
THE GLOBALLY SCALABLE ARCHITECTURE FOR
HETEROGENEOUS VIDEO SERVERS WITHOUT ANY

MODIFICATION

SeongKi Kim, SangYong Han
School of Computer Science and Engineering, Seoul National University, 56-1 Shinlim, Kwanak, Seoul, Korea

Keywords: Multimedia system, LVS, DNS, CDN, Video server.

Abstract: As a single video server reveals its limitations in the aspects of scalability, capability, fault-tolerance, and
cost-efficiency, a part of solutions for these limitations emerge. However, these solutions have their own
problems. To overcome these problems and exploit already existing video servers, we designed the globally
scalable architecture that supports both heterogeneous and off-the-shelf personal computer (PC), operating
system (OS), video server applications with both a HTTP-level redirection and the least response time
scheduling without any modification or addition as well as developed its prototype.

1 INTRODUCTION

The multimedia transmission spreads widely as the
demands of a real-time broadcast, a digital broadcast,
distance learning, a multimedia conferencing, a
multimedia mail, Internet Protocol Television
(IPTV) (IPTV world forum, 2006), and Voice over
IP network (VoIP) (Internet Telephony: Voice Over
Internet Protocol) significantly increase. However,
traditional storages such as a CD-ROM and a hard
disk for content distribution can't support
requirements that contents could be transmitted to
many users at the real time from a device or a file,
and watched by many users at the same time. These
drawbacks of traditional file systems for the content
distribution make video servers connected by
Internet proliferate as content storage and
transmission media. In addition, video servers and
Internet are utilized for a multimedia transmission as
a network capacity increases enough to transmit
simultaneously content to various clients.

A video server supports broadcast or unicast
service, sometimes referred to as video on demand
(VOD) or movie on demand (MOD), and guarantees
that the appropriate amount of data is delivered to a
client buffer in order to minimize a jitter or an
interruption. A broadcast service transmits live
contents from a device or a file to the connected
clients at the real time, which can't support VCR-
like interactivity such as a pause, a rewind, and a
forward. A unicast service transmits pre-created

contents to the connected clients at the same time,
which can support VCR-like interactivity such as a
pause, a rewind, and a forward. When content is
transmitted as broadcast or unicast, the content
occupies the constant network bandwidth usually
related with a video quality. If a total bandwidth
used by clients exceeds the entire network
bandwidth of the transmitting server, the server can't
transmit more contents through the fully used
network interface. When a central processing unit
(CPU) is overused by various services, the CPU
can't accept more connections, process more
requests, and transmit more contents. In other words,
network and CPU resources place a restriction on
the transmitting capability of a server. As a solution
to these processing and bandwidth limitations, a
single server approach is expensive to extend its
capability. In addition, it can't handle a service
failure. In summary, a single server approach for
multimedia transmission has limitations in the
aspects of capability, scalability, availability, fault
tolerance, and cost efficiency.

To overcome these limitations, parallel
processing technologies such as clustering with a
round-robin domain name service (DNS) (T. Brisco,
1995), clustering with a linux virtual server (LVS)
(Whensong Zhang et al., 1999), (Whensong Zhang,
2000) and (Patrick O' Rourke and Mike Keefe,
2001) , and clustering with a OpenCDN (Alessandro
Falaschi, 2004) can be used for building a parallel
multimedia system. Among these technologies, DNS
maps a domain name to several real IP addresses,

140 Kim S. and Han S. (2006).
THE GLOBALLY SCALABLE ARCHITECTURE FOR HETEROGENEOUS VIDEO SERVERS WITHOUT ANY MODIFICATION.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 140-147
DOI: 10.5220/0001241201400147
Copyright c© SciTePress

