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Abstract: As a single video server reveals its limitations in the aspects of scalability, capability, fault-tolerance, and 
cost-efficiency, a part of solutions for these limitations emerge. However, these solutions have their own 
problems. To overcome these problems and exploit already existing video servers, we designed the globally 
scalable architecture that supports both heterogeneous and off-the-shelf personal computer (PC), operating 
system (OS), video server applications with both a HTTP-level redirection and the least response time 
scheduling without any modification or addition as well as developed its prototype. 

1 INTRODUCTION 

The multimedia transmission spreads widely as the 
demands of a real-time broadcast, a digital broadcast, 
distance learning, a multimedia conferencing, a 
multimedia mail, Internet Protocol Television 
(IPTV) (IPTV world forum, 2006), and Voice over 
IP network (VoIP) (Internet Telephony: Voice Over 
Internet Protocol) significantly increase. However, 
traditional storages such as a CD-ROM and a hard 
disk for content distribution can't support 
requirements that contents could be transmitted to 
many users at the real time from a device or a file, 
and watched by many users at the same time. These 
drawbacks of traditional file systems for the content 
distribution make video servers connected by 
Internet proliferate as content storage and 
transmission media. In addition, video servers and 
Internet are utilized for a multimedia transmission as 
a network capacity increases enough to transmit 
simultaneously content to various clients. 

A video server supports broadcast or unicast 
service, sometimes referred to as video on demand 
(VOD) or movie on demand (MOD), and guarantees 
that the appropriate amount of data is delivered to a 
client buffer in order to minimize a jitter or an 
interruption. A broadcast service transmits live 
contents from a device or a file to the connected 
clients at the real time, which can't support VCR-
like interactivity such as a pause, a rewind, and a 
forward. A unicast service transmits pre-created 

contents to the connected clients at the same time, 
which can support VCR-like interactivity such as a 
pause, a rewind, and a forward. When content is 
transmitted as broadcast or unicast, the content 
occupies the constant network bandwidth usually 
related with a video quality. If a total bandwidth 
used by clients exceeds the entire network 
bandwidth of the transmitting server, the server can't 
transmit more contents through the fully used 
network interface. When a central processing unit 
(CPU) is overused by various services, the CPU 
can't accept more connections, process more 
requests, and transmit more contents. In other words, 
network and CPU resources place a restriction on 
the transmitting capability of a server. As a solution 
to these processing and bandwidth limitations, a 
single server approach is expensive to extend its 
capability. In addition, it can't handle a service 
failure. In summary, a single server approach for 
multimedia transmission has limitations in the 
aspects of capability, scalability, availability, fault 
tolerance, and cost efficiency. 

To overcome these limitations, parallel 
processing technologies such as clustering with a 
round-robin domain name service (DNS) (T. Brisco, 
1995), clustering with a linux virtual server (LVS) 
(Whensong Zhang et al., 1999), (Whensong Zhang, 
2000) and (Patrick O' Rourke and Mike Keefe, 
2001) , and clustering with a OpenCDN (Alessandro 
Falaschi, 2004) can be used for building a parallel 
multimedia system. Among these technologies, DNS 
maps a domain name to several real IP addresses, 
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and answers a name resolution request of a client 
according to a pre-determined policy such as a round 
robin (T. Brisco, 1995). However, DNS approach 
can't provide the fault-tolerance to a client because it 
unconditionally returns one of IP addresses mapped 
to a domain name without checking the server status, 
and the intermediate DNS server between a client 
and the Round-Robin DNS server can cache the IP 
address mapped to a domain name differently from 
the designated DNS, which leads to fail to equally 
balance loads among nodes in a cluster. LVS can be 
also used for a video server clustering and is 
organized as a cluster of systems providing real 
services and a load balancer, sometimes referred to 
as a director or a dispatcher, operating as a contact 
point with a single virtual IP address (VIP) as well 
as redirecting a request to one of real servers 
according to policies using different redirecting 
methods. LVS supports 3 methods such as network 
address translation (NAT), IP tunneling, and direct 
routing as redirecting methods. When NAT is 
chosen, a load balancer changes the destination 
address of a request IP packet to the real server IP 
address, and changes the source address of a 
response IP packet to the load balancer address 
(VIP) before returning the results to a user. NAT has 
the problem that the load balancer becomes a 
bottleneck because all of the request and the 
response packets pass through the load balancer that 
changes the destination and the source addresses. 
When IP tunneling is chosen as a LVS redirecting 
method, the load balancer creates a new IP datagram 
forwarded to a real server encapsulating the original 
datagram, and the real server directly returns the 
results to the requesting user after decapsulating and 
processing the new datagram. IP tunneling has the 
problems that OS of a real server should support IP 
tunneling, a real server should have a public address, 
and both a load balancer and real servers have 
additional IP tunneling overheads. Although most of 
the modern OS support IP tunneling technology, 
some kinds of legacy OS still exist, and some OS 
should do the complex processes such as a kernel 
patch in order to support IP tunneling. When direct 
routing is chosen, the load balancer changes the 
Medium access control (MAC) address of a request 
data frame to the destination MAC address of the 
selected server, and the real server directly returns 
the results to the requesting user. Direct routing has 
the problems that a real server requires a non-
ARPing network interface, both a load balancer and 
real servers should be connected within a single 
physical network, and a real server needs a public 
address. Besides its own problems of each 
technology mentioned above, all of these redirecting 
methods at the low level have the common weakness 
that the same content should be copied into all of the 

