to the CBS since it is responsible for the
instantiation of the interaction and therefore it has a
directed relationship with customers. In some other
cases, in order to stress the independent and trusted
nature of the monitor, it can be implemented on an in-
dividual trusted party chosen by all service partners.

In complex environment where numerous business
partners interact in shared business processes, the re-
sponse to a given request usually needs to handle sev-
eral event spaces at the same time and therefore needs
a mean to ensure interactions between them at run-
time. In our approach, this is illustrated by allowing
communication between monitors of all the involved
event spaces. Indeed, in an event space, if an event oc-
curs in a given Web service, this event is routed to the
local monitor which broadcast it to all subscribed ser-
vices. If the monitor detects that a subscribed service
is situated in an external event space, it propagates the
event to its representing monitor that will carry out
the same treatment. The event routing is carried out
according to the URL of services and monitors, that
are introduced as parameters of the generated event.
These URL are then stored as attribute values to each
event space’s monitor and can be changed dynami-
cally by triggering an event of assignment type. Fig-
ure 1 shows how communications between three dif-
ferent event spaces can be established.

After introducing the notion of events and present-
ing their role in coordinating and composing Web ser-
vices, we focus in next section on providing a formal
specification to composite events, and then using this
specification to handle some inconsistencies that may
arise in the car rental scenario described in section 2.

AN EVENT-BASED MODEL FOR WEB SERVICES COORDINATION

83

S13 S14

S11 S12

S23

S22S21

S24

S31

S32

Event Space : ES3

Monitor(ES1) Monitor(ES2)

Monitor(ES3)

Event Space : ES1 Event Space : ES2

Figure 1: Web services Coordination.

4 EVENT COMPOSITION

In Web services, the current event based approaches
such as (Lemahieu et al., 2003a; Lemahieu et al.,
2003b) only provide parameterized primitive events
and leave the task of composing events to the appli-
cation programmer. That means that they filter event
notifications trying to deliver events of interest to con-
sumers without considering any correlation with other
event occurrences. Instead, we are interested in spec-
ifying and handling event composition. We start by
proposing a core composite event language, then we
use this formalism to check some examples of devia-
tions derived from the car rental scenario.

4.1 Composite Event Language

In order to provide a computational model for
events, we use the event calculus (Kowalski and
Sergot, 1986) which is a calculus that allows for
specifying some state at particular time-points for
time-varying properties (called fluents). The oc-
currence of an event is represented by the predi-
cate Happens(e, t,�(t1, t2)) which signifies that an
event e occurs at some time t within the time range
�(t1, t2). The boundaries of �(t1, t2) can be speci-
fied by using either time constants, or arithmetic ex-
pressions over the time variables of other Happens
predicates of the same formula. An event may initiate
or terminate a fluent. A fluent is specified as a condi-
tion over the value of a specific variable of the compo-
sition process of a system. The fluent equalTo(x, y),
for example, signifies that the value of the variable
x is equal to y. The effects of events on fluents are
represented by the predicates Initiates(e, f, t) and
Terminates(e, f, t). Initiates(e, f, t) signifies that
a fluent f starts to hold after the event e at time t.
Terminates(e, f, t) signifies that a fluent f ceases
to hold after the event e occurs at time t. An EC for-
mula may also use the predicate HoldsAt(f, t) which

signifies that the fluent f holds at time t. Using these
predicates, some literals included in the event log of
the car rental scenario are shown in figure 2. Variables
li, vi, and ci represent respectively the park number,
the car number, and the customer identifier. Given this

L2 :Happens(Q.UIC.RelKey(v1, c1, l1), 5, �(5, 5))

L3 :Happens(Q.CIS.Available(v1, l1), 9, �(9, 9))

L4 :Happens(R.UIS.RetKey(v1, l1), 15, �(15, 15))

L5 :Happens(RC.CSS.Enter(v2, l2), 18, �(18, 18))