and answers a name resolution request of a client
according to a pre-determined policy such as a round
robin (T. Brisco, 1995). However, DNS approach
can't provide the fault-tolerance to a client because it
unconditionally returns one of IP addresses mapped
to a domain name without checking the server status,
and the intermediate DNS server between a client
and the Round-Robin DNS server can cache the IP
address mapped to a domain name differently from
the designated DNS, which leads to fail to equally
balance loads among nodes in a cluster. LVS can be
also used for a video server clustering and is
organized as a cluster of systems providing real
services and a load balancer, sometimes referred to
as a director or a dispatcher, operating as a contact
point with a single virtual IP address (VIP) as well
as redirecting a request to one of real servers
according to policies using different redirecting
methods. LVS supports 3 methods such as network
address translation (NAT), IP tunneling, and direct
routing as redirecting methods. When NAT is
chosen, a load balancer changes the destination
address of a request IP packet to the real server IP
address, and changes the source address of a
response IP packet to the load balancer address
(VIP) before returning the results to a user. NAT has
the problem that the load balancer becomes a
bottleneck because all of the request and the
response packets pass through the load balancer that
changes the destination and the source addresses.
When IP tunneling is chosen as a LVS redirecting
method, the load balancer creates a new IP datagram
forwarded to a real server encapsulating the original
datagram, and the real server directly returns the
results to the requesting user after decapsulating and
processing the new datagram. IP tunneling has the
problems that OS of a real server should support IP
tunneling, a real server should have a public address,
and both a load balancer and real servers have
additional IP tunneling overheads. Although most of
the modern OS support IP tunneling technology,
some kinds of legacy OS still exist, and some OS
should do the complex processes such as a kernel
patch in order to support IP tunneling. When direct
routing is chosen, the load balancer changes the
Medium access control (MAC) address of a request
data frame to the destination MAC address of the
selected server, and the real server directly returns
the results to the requesting user. Direct routing has
the problems that a real server requires a non-
ARPing network interface, both a load balancer and
real servers should be connected within a single
physical network, and a real server needs a public
address. Besides its own problems of each
technology mentioned above, all of these redirecting
methods at the low level have the common weakness
that the same content should be copied into all of the

servers because a low level redirection can't
recognize the requested content but only the IP
packet. Although storage capacity largely increased
during the past, storing all of the same contents in all
of the servers is wasteful when considering the
increasing sizes of video contents. OpenCDN has an
application layer request routing, and can support
various servers, but it requires the implementation of
a new adaptation layer that communicates with a
streaming server whenever a server product is added.

As available video server systems, many
commercial products such as Microsoft’s Windows
Media server
(http://www.microsoft.com/windows/windowsmedia
/default.aspx), Real network's helix universal server
(http://www.realnetworks.com/products/media_deliv
ery.html), and Apple's Darwin streaming server
(http://developer.apple.com/darwin/projects/streami
ng/) as well as many research prototypes such as
Tiger (William J. Bolosky et al., 1996) and SPIFFI
(Craig S. Freedman and David J. DeWit., 1995)
exist and are operating in the real world with their
own proprietary applications, the proprietary
technologies, advantages, and disadvantages. These
varieties caused the current congestion that
incompatible servers are operating at the same time
and a practitioner should select one of them after
comparing them for a long time. In this situation
where servers are various, the technology that
supports all of these heterogeneous servers without a
dependency on any vendors and content-awareness
is required so that a practitioner can freely choose a
server and extend the capability.

To complement the drawbacks of each
technology mentioned above and exploit already
existing servers, we designed a simple, and scalable
architecture that can be used within a wide area
network (WAN), and support content-awareness
because the architecture exploits HTTP facilities as a
redirecting method. Our architecture can also
provide a little fault-tolerance through monitoring
video servers and avoiding assigning the repetitively
failed server. To prove its practicality, we also
developed its prototype.

This paper is organized as follows. Section 2
refers to various related works by other researchers.
Section 3 describes our architecture and
implementation, and Section 4 concludes.

2 RELATED WORKS

This section describes the parallel processing
technologies such as LVS, and DNS as well as
network technologies such as CDN and OpenCDN.

THE GLOBALLY SCALABLE ARCHITECTURE FOR HETEROGENEOUS VIDEO SERVERS WITHOUT ANY
MODIFICATION

141

2.1 Linux virtual server (LVS)
(Whensong Zhang et al., 1999),
(Whensong Zhang., 2000) and
(Patrick O' Rourke and Mike
Keefe, 2001)

Linux virtual server (LVS) is a software tool that
supports load-balance among multiple Internet
servers. LVS supports 3 different methods as
redirecting methods, Network address translation
(NAT), IP tunneling, and lastly direct routing.