servers because a low level redirection can't 
recognize the requested content but only the IP 
packet. Although storage capacity largely increased 
during the past, storing all of the same contents in all 
of the servers is wasteful when considering the 
increasing sizes of video contents. OpenCDN has an 
application layer request routing, and can support 
various servers, but it requires the implementation of 
a new adaptation layer that communicates with a 
streaming server whenever a server product is added. 

As available video server systems, many 
commercial products such as Microsoft’s Windows 
Media server 
(http://www.microsoft.com/windows/windowsmedia
/default.aspx), Real network's helix universal server 
(http://www.realnetworks.com/products/media_deliv
ery.html), and Apple's Darwin streaming server 
(http://developer.apple.com/darwin/projects/streami
ng/) as well as many research prototypes such as 
Tiger (William J. Bolosky et al., 1996) and SPIFFI 
(Craig S. Freedman and David J. DeWit., 1995) 
exist and are operating in the real world with their 
own proprietary applications, the proprietary 
technologies, advantages, and disadvantages. These 
varieties caused the current congestion that 
incompatible servers are operating at the same time 
and a practitioner should select one of them after 
comparing them for a long time. In this situation 
where servers are various, the technology that 
supports all of these heterogeneous servers without a 
dependency on any vendors and content-awareness 
is required so that a practitioner can freely choose a 
server and extend the capability. 

To complement the drawbacks of each 
technology mentioned above and exploit already 
existing servers, we designed a simple, and scalable 
architecture that can be used within a wide area 
network (WAN), and support content-awareness 
because the architecture exploits HTTP facilities as a 
redirecting method. Our architecture can also 
provide a little fault-tolerance through monitoring 
video servers and avoiding assigning the repetitively 
failed server. To prove its practicality, we also 
developed its prototype. 

This paper is organized as follows. Section 2 
refers to various related works by other researchers. 
Section 3 describes our architecture and 
implementation, and Section 4 concludes. 

2 RELATED WORKS 

This section describes the parallel processing 
technologies such as LVS, and DNS as well as 
network technologies such as CDN and OpenCDN. 
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2.1 Linux virtual server (LVS) 
(Whensong Zhang et al., 1999), 
(Whensong Zhang., 2000) and 
(Patrick O' Rourke and Mike 
Keefe, 2001) 

Linux virtual server (LVS) is a software tool that 
supports load-balance among multiple Internet 
servers. LVS supports 3 different methods as 
redirecting methods, Network address translation 
(NAT), IP tunneling, and lastly direct routing. 

LVS via NAT operates as shown in Figure 1. 
 

 
Figure 1: Architecture of LVS via NAT. 

 
When a user makes requests to a load balancer, 

which selects a real server, rewrites the destination 
address of a request IP packet to the real server IP 
address that can be within a private network or a 
public network, and forwards the modified packet to 
the dynamically selected server. After the real server 
receives the packet, processes it, and sends the 
response IP packet to the requesting user through the 
load balancer that rewrites the replies from the real 
server changing the source address of a response 
packet to the load balancer address (VIP). The 
requesting user transparently receives the packet 
from the load balancer. 