L6 :Happens(R.UIS.RetKey(v2, l2), 23, �(23, 23))

L7 :Happens(Q.CIS.Available(v2, l2), 26, �(26, 26))

L8 :Happens(Q.CSS.Enter(v1, l1), 27, �(27, 27))

L9 :Happens(Q.UIS.RelKey(v2, c2, l2), 28, �(28, 28))

L10 :Happens(Q.CIS.Available(v2, l2), 34, �(34, 34)

L11 :Happens(R.UIS.CarRequest(c1, l2), 49, �(49, 49))

L12 :Happens(Q.CIS.FindAvailable(l2, v), 50, �(50, 50))

L13 :Happens(Q.CIS.FindAvailable(l2, v), 51, �(51, 51))

L14 :Happens(R.UIS.CarHire(c1, l2, v2), 52, �(52, 52))

L15 :Initiates(Q.CIS.FindAvailable(l2, v), equalTo(v, v2, 51))

L1 :Happens(R.CSS.enter(v1, l1), 1, �(1, 1))

L16 :Happens(R.UIS.RetKey(v2, l2), 54, �(54, 54))

Figure 2: The CRS Event Log.

specification, both behavioral properties and assump-
tions of each event space associated to a Web service
composition can be formally expressed, which per-
mits to monitor different types of deviations and in-
consistencies. A monitoring scheme and a detailed
algorithm were discussed in (Spanoudakis and Mah-
bub, 2004). However, in that work, only simple busi-
ness events were considered and the event composi-
tion was not taken into account.

4.1.1 Temporal Orders

Based on the event calculus, it is easy to treat event
interrelationships, as different Happens can refer to
the same timepoint. Given this property, we can de-
duce that two events (with their corresponding time-
points) can be totally ordered based on the ordering of
their timepoints and the event calculus standard order
relation for time. Indeed, let e1 and e2 be any two
primitive events then the temporal order of these two
events is defined as follows:
• Happens(e1, t1) is said to be happen before

Happens(e2, t2) if t1 < t2.

• Happens(e1, t1) is said to be concurrent with
Happens(e2, t2) if t1 = t2.

• Happens(e1, t1) is said to be happen after
Happens(e2, t2) if t1 > t2.

WEBIST 2006 - INTERNET TECHNOLOGY

84

4.1.2 Disjunction

The meaning of the disjunction is that as soon as
either event occurs, the disjunctive event occurs.
The disjunction of two events e1 and e2 is denoted
disj(e1, e2). Formally:
disj(e1, e2)(t) = Initiates(e2, raised, t) ←−
Happens(e1, t) ∨ Initiates(e1, raised, t) ←−
Happens(e2, t)

4.1.3 Conjunction

The meaning of the conjunction is that two events
must both occur before the conjunctive event e3
occurs, but that the order of occurrence, and any
overlap of occurrence, is immaterial. The conjunction
of two events e1 and e2 is denoted conj(e1, e2).
Formally:
conj(e1, e2)(t) = Initiates(e3, raised, t) ←−
Happens(e1, t1)∧Happens(e2, t2)∧ (t ≥ sup{t1, t2})

4.1.4 Sequence

Sequence is said to be strict, i.e. one event must
have occurred before the next event in the sequence.
Sequence of two events e1 and e2 is denoted
seq(e1, e2), and is defined as follows:
seq(e1, e2)(t) = Happens(e2, t2) ←−
Happens(e1, t1) ∧ (t2 > t1)

It is possible that after the occurrence of e1, e2 does
not occur at all. To avoid this situation, we must ap-
propriately use definite events, such as absolute tem-
poral event or the end of each operation’s invocation.