LVS via NAT operates as shown in Figure 1.

Figure 1: Architecture of LVS via NAT.

When a user makes requests to a load balancer,

which selects a real server, rewrites the destination
address of a request IP packet to the real server IP
address that can be within a private network or a
public network, and forwards the modified packet to
the dynamically selected server. After the real server
receives the packet, processes it, and sends the
response IP packet to the requesting user through the
load balancer that rewrites the replies from the real
server changing the source address of a response
packet to the load balancer address (VIP). The
requesting user transparently receives the packet
from the load balancer.

Although real servers can run any OS with
TCP/IP facilities, can use private IP addresses, and
only a load balancer needs public IP address in LVS
via NAT, it has the limitations that the load balancer
becomes a bottleneck and the performance is not
scalable because all of the request and the response
packets pass through the load balancer.

Figure 2 shows the architecture of LVS via IP
tunneling.

Figure 2: Architecture of LVS via IP tunnelling.

When a user makes requests to a load balancer,

which selects a real server, creates a new IP
datagram encapsulating the original datagram using
IP tunneling technology, and forwards the new
datagram to the dynamically selected server. After
the real server receives the packet, decapsulates it,
processes it, the real server returns the replies
directly to a user.

Although real servers can be on different
network from the network of a director, return
directly to clients, and a director doesn't become a
bottleneck, IP tunneling has the limitations that OS
of a real server should support IP tunneling, some
OS should do the complex processes such as a
kernel patch in order to support IP tunneling, real
servers also need public IP addresses, and both a
director and real servers have the additional
overheads of IP encapsulation and decapsulation.

Figure 3 shows the architecture of LVS via direct
routing.

When a user makes requests to a load balancer,
which selects a real server, rewrites only the MAC
address of the request data frame to the destination
MAC address, and forwards the new data frame to
the dynamically selected server. After the real server
receives the packet, processes it, the real server
returns the replies directly to a user.

Although real servers return directly to clients, a
director doesn't become a bottleneck, and both real
servers and a director doesn't have IP tunneling
overheads, LVS via direct routing has the limitations
that the load balancer and real servers should be
connected within a single physical network, the real
servers should have network interface that doesn't do
ARP response in order to avoid network IP address
collision, and even real servers need a public IP
addresses.

WEBIST 2006 - INTERNET TECHNOLOGY

142

Figure 3: Architecture of LVS via direct routing.

LVS supports 4 scheduling algorithms such as

Round-Robin scheduling, Weighted Round-Robin
scheduling, Least-Connection scheduling, and
Weighted Least-Connection scheduling. Round-
Robin scheduling selects a real server in a round-
robin manner regardless of the processing capacities
or the number of connected clients. Weighted
Round-Robin scheduling assigns a weight to a server
according to its processing capacities. In the
weighted round-robin, a server having more
processing capacities receives a higher weight,
which leads to serve more clients. Least-Connection
scheduling selects a real server having the least
number of connections. Weighted Least-Connection
scheduling assigns a weight to a server according to
the processing capacities, and tries to maintain the
ratio of the active connections among the servers to
that of weights. These 4 scheduling algorithms can
be associatively used with 3 redirecting algorithms
mentioned above.

2.2 Content Delivery Network
(CDN) & OpenCDN (Md.
Huamyun Kabir et al., 2002) and
(Alessandro Falaschi, 2004)

CDN is a technology that was originally developed
for World Wide Web (WWW), places servers
sometimes called as replicas or surrogates in each
region, distributes contents to the servers, and the
clients are served by the servers according to
policies such as network proximity, geographical
proximity, and a response time.

CDN has the subelements such as origin servers,
several surrogate servers, distribution systems,

request-routing systems, and accounting systems.
Origin servers have contents that are firstly created
by content providers, and provide clients with
broadcast or unicast service under the status owned
by a content provider. Surrogate servers are the
servers that provide real services to users on behalf
of origin servers. A distribution system distributes
content to surrogate servers when the surrogate
servers anticipate a client to request the content,
push, or a client makes a request to the surrogate
server, pull. A request-routing system redirects a
client request to a surrogate server. An accounting
system measures and records both the content
distribution and transmission activities. A
distribution system interacts with a request-routing
system in order to inform content availability and an
accounting system in order to inform the content
distribution activities. A request-routing system
informs the demands of content to a distribution
system so that a distribution system can place
content to the appropriate surrogate servers, and the
distribution of content to an accounting system so
that the accounting system can record the
distribution. An accounting system uses the
collected information for various purposes such as
charging, and statistics. (Md. Huamyun Kabir et al.,
2002)

OpenCDN is an open CDN implementation that
supports vendor-independence and scalable delivery
of live streaming content to large audience.