Although real servers can run any OS with 
TCP/IP facilities, can use private IP addresses, and 
only a load balancer needs public IP address in LVS 
via NAT, it has the limitations that the load balancer 
becomes a bottleneck and the performance is not 
scalable because all of the request and the response 
packets pass through the load balancer. 

Figure 2 shows the architecture of LVS via IP 
tunneling. 

 
Figure 2: Architecture of LVS via IP tunnelling. 

 
When a user makes requests to a load balancer, 

which selects a real server, creates a new IP 
datagram encapsulating the original datagram using 
IP tunneling technology, and forwards the new 
datagram to the dynamically selected server. After 
the real server receives the packet, decapsulates it, 
processes it, the real server returns the replies 
directly to a user. 

Although real servers can be on different 
network from the network of a director, return 
directly to clients, and a director doesn't become a 
bottleneck, IP tunneling has the limitations that OS 
of a real server should support IP tunneling, some 
OS should do the complex processes such as a 
kernel patch in order to support IP tunneling, real 
servers also need public IP addresses, and both a 
director and real servers have the additional 
overheads of IP encapsulation and decapsulation. 

Figure 3 shows the architecture of LVS via direct 
routing. 

When a user makes requests to a load balancer, 
which selects a real server, rewrites only the MAC 
address of the request data frame to the destination 
MAC address, and forwards the new data frame to 
the dynamically selected server. After the real server 
receives the packet, processes it, the real server 
returns the replies directly to a user. 

Although real servers return directly to clients, a 
director doesn't become a bottleneck, and both real 
servers and a director doesn't have IP tunneling 
overheads, LVS via direct routing has the limitations 
that the load balancer and real servers should be 
connected within a single physical network, the real 
servers should have network interface that doesn't do 
ARP response in order to avoid network IP address 
collision, and even real servers need a public IP 
addresses. 
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Figure 3: Architecture of LVS via direct routing. 

 
LVS supports 4 scheduling algorithms such as 

Round-Robin scheduling, Weighted Round-Robin 
scheduling, Least-Connection scheduling, and 
Weighted Least-Connection scheduling. Round-
Robin scheduling selects a real server in a round-
robin manner regardless of the processing capacities 
or the number of connected clients. Weighted 
Round-Robin scheduling assigns a weight to a server 
according to its processing capacities. In the 
weighted round-robin, a server having more 
processing capacities receives a higher weight, 
which leads to serve more clients. Least-Connection 
scheduling selects a real server having the least 
number of connections. Weighted Least-Connection 
scheduling assigns a weight to a server according to 
the processing capacities, and tries to maintain the 
ratio of the active connections among the servers to 
that of weights. These 4 scheduling algorithms can 
be associatively used with 3 redirecting algorithms 
mentioned above. 

2.2 Content Delivery Network 
(CDN) & OpenCDN (Md. 
Huamyun Kabir et al., 2002) and 
(Alessandro Falaschi, 2004) 

CDN is a technology that was originally developed 
for World Wide Web (WWW), places servers 
sometimes called as replicas or surrogates in each 
region, distributes contents to the servers, and the 
clients are served by the servers according to 
policies such as network proximity, geographical 
proximity, and a response time. 

CDN has the subelements such as origin servers, 
several surrogate servers, distribution systems, 

request-routing systems, and accounting systems. 
Origin servers have contents that are firstly created 
by content providers, and provide clients with 
broadcast or unicast service under the status owned 
by a content provider. Surrogate servers are the 
servers that provide real services to users on behalf 
of origin servers. A distribution system distributes 
content to surrogate servers when the surrogate 
servers anticipate a client to request the content, 
push, or a client makes a request to the surrogate 
server, pull. A request-routing system redirects a 
client request to a surrogate server. An accounting 
system measures and records both the content 
distribution and transmission activities. A 
distribution system interacts with a request-routing 
system in order to inform content availability and an 
accounting system in order to inform the content 
distribution activities. A request-routing system 
informs the demands of content to a distribution 
system so that a distribution system can place 
content to the appropriate surrogate servers, and the 
distribution of content to an accounting system so 
that the accounting system can record the 
distribution. An accounting system uses the 
collected information for various purposes such as 
charging, and statistics. (Md. Huamyun Kabir et al., 
2002) 

OpenCDN is an open CDN implementation that 
supports vendor-independence and scalable delivery 
of live streaming content to large audience.  