4.1.5 Negation

The meaning of a negation is that an event e1 does
not occur in a closed interval formed by two events
e2 and e3. It is denoted by neg(e1, e2, e3). Formally:
neg(e1, e2, e3)(t) = ∀t2 ∈ [t1, t3], Happens(e1, t1) ∧
Happens(e3, t3) ∧ ¬Happens(e2, t2)

4.1.6 Temporal Iteration

A periodic event is a temporal event that occurs peri-
odically. It is denoted by P (e1, d, e2) where e1 and
e2 are two arbitrary events and d is a time slot. Event
e1 occurs for every d in the interval [e1, e2]. For-
mally:
P (e1, d, e2)(t) = (∃t1)(∀t2 ∈ [t1, t], t = t1 + i ∗
d for i ∈ N)(Happens(e1, t1) ∧ ¬Happens(e2, t2))
If we have the constraint that e1 occurs only once e2
occurs, the previous definition becomes:
P (e1, d, e2)(t) = (∃t1)(t > t1)(Happens(e1, t1) ∧
Happens(e2, t))

Additionally, we have the possibility to combine
different operators in the same time. For example,

disj(e1, seq(e2, e3)) represents a composite event
which occurs as a result of the disjunction of e1 and
the sequence of e2 and e3. After specifying compos-
ite events and defining semantics of composition op-
erators, it is necessary to study their relationships in
order to ensure the synchronization of the exchanges
and enable the communication among services either
in the same event space or in different event spaces.

4.2 Event-driven Causality

From an abstract point of view, a Web service compo-
sition can be described by the types and relative order
of events occuring in each atomic service. Let Ei de-
note the set of events occurring in service Si, and let
E = ∪i=1,...,NEi denote the set of all events (either
primitive or composite) in the N compound services.
These event sets are evolving dynamically during ex-
changes between services. Events in Ei are totally
ordered by the sequence of their occurrence. Thus, it
is convenient to index the events of a service Si in the
order in which they occur: Ei = {ei1, ei2, ei3, ...}.
We will refer to this occurrence to specify an enumer-
ation of Ei.

Definition 1 Given the enumeration of Ei, the
causality relation ≺ onto E × E is the smallest tran-
sitive relation satisfying:
(1) If eij , eik ∈ Ei occur in the same service Si and
j < k, then eij ≺ eik.
(2) If s ∈ Ei is a sent event and r ∈ Ej is the corre-
sponding received event, then s ≺ r.

If for two events e1 and e2, neither e1 ≺ e2, nor
e2 ≺ e1 holds, then neither of them causally affects
the other. There is no way to decide which of the
events e1 and e2 took place first, i.e, we do not know
their absolute order. This motivates the following def-
inition of concurrency:

Definition 2 The concurrency relation ‖ onto E ×E
is defined as

e1 ‖ e2 ≡ ¬((e1 ≺ e2) ∨ (e2 ≺ e1))
If e1 ‖ e2, e1 and e2 are said to be concurrent.

To illustrate the concept of causality between events,
we suggest the example illustrated in figure 3. In
this example, a service composition involves three
atomic services: S1, S2 and S3. {a1, a2, a3, a4, a5},
{b1, b2, b3, b4} and {c1, c2, c3, c4} are sets of op-
erations invoked respectively by S1, S2 and S3.
{m1,m2,m3,m4,m5} is the set of messages
(queries) exchanged between services during the re-
sponse to a customer request.
In this example, we have the following relations:
a1 ≺ c1, a3 ≺ b2, c2 ≺ a4, b3 ≺ a5, b4 ≺ c4.
Certain events couples are independant or concurrent:
a2 ‖ b1, b1 ‖ c3, a2 ‖ c3. The concurrency relation
‖ is not transitive. For example, in Figure 3 a3 ‖ c1

AN EVENT-BASED MODEL FOR WEB SERVICES COORDINATION

85

S1

S2

S3

a3 a4 a5

c1 c2 c3 c4

b1 b3 b4

b2

m1 m2 m4

m5m3

a1 a2

Figure 3: Event-driven Causality.

and c1 ‖ b2 hold, but obviously a3 ≺ b2. In general,
an unspecified pair of events always satisfies one and
only one of the following relations:

∀e1, e2 : e1 ≺ e2
⊕

e2 ≺ e1
⊕

e1 ‖ e2

The symbol
⊕

is the ”exclusive or” operator.
In principle, we can determine causal relationships

by assigning to each event e the set of events causally
related with it, we denote this set C(e). C(e) is de-
fined as follows:

Definition 3 Let E = ∪i=1,...,NEi denote the set of
exchanged events, and let e ∈ E denote an event oc-
curring during an operation invocation. C(e) is de-
fined as

C(e) = {e1 ∈ E | e1 ≺ e} ∪ {e}
The projection of C(e) on Ei, denoted Ci(e) =
C(e)∩Ei. For example, event c4 in Figure 3 is reach-
able by c3, c2, c1, a1,b4, b3, b2, b1, a3 and a2; hence,
C(c4) = {c3, c2, c1, a1, b4, b3, b2, b1, a3, a2}. After
defining C(e), we can characterize the causality re-
lationship between two different events e1 and e2 as
follows:

1. e1 ≺ e2 iff e1 ∈ C(e2).
2. e1 ‖ e2 iff e1 /∈ C(e2) ∧ e2 /∈ C(e1).

In order to facilitate the handling of C(e), we
have represented it by a vector time (C(e) =
∪i=1,...,NCi(e)). If Ek = {ek1, ek2, ek3, ..., ekm},
then ekj ∈ Ck(e) implies that {ek1, ...ekj−1} ⊂
Ck(e). Therefore, for each k the set Ck(e) is suf-
ficiently characterized by the largest index among
its members, i.e, its cardinality. Thus, C(e) can
be uniquely represented by an N-dimensional vector
V (e) of cardinal numbers, where Vk(e) =| Ck(e) |
holds for the k-th component (k = 1, ..., N) of vector
V (e). However, in some service composition scenar-
ios, the number of atomic services is not fixed. To
handle this case, we suggest to represent V (e) by the
set of all those pairs (k, | Ck(e) |) for which the sec-
ond component is different from 0. As an example,
the set of causality relationships of event c4 in 3 can
be represented by V (c4) = [3, 4, 4] because the cardi-
nality of C1(c4),C2(c4) and C3(c4) is 3,4, and 4 re-
spectively. For notational convenience, let the supre-
mum sup{v1, v2, ..., vm} of a set {v1, v2, ..., vm} of
n-dimensional vectors denote the vector v defined as

v[i] = max{v1[i], ..., vm[i]} for i = 1, ..., n. This
leads to the following definition:

Definition 4 Let e1 and e2 denote two events, let
C(e1), C(e2) the sets of causality relationships of
these events, and let V (e1), V (e2) denote the cor-
responding vector representations, respectively. The
vector representation of the union C(e1) ∪ C(e2) is

V (C(e1) ∪ C(e2)) = sup{V (e1), V (e2)}
Let V (e) denote the vector time Vi which results from
the occurrence of event e in service Si. We consider
V (e) the vector timestamp of event e. Since a sim-
ple one-to-one correspondence between vector times-
tamp V (e) and C(e) exists for all e ∈ E, we can de-
termine causal relationships solely by analysing the
vector timestamps of the events in question.

Definition 5 For two events e1 and e2, we have

1. e1 ≺ e2 iff V (e1) < V (e2).

2. e1 ‖ e2 iff V (e1) ‖ V (e2).

For two vectors v1 and v2 of dimension m, we have:

1. v1 ≤ v2 iff v1[k] ≤ v2[k] for k = 1, ...,m.

2. v1 < v2 iff v1 ≤ v2 and v1 = v2.

3. v1 ‖ v2 iff ¬(v1 < v2) ∧ ¬(v2 < v1).

Furthermore, we can restrict the comparison to just
two vector components in order to determine the pre-
cise causal relationship between two events if their
origins services Si and Sj are known. For two events
e1 ∈ Ei and e2 ∈ Ej , e1 = e2, we have

1. e1 ≺ e2 iff Vi(e1) ≤ Vi(e2).