OpenCDN operates as shown in Figure 4.

Figure 4: OpenCDN entities and their main interfaces
(Alessandro Falaschi, 2004).

OpenCDN is made of a Relay Nodes that
perform content delivery and distribution, Portal
that is the contact point of clients, and Request
Routing and Distribution Management (RRDM) that
records footprint information from nodes, chooses a
relay by a client request, creates a distribution tree,
and dismantles the distribution tree after a
transmission ends. In other words, a relay node plays
the role of a surrogate server and a RRDM plays the
roles of request-routing system and distribution
system in the CDN concept.

Whenever a node boots, the node registers its
capabilities and footprint information with the
RRDM. Whenever a client with viewers contacts to
an announcement portal, the portal makes a request

THE GLOBALLY SCALABLE ARCHITECTURE FOR HETEROGENEOUS VIDEO SERVERS WITHOUT ANY
MODIFICATION

143

to the RRDM through XML-RPC
(http://www.xmlrpc.com/spec), RRDM chooses the
best relay, creates distribution tree, and returns the
content Uniform Resource Identifier (URI) (T.
Berners-Lee et al., 2005) to the portal. If the selected
relay doesn’t have the requested content, it pulls the
stream from the source. The portal generates a page
that redirects the client request to the returned relay.
After the requesting client finish watching the
content, the RRDM dismantles the distribution tree.

The nodes in the distribution tree are classified as
FirstHop (FH), Transit (TR), and LastHop (LH)
from the less specific footprint to the more specific
footprint. A FirstHop relay has the widest footprint
and is the first point for distributing content. A
transit relay distributes the content from the
FirstHop relay or the other transit relays to the other
transit relays or LastHop relay. The LastHop relay
delivers finally the content to the clients (Alessandro
Falaschi, 2004). In order to deliver content to a
client, RRDM doesn’t have to be related, which
reduces the RRDM overheads.

OpenCDN supports the vendor-independence
through adding a new adaptation layer that makes a
direct request to the streaming or video servers.

3 ARCHITECTURE AND
IMPLEMENTATION

This section describes our architecture and
implementation in order to support scalability,
content-awareness, load-balance, fault-tolerance,
and use off-the-shelf parts.

3.1 Overall Architecture

The overall architecture and process are
demonstrated in Figure 5.

Figure 5: Overall architecture and process.

Our architecture consists of a client, a dispatcher,
a database server, video servers, and storage servers.
A client is the system that is used for watching the

content by a user and it should have the proprietary
players for the contents served by video servers. A
dispatcher is the contact point of clients, periodically
monitors video servers, and saves the monitored
results in the database server. A database server
stores the server information, the status of video
servers, and content information. A video server
takes responsible for streaming contents through
unicast, multicast, and broadcast methods. A storage
server has contents, and provides the contents to the
selected video server according to the client requests
through storage sharing mechanisms such as a
network drive and a network file system (NFS)
(http://www.ietf.org/rfc/rfc1094.txt).

The service procedures are summarized as
follows. Whenever a client makes a content request
to the dispatcher through hyper text transfer protocol
(HTTP)
(http://www.w3.org/hypertext/WWW/Protocols/),
the dispatcher retrieves the video server with both
the least response time and the requested content
from the database server, and retrieves the URI
(http://www.ietf.org/rfc/rfc1094.txt) to the content in
the video server. The dispatcher returns a status code
302 that redirects the requesting client to the
returned content location. After receiving the new
location, the proprietary player installed on the client
makes a direct request to the returned location, and
starts playing it.

We adopted the least response time scheduling
because other schedulings are not suitable for a
multimedia system in that audio content and video
content occupy a largely different bandwidth from
web content. In other words, the server with the
most number of connections is not always the most
congested server in a multimedia system because the
server with a few viewers who watch high-quality
video contents can practically use more network
bandwidth than the server with a lot of viewers who
watch low-quality video contents.