OpenCDN operates as shown in Figure 4. 

 
Figure 4: OpenCDN entities and their main interfaces 
(Alessandro Falaschi, 2004). 
 

OpenCDN is made of a Relay Nodes that 
perform content delivery and distribution, Portal 
that is the contact point of clients, and Request 
Routing and Distribution Management (RRDM) that 
records footprint information from nodes, chooses a 
relay by a client request, creates a distribution tree, 
and dismantles the distribution tree after a 
transmission ends. In other words, a relay node plays 
the role of a surrogate server and a RRDM plays the 
roles of request-routing system and distribution 
system in the CDN concept. 

Whenever a node boots, the node registers its 
capabilities and footprint information with the 
RRDM. Whenever a client with viewers contacts to 
an announcement portal, the portal makes a request 
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to the RRDM through XML-RPC 
(http://www.xmlrpc.com/spec), RRDM chooses the 
best relay, creates distribution tree, and returns the 
content Uniform Resource Identifier (URI) (T. 
Berners-Lee et al., 2005) to the portal. If the selected 
relay doesn’t have the requested content, it pulls the 
stream from the source. The portal generates a page 
that redirects the client request to the returned relay. 
After the requesting client finish watching the 
content, the RRDM dismantles the distribution tree. 

The nodes in the distribution tree are classified as 
FirstHop (FH), Transit (TR), and LastHop (LH) 
from the less specific footprint to the more specific 
footprint. A FirstHop relay has the widest footprint 
and is the first point for distributing content. A 
transit relay distributes the content from the 
FirstHop relay or the other transit relays to the other 
transit relays or LastHop relay. The LastHop relay 
delivers finally the content to the clients (Alessandro 
Falaschi, 2004). In order to deliver content to a 
client, RRDM doesn’t have to be related, which 
reduces the RRDM overheads. 

OpenCDN supports the vendor-independence 
through adding a new adaptation layer that makes a 
direct request to the streaming or video servers. 

3 ARCHITECTURE AND 
IMPLEMENTATION 

This section describes our architecture and 
implementation in order to support scalability, 
content-awareness, load-balance, fault-tolerance, 
and use off-the-shelf parts. 

3.1 Overall Architecture 

The overall architecture and process are 
demonstrated in Figure 5. 

 
Figure 5: Overall architecture and process. 

Our architecture consists of a client, a dispatcher, 
a database server, video servers, and storage servers. 
A client is the system that is used for watching the 

content by a user and it should have the proprietary 
players for the contents served by video servers. A 
dispatcher is the contact point of clients, periodically 
monitors video servers, and saves the monitored 
results in the database server. A database server 
stores the server information, the status of video 
servers, and content information. A video server 
takes responsible for streaming contents through 
unicast, multicast, and broadcast methods. A storage 
server has contents, and provides the contents to the 
selected video server according to the client requests 
through storage sharing mechanisms such as a 
network drive and a network file system (NFS) 
(http://www.ietf.org/rfc/rfc1094.txt). 

The service procedures are summarized as 
follows. Whenever a client makes a content request 
to the dispatcher through hyper text transfer protocol 
(HTTP) 
(http://www.w3.org/hypertext/WWW/Protocols/), 
the dispatcher retrieves the video server with both 
the least response time and the requested content 
from the database server, and retrieves the URI 
(http://www.ietf.org/rfc/rfc1094.txt) to the content in 
the video server. The dispatcher returns a status code 
302 that redirects the requesting client to the 
returned content location. After receiving the new 
location, the proprietary player installed on the client 
makes a direct request to the returned location, and 
starts playing it. 

We adopted the least response time scheduling 
because other schedulings are not suitable for a 
multimedia system in that audio content and video 
content occupy a largely different bandwidth from 
web content. In other words, the server with the 
most number of connections is not always the most 
congested server in a multimedia system because the 
server with a few viewers who watch high-quality 
video contents can practically use more network 
bandwidth than the server with a lot of viewers who 
watch low-quality video contents. 