2. e1 ‖ e2 iff Vi(e1) > Vi(e2) ∧ Vj(e2) > Vj(e1).

The meaning of this characterization is that if the
“knowledge” of event e2 in service Sj about the
events in service Si (i.e,Vi(e2)) is at least as accu-
rate as the corresponding “knowledge” Vi(e1) of e1
in Si, then there must exist a chain of events which
propagated this knowledge from e1 at Si to e2 at Sj ,
hence e1 ≺ e2 must hold. If, on the other hand, event
e2 is not aware of as many events in Si as is event e1,
and e1 is not aware of as many events in Sj as is e2,
then both events have no knowledge about each other,
and thus they are concurrent.

4.3 Event Based Verification

Some monitoring requirements of the car rental sce-
nario, introduced in section 2, are specified as fol-
lows:

WEBIST 2006 - INTERNET TECHNOLOGY

86

(A1) Happens(R.UIS.RelKey(v, c, l), t1,�(t1, t1)) ∧
¬(∃t2)Happens(R.CSS.Depart(v, l), t2,�(t1, t1 + 6 ∗
tu)=⇒ (∃t3)Happens(R.CIS.Available(v, l), t3,
�(t1 + 6 ∗ tu, t1 + 6 ∗ tu))

(A2) Happens(R.UIS.CarRequest(c, l), t1,�(t1, t1)) ∧
Happens(R.CIS.F indAvailable(l, v3), t2,�(t1, t1 +
tu)) ∧ Initiates(R.CIS.F indAvailable(l, v),equalTo
(v,v3),t2)=⇒ (∃t3)Happens(Q.UIS.CarHire(c, l, v)
, t3,�(t2, t2 + tu))

(A3) Happens(R.CIS.F indAvailable(l, v), t1,�(t1, t1))
∧ HoldsAt(equalTo(availability(v3), not avail), t1
− tu) =⇒ ¬Initiates(R.CIS.F indAvailable(l, v),
equalTo(v, v3))

(A4) Happens(Q.UIS.RelKey(v3, c, l), t1,�(t1, t1)) ∧
Happens(Q.UIS.RetKey(v3, l), t2,�(t2, t2) ∧
(t1 ≤ t3) ∧ (t3 ≤ t2) =⇒
HoldsAt(equalTo(availability(v3), not avail), t3)

These requirements are considered as events and
are expressed in terms of the EC predicates to facil-
itate the detection of inconsistencies that may arise.
For example, the formula A1 specifies that when CBS
invokes an operation in UIS (R.UIS.RelKey(v, c, l)
)that signifies the release of a car key to a customer, it
waits for an event signifying the exit of the car from
the car park for 6 time units (this message is to be
sent by CSS). If the latter event does not occur, CBS
invokes the operation Available(v, l) in CIS to mark
the relevant car as available.

We precise that in the above formulas, tu refers
to the minimum time between the occurrence of two
events. tu can be set by the service provider.

Given this specification and the event log of figure
2, the assumption A3 is found to be inconsistent with
the expected behavior of CBS at t=54. A3 is an as-
sumption about the behavior of the CIS service stating
that when CIS executes the operation FindAvailable
it should not report a car as available unless this is
indeed the case. The inconsistency arises because
the literals L13 and L14 in Figure 2 and the literal
HoldsAt(equalTo(availability(v2), not avail), 50),
which is derived from the literals L9 and L16 and
the assumption A4 entail the negation of A3. In this
example, the inconsistency is caused by the failure of
the CSS service to send an R.CSS.Depart(v2, l2)
event to CBS following the event
Happens(Q.UIS.RelKey(v2, c2, l2), 28,�(28, 28)).
Thus, according to A1, CBS invoked the operation
Available to mark the vehicle v2 as available (see
the literal L10 in figure 2). Subsequently, when
the operation Q.CIS.F indAvailable(l2, v) was
invoked in CIS (see literal L12), CIS reported v2
as an available vehicle. Note, however, that this
inconsistency could only be spotted after the event
signified by the literal L16 and by virtue of A4
(according to A4, a car whose key is released should
not be considered as available until the return of its
key).