Our architecture redirecting at the HTTP level
can be used as a CDN. A dispatcher is similar to the
request routing system of CDN in that the dispatcher
makes a client redirect to the appropriate server, a
database server is similar to the accounting system
in that the database server records the distribution of
contents and includes the transmission records. A
video server can be recognized as a surrogate server
in that it provides a real service. When we use our
system as a CDN, we have no automatic distribution
system. In this point of view, our architecture and
process can be seen as one of CDN implementations
redirecting at the application level according to the
given URI and having the least response time
scheduling.

Our architecture is similar to the OpenCDN
architecture in that the dispatcher plays the roles of a

WEBIST 2006 - INTERNET TECHNOLOGY

144

portal and a RRDM, and a video server plays the
role of a node. Our request routing is also similar to
that of OpenCDN in that two of them are commonly
operating at the application layer. However, our
architecture is different from the OpenCDN in that
our architecture has no distribution system, creates
and dismantles no distribution tree before or after
the delivery, and has no registration process of a
node with the request-routing system.

These architecture and processes have the
advantages in that any video servers can be added
into a cluster as far as client softwares for the
streaming, and the HTTP web browsers with the
capabilities of both HTTP connection and
redirection are installed on the requesting client.
This architecture is simple to implement and add a
server because this architecture has neither
automatic registration process nor distribution tree,
and doesn't have to change a server setting or newly
implement an adaptation layer according to a server
product. Our architecture supports content-
awareness, which allows contents to be freely
distributed into any servers as far as a database
server records the location. It provides fault
tolerance because a dispatcher monitors video
servers, and avoids scheduling a failed server as well
as provides load balance because a dispatcher makes
a client redirect to the video server with the least
response time. It can support global environments
such as CDN because both a dispatcher and video
servers don't have to be connected within a single
physical network. It has only the page-generating
overheads at the dispatcher because a video server
directly communicates with clients.

However, our architecture has more overheads
than low level (L4) request routings that are
supported by DNS, LVS in Section 2.1, and use TCP
splicing (Ariel Chhen et al., 1999), TCP handoff
(Vivek S. Pai et al., 1998) because a dispatcher reads
information about the server status from a database
server, returns a status code that makes a client
redirect, and a client makes a direct request to the
scheduled server. In our architecture, a real server
should have a public IP address in order to directly
communicate with clients. All of these drawbacks
are related with our goal that is not to minimize
overheads for broadcast but to develop flexible
architecture for supporting many existing servers
and content-awareness.

3.2 Implementation

We developed the architecture and process described
in Section 3.1 in order to verify its practicality. We
used a RealPlayer 10.5 running on Windows XP
patched by service pack 2 for a client, IIS 5.0

running on Windows 2000 Server patched by service
pack 4, Visual Basic 6.0 patched by service pack 6
for a dispatcher, Microsoft SQL server 2000 patched
by service pack 4 for a database server, and Solaris
5.8 with Real networks' Helix server 9.07 for a video
server and a storage server.

3.2.1 Client

A client has the RealPlayer 10.5 that plays the
content directly returned from a video server. A
RealPlayer is chosen because it can be run with the
Real networks' Helix universal server 9.07. If the
other video servers are used, the player should be
differently chosen. For example, if we add the
Microsoft's Windows Media Server into a video
server cluster, the player for the server, MediaPlayer,
should be installed for watching its contents. In this
way, the proprietary players should be installed
according to the content type and the video servers.

3.2.2 Dispatcher

A dispatcher system has a video server monitor, and
a dynamic web page using Active Server Page (ASP).
A video server monitor periodically retrieves the
video server information from the database server,
gains information about their availability from the
retrieved video servers, and re-stores the gained
availability information to the database server. We
used a Visual Basic 6.0 for the video server monitor.
After the dynamic web page retrieves contents, and
availability information from the database server, the
dynamic web page generates a status code 302 that
makes a client redirect to the least response time
server with the requested content. To measure the
response time, we used the open ping component
(http://www.activexperts.com/activsocket/) that is
able to be accessed from Visual Basic.