Our architecture redirecting at the HTTP level 
can be used as a CDN. A dispatcher is similar to the 
request routing system of CDN in that the dispatcher 
makes a client redirect to the appropriate server, a 
database server is similar to the accounting system 
in that the database server records the distribution of 
contents and includes the transmission records. A 
video server can be recognized as a surrogate server 
in that it provides a real service. When we use our 
system as a CDN, we have no automatic distribution 
system. In this point of view, our architecture and 
process can be seen as one of CDN implementations 
redirecting at the application level according to the 
given URI and having the least response time 
scheduling. 

Our architecture is similar to the OpenCDN 
architecture in that the dispatcher plays the roles of a 
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portal and a RRDM, and a video server plays the 
role of a node. Our request routing is also similar to 
that of OpenCDN in that two of them are commonly 
operating at the application layer. However, our 
architecture is different from the OpenCDN in that 
our architecture has no distribution system, creates 
and dismantles no distribution tree before or after 
the delivery, and has no registration process of a 
node with the request-routing system. 

These architecture and processes have the 
advantages in that any video servers can be added 
into a cluster as far as client softwares for the 
streaming, and the HTTP web browsers with the 
capabilities of both HTTP connection and 
redirection are installed on the requesting client. 
This architecture is simple to implement and add a 
server because this architecture has neither 
automatic registration process nor distribution tree, 
and doesn't have to change a server setting or newly 
implement an adaptation layer according to a server 
product. Our architecture supports content-
awareness, which allows contents to be freely 
distributed into any servers as far as a database 
server records the location. It provides fault 
tolerance because a dispatcher monitors video 
servers, and avoids scheduling a failed server as well 
as provides load balance because a dispatcher makes 
a client redirect to the video server with the least 
response time. It can support global environments 
such as CDN because both a dispatcher and video 
servers don't have to be connected within a single 
physical network. It has only the page-generating 
overheads at the dispatcher because a video server 
directly communicates with clients. 

However, our architecture has more overheads 
than low level (L4) request routings that are 
supported by DNS, LVS in Section 2.1, and use TCP 
splicing (Ariel Chhen et al., 1999), TCP handoff 
(Vivek S. Pai et al., 1998) because a dispatcher reads 
information about the server status from a database 
server, returns a status code that makes a client 
redirect, and a client makes a direct request to the 
scheduled server. In our architecture, a real server 
should have a public IP address in order to directly 
communicate with clients. All of these drawbacks 
are related with our goal that is not to minimize 
overheads for broadcast but to develop flexible 
architecture for supporting many existing servers 
and content-awareness. 

3.2 Implementation 

We developed the architecture and process described 
in Section 3.1 in order to verify its practicality. We 
used a RealPlayer 10.5 running on Windows XP 
patched by service pack 2 for a client, IIS 5.0 

running on Windows 2000 Server patched by service 
pack 4, Visual Basic 6.0 patched by service pack 6 
for a dispatcher, Microsoft SQL server 2000 patched 
by service pack 4 for a database server, and Solaris 
5.8 with Real networks' Helix server 9.07 for a video 
server and a storage server. 

3.2.1 Client 

A client has the RealPlayer 10.5 that plays the 
content directly returned from a video server. A 
RealPlayer is chosen because it can be run with the 
Real networks' Helix universal server 9.07. If the 
other video servers are used, the player should be 
differently chosen. For example, if we add the 
Microsoft's Windows Media Server into a video 
server cluster, the player for the server, MediaPlayer, 
should be installed for watching its contents. In this 
way, the proprietary players should be installed 
according to the content type and the video servers. 

3.2.2 Dispatcher 

A dispatcher system has a video server monitor, and 
a dynamic web page using Active Server Page (ASP). 
A video server monitor periodically retrieves the 
video server information from the database server, 
gains information about their availability from the 
retrieved video servers, and re-stores the gained 
availability information to the database server. We 
used a Visual Basic 6.0 for the video server monitor. 
After the dynamic web page retrieves contents, and 
availability information from the database server, the 
dynamic web page generates a status code 302 that 
makes a client redirect to the least response time 
server with the requested content. To measure the 
response time, we used the open ping component 
(http://www.activexperts.com/activsocket/) that is 
able to be accessed from Visual Basic. 