One other case is that at t=54, the event L15 which
was generated due to A2 can be detected as unjus-
tified behavior. This is because this event can only
have been generated by A2. Note that, although in

this case CBS has functioned according to A2, one of
the conditions of this property is violated by the literal
Initiates(R.CIS.F indAvailable(l2, v), equalTo(v
, v2), 51). This literal can be deduced
from A3, the literal L13, and the literal
HoldsAt(equalTo(availability(v2), not avail), 50).
The latter literal is deduced from L9 and L16 and
assumption A4.

5 RELATED WORK

Specifying and managing Web services interactions
can be challenging due to the autonomous and het-
erogenous nature of services providers . Below we
discuss some leading approaches that are most related
to our work.

Recent emerging workflow projects such as eFlow
(Casati et al., 2000), and CrossFlow (Hoffner et al.,
2001) focus on loosely coupled processes. However,
they lack a formal model for specifying and verifying
Web services. They also do not address the semantics
of composite events in Web services interactions.

Web service integration requires more complex
functionality than SOAP, WSDL, and UDDI can pro-
vide. The functionality includes transactions, work-
flow, negotiation, management, and security. There
are several efforts that aim at providing such func-
tionality, for example, the recently released Busi-
ness Process Execution Language for Web Services
(BPEL4WS), which represents the merging of IBM’s
Web Services Flow Language (WSFL) and Mi-
crosof’s XLANG, is positioned to become the basis
of a standard for Web service composition. These lan-
guages are based on both SOAP, WSDL, and UDDI
basic stack, are complex procedural languages, and
very hard to implement and deploy. There are also
some proposals such as DAML-S, which is a part of
DARPA Agent Markup Language project that aims
at realizing the Semantic Web concept. However,
DAML-S is a complex procedural language for Web
service composition.

A part from this, lots of proposals originally aim at:
i) specifying web services at an abstract level using
formal description techniques and reasoning on them,
ii) using jointly abstract descriptions and executable
languages (BPEL), iii) developing web services from
abstract specifications. However, due to lack of space,
we just point the reader to the related work section of
paper (Ferrara, 2004).

On the other hand, to monitor the existence of spe-
cific patterns of events that indicate the violation of re-
quirements, the existing techniques use either special
purpose monitoring architectures such AMOS (Co-
hen et al., 1997) and FLEA (Feather et al., 1998)
that maintain event logs and offer proprietary event

AN EVENT-BASED MODEL FOR WEB SERVICES COORDINATION

87

pattern specification languages, or store events in re-
lational databases and deploy standard SQL query-
ing for detecting requirement violations (Robinson,
2003). Typically, existing approaches assume that the
events to be monitored are generated by special state-
ments, which must be inserted in the code of a system
for this purpose . These statements may be inserted
in the source or compiled code of a system. The main
drawback of instrumentation is that it has to be done
manually. To alleviate this problem, Dingwall-Smith
and Finkelstein (Smith and Finkelstin, 2002) have de-
veloped an aspect oriented approach, in which sys-
tem providers specify instrumentation code in sepa-
rate classes, and define composition rules that deter-
mine how this code is to be merged with application
code.

A different approach has been developed by Robin-
son (Robinson, 2003). In this approach, requirements
are expressed in KAOS and analyzed to identify ob-
stacles for them. If an obstacle is observable (i.e., it
corresponds to a pattern of events that can be observed
at run-time), it is assigned to an agent for monitoring.
At run-time, an event adaptor translates web service
requests and replies expressed as SOAP messages into
events and a broadcaster forwards these events to the
obstacle monitoring agents which are registered as
event listeners to the broadcaster.