The dynamic web page could be created by using 
any dynamic page mechanisms such as Java Server 
Page (JSP), Common Gateway Interface (CGI), and 
PHP that can access a database, but we chose ASP 
because it was the basic dynamic page mechanism 
supported by Windows server. The scheduling 
method used by the dispatcher system can be easily 
extended or modified because a dynamic web page 
includes a scheduling algorithm. 

Whenever a client makes a request to the 
dynamic web page through general web browsers 
such as Internet Explorer, the browsers receive a 
status code 302 that redirects the requesting client to 
the least response time server with the requested 
content, and opens its proprietary player according 
to the content. 
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3.2.3 Database Server 

A database server stores the managed video server 
information, the URI of contents that video servers 
provide, and the response time of video servers. It 
can be any database products with the basic 
mechanisms that can create a table, store data into it, 
retrieve data from it, and support the retrieving 
mechanism from a dynamic web page. 

We chose Microsoft's SQL server 2000, and 
created the following tables in Figure 6 in order to 
realize the architecture in Section 3.1. 
 

 
Figure 6: Tables for the architecture. 

When a server is added to the architecture, the 
information should be added to SERVER_INFO 
table so that the video server monitor operating at 
the dispatcher can know the server. The video server 
monitor fills the response time information into 
SERVER_STATE table. Information should be 
inserted into FILE_INFO and VIDEO_INFO when a 
manager added contents to one of video servers. If 
inserted, the dynamic web page at the dispatcher 
knows the added content and can be generated 
including the content. FILE_STAT, PLAY_STAT, 
and CLIENT_STAT tables are used for play 
statistics. These information can be used to generate 
a report about content usage statistics. Both 
CODEMAST and VIDEO_LEVEL tables are used 
as referenced tables for filling the VIDEO_INFO 
and FILE_INFO tables. 

3.2.4 Video Server 

A video server can be any PC, Workstation, 
Mainframe, OS with the capability of running a 
video server because all of the video servers have 
the URI pointing to the provided content, and both 
the VIDEO_INFO and FILE_INFO tables include 
the URI. 

3.2.5 Storage Server 

The storage servers of our architecture can be any 
computers, OS, or storage systems as far as they can 

provide the video servers with contents using storage 
sharing mechanisms such as a network drive and a 
NFS. This can be realized because storage sharing 
mechanisms automatically mount a disk according 
to the old setting when starting, video servers 
automatically publish the contents from any disks 
when starting, and a database server stores all of the 
publishing point information regardless of the local 
storage of a video server. 

4 CONCLUSION AND FUTURE 
WORKS  

As multimedia transmission significantly increases, 
a single server approach reveals the problems that it 
has limited capacity, is expensive to improve a 
performance, and can't handle a failure. These 
limitations make the parallel processing approaches 
with LVS, DNS, and OpenCDN proliferate. 
However, as available video server products for 
these approaches, many commercial products such 
as Microsoft’s Windows Media server, Real 
network's Helix server, and Apple's Darwin 
streaming server as well as many research 
prototypes such as Tiger, and SPIFFI have been 
developed and have operated in the real world. 
These varieties caused current situations that 
incompatible servers are separately operating and a 
practitioner who wants to build a multimedia system 
should select one of the products after comparing 
them for a long time. 

As a redirecting technology, we developed a 
HTTP-level mechanism because many low level 
mechanisms used by LVS, and DNS, as well as a 
high level mechanism used by OpenCDN have their 
own problems. LVS sometimes has bottleneck, 
needs to do complex processes, and needs to connect 
a director and real servers within a single physical 
network. DNS can't provide fault-tolerance and 
sometimes load-balance. Commonly, all of contents 
should be copied to all of the servers because the 
low level mechanisms can see only the IP packet, 
and can't redirect a client to a server according to the 
requested content. OpenCDN requires a new 
adaptation layer to be implemented for adding a new 
video server. Our HTTP-level redirecting 
mechanism can support any video servers regardless 
of the vendors, has no bottleneck, can easily add 
new servers by adding information into a database 
server, needs to be connected within a single 
physical network, which makes our architecture 
available for CDN, and provides both load-balance 
and a little fault-tolerance at the cost of more 
overheads caused by the HTTP-level redirecting 
method. Our goal was not to minimize the 
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redirecting overheads but to solve the heterogeneity 
problems of the various redirecting methods 
supported by LVS, DNS, and OpenCDN without 
any modification. As a scheduling algorithm, we 
developed the least response time scheduling 
because the other algorithms are not suitable for a 
video server cluster in that they don't consider the 
difference among the sizes of content bandwidth. 

The developed architecture and process have the 
contributions that to the best of our knowledge, they 
are the first architecture redirecting a client request 
at the HTTP-level for video servers without any 
modification or addition. We are currently 
measuring the overheads of the developed prototype, 
adding the other schedulings besides the least 
response time scheduling, and developing the 
intelligent distribution system according to the 
content popularity. 

REFERENCES 

IPTV world forum 2006. http://www.iptv-
forum.com/2006/component/option,com 
frontpage/Itemid,1/. 

Internet Telephony: Voice Over Internet Protocol (IP). 
http://engr.smu.edu/ venkatra/VoIPHTML.html. 

T. Brisco. April 1995. DNS Support for Load Balancing. 
http://rfc.net/rfc1794.html. 

Whensong Zhang, Shiyao Jin, Quanyuan Wu. May 1999. 
Creating linux virtual servers. In Proceedings of 
LinuxExpo Conference. 

Whensong Zhang. July 2000. Linux virtual server for 
scalable network services. In Proceedings of Ottawa 
Linux Symposium. 

Patrick O' Rourke, Mike Keefe. April 2001. Performance 
evaluation of linux virtual server. In Proceedings of 
LISA Conference. pages 79–92.  

Alessandro Falaschi. 29 June 2004. Open Content 
Delivery Network Short Overview.  

Microsoft Windows Media Homepage. 
http://www.microsoft.com/windows/windowsmedia/d
efault.aspx. 

Real networks Media Servers. 
http://www.realnetworks.com/products/media_deliver
y.html. 

Darwin Streaming Server. 
http://developer.apple.com/darwin/projects/streaming/. 

William J. Bolosky, Joseph S. Barrera, III, Richard P. 
Draves, Robert P. Fitzgerald, Garth A. Gibson, 
Michael B. Jones, Steven P. Levi, Nathan P. Myhrvold, 
Richard F. Rashid. April 1996. The TIGER video 
fileserver. In Proceedings of the Sixth International 
Workshop on Network and Operating System Support 
for Digital Audio and Video (NOSSDAV). pages 97–
104. Zushi, Japan. 

Craig S. Freedman, David J. DeWit. May 1995. The 
SPIFFI scalable video-on-demand system. In 

Proceedings of ACM SIGMOD. pages 352–363. San 
Jose, CA, USA. 

Md. Huamyun Kabir, Eric G. Manning, Gholamali C. 
Shoja. December 2002. Request-routing trends and 
techniques in content distribution network. In 
Proceedings of ICCIT. pages 315–320. Dhaka, 
Bangladesh.  

XML-RPC Specification. http://www.xmlrpc.com/spec. 
T. Berners-Lee, R. Fielding, L. Masinter. January 2005. 

Uniform Resource Identifier (URI): Generic Syntax. 
http://www.ietf.org/rfc/rfc3986.txt.  

Sun Microsystems, Inc. March 1989. NFS: Network File 
System Protocol Specification. 
http://www.ietf.org/rfc/rfc1094.txt.  

HTTP - Hypertext Transfer Protocol: A protocol for 
networked information. June 26, 1995. 
http://www.w3.org/hypertext/WWW/Protocols/. 

Ariel Chhen, Sampath Rangarajan, Hamilton Slye. 
October 1999. On the performance of TCP Splicing 
for URL-Aware Redirection. In Proceedings of the 
2nd USENIX Symposium on Internet Technologies 
and Systems. Boulder, CO. 

Vivek S. Pai, Mohit Aron, Gaurav Banga. October 1998. 
Locality-Aware Request Distribution in Cluster-based 
Network Servers. In Proceedings of the 8th 
Conference on Architectural Support for Programming 
Languages and Operating Systems. San Jose, CA. 

ActiveXperts software. Network Toolkit based on 
WinSock. http://www.activexperts.com/activsocket/. 

THE GLOBALLY SCALABLE ARCHITECTURE FOR HETEROGENEOUS VIDEO SERVERS WITHOUT ANY
MODIFICATION

147