A common pattern of the related works discussed
above is that all of them suppose that all interact-
ing partners “know” one another in advance: together
they form an extended enterprize. However, our work
concerns situations where partners have to dynami-
cally find one another, after which they participate in
short lived, ad hoc partnerships.

6 CONCLUSION

In this paper, we have presented a distributed event-
based architecture, that is grounded on a formal meta-
model stating its structural and dynamic characteris-
tics, and proving its reliability and efficiency for co-
ordinating Web services. The formal semantics of
the event composition operators is expressed in terms
of event calculus predicates. We have made use of
event calculus, especially because it is one of the best
known formalism for reasoning about events. The use
of this formal model allows the verification of prop-
erties and the detection of inconsistencies both within
and between services. Current work aims at refining
and extending the approach in various directions. In-
deed, we are working on the implementation of a tool
to operationalize the architecture that we have devel-
oped, and we intend to establish a strong link with
other process algebra, such as CSS (Milner 1989) and
ACP (Bergstra & Klop 1985) in order to import pro-
cess algebra specific verification techniques such as
axiomatizations of behavioral equivalences.

REFERENCES

Casati, F., Ilnicki, S., Jin, L.-J., and Shan, M.-C. (2000).
An open, flexible, and configurable system for ser-
vice composition. In WECWIS ’00: Proceedings of
the Second International Workshop on Advance Issues
of E-Commerce and Web-Based Information Systems
(WECWIS 2000), page 125, Washington, DC, USA.
IEEE Computer Society.

Cohen, D., Feather, M. S., Narayanaswamy, K., and Fickas,
S. S. (1997). Automatic monitoring of software re-
quirements. In ICSE ’97: Proceedings of the 19th
international conference on Software engineering,
pages 602–603, New York, NY, USA. ACM Press.

Feather, M. S., Fickas, S., Lamsweerde, A. V., and Ponsard,
C. (1998). Reconciling system requirements and run-
time behavior. In IWSSD ’98: Proceedings of the 9th
international workshop on Software specification and
design, page 50, Washington, DC, USA. IEEE Com-
puter Society.

Ferrara, A. (2004). Web services: a process algebra ap-
proach. In ICSOC ’04: Proceedings of the 2nd inter-
national conference on Service oriented computing,
pages 242–251, New York, NY, USA. ACM Press.

Hoffner, Y., Ludwig, H., Grefen, P., and Aberer, K. (2001).
Crossflow: integrating workflow management and
electronic commerce. SIGecom Exch., 2(1):1–10.

Kowalski, R. and Sergot, M. J. (1986). A logic-based calcu-
lus of events. New generation Computing 4(1), pages
67–95.

Lemahieu, W., Snoeck, M., Michiels, C., and Goethals,
F. G. (2003a). An event based approach to web service
design and interaction. In APWeb, pages 333–340.

Lemahieu, W., Snoeck, M., Michiels, C., Goethals, F. G.,
Dedene, G., and Vandenbulcke, J. (2003b). Event
based web service description and coordination. In
WES, pages 120–133.

Pietzuch, P. R., Shand, B., and Bacon, J. (2003). A frame-
work for event composition in distributed systems. In
Middleware, pages 62–82.

Robinson, W. N. (2003). Monitoring web service require-
ments. In RE ’03: Proceedings of the 11th IEEE In-
ternational Conference on Requirements Engineering,
page 65, Washington, DC, USA. IEEE Computer So-
ciety.

Smith, A. D. and Finkelstin, A. (2002). From requirements
to monitors by way of aspects. In Proceedings of the
1th International Conference on Aspect Oriented Soft-
ware Development.

Spanoudakis, G. and Mahbub, K. (2004). Requirements
monitoring for service-based systems: Towards a
framework based on event calculus. In ASE ’04: Pro-
ceedings of the Automated Software Engineering, 19th
International Conference on (ASE’04), pages 379–
384, Washington, DC, USA. IEEE Computer Society.

WEBIST 2006 - INTERNET TECHNOLOGY

88