The dynamic web page could be created by using
any dynamic page mechanisms such as Java Server
Page (JSP), Common Gateway Interface (CGI), and
PHP that can access a database, but we chose ASP
because it was the basic dynamic page mechanism
supported by Windows server. The scheduling
method used by the dispatcher system can be easily
extended or modified because a dynamic web page
includes a scheduling algorithm.

Whenever a client makes a request to the
dynamic web page through general web browsers
such as Internet Explorer, the browsers receive a
status code 302 that redirects the requesting client to
the least response time server with the requested
content, and opens its proprietary player according
to the content.

THE GLOBALLY SCALABLE ARCHITECTURE FOR HETEROGENEOUS VIDEO SERVERS WITHOUT ANY
MODIFICATION

145

3.2.3 Database Server

A database server stores the managed video server
information, the URI of contents that video servers
provide, and the response time of video servers. It
can be any database products with the basic
mechanisms that can create a table, store data into it,
retrieve data from it, and support the retrieving
mechanism from a dynamic web page.

We chose Microsoft's SQL server 2000, and
created the following tables in Figure 6 in order to
realize the architecture in Section 3.1.

Figure 6: Tables for the architecture.

When a server is added to the architecture, the
information should be added to SERVER_INFO
table so that the video server monitor operating at
the dispatcher can know the server. The video server
monitor fills the response time information into
SERVER_STATE table. Information should be
inserted into FILE_INFO and VIDEO_INFO when a
manager added contents to one of video servers. If
inserted, the dynamic web page at the dispatcher
knows the added content and can be generated
including the content. FILE_STAT, PLAY_STAT,
and CLIENT_STAT tables are used for play
statistics. These information can be used to generate
a report about content usage statistics. Both
CODEMAST and VIDEO_LEVEL tables are used
as referenced tables for filling the VIDEO_INFO
and FILE_INFO tables.

3.2.4 Video Server

A video server can be any PC, Workstation,
Mainframe, OS with the capability of running a
video server because all of the video servers have
the URI pointing to the provided content, and both
the VIDEO_INFO and FILE_INFO tables include
the URI.

3.2.5 Storage Server

The storage servers of our architecture can be any
computers, OS, or storage systems as far as they can

provide the video servers with contents using storage
sharing mechanisms such as a network drive and a
NFS. This can be realized because storage sharing
mechanisms automatically mount a disk according
to the old setting when starting, video servers
automatically publish the contents from any disks
when starting, and a database server stores all of the
publishing point information regardless of the local
storage of a video server.

4 CONCLUSION AND FUTURE
WORKS

As multimedia transmission significantly increases,
a single server approach reveals the problems that it
has limited capacity, is expensive to improve a
performance, and can't handle a failure. These
limitations make the parallel processing approaches
with LVS, DNS, and OpenCDN proliferate.
However, as available video server products for
these approaches, many commercial products such
as Microsoft’s Windows Media server, Real
network's Helix server, and Apple's Darwin
streaming server as well as many research
prototypes such as Tiger, and SPIFFI have been
developed and have operated in the real world.
These varieties caused current situations that
incompatible servers are separately operating and a
practitioner who wants to build a multimedia system
should select one of the products after comparing
them for a long time.

As a redirecting technology, we developed a
HTTP-level mechanism because many low level
mechanisms used by LVS, and DNS, as well as a
high level mechanism used by OpenCDN have their
own problems. LVS sometimes has bottleneck,
needs to do complex processes, and needs to connect
a director and real servers within a single physical
network. DNS can't provide fault-tolerance and
sometimes load-balance. Commonly, all of contents
should be copied to all of the servers because the
low level mechanisms can see only the IP packet,
and can't redirect a client to a server according to the
requested content. OpenCDN requires a new
adaptation layer to be implemented for adding a new
video server. Our HTTP-level redirecting
mechanism can support any video servers regardless
of the vendors, has no bottleneck, can easily add
new servers by adding information into a database
server, needs to be connected within a single
physical network, which makes our architecture
available for CDN, and provides both load-balance
and a little fault-tolerance at the cost of more
overheads caused by the HTTP-level redirecting
method. Our goal was not to minimize the

WEBIST 2006 - INTERNET TECHNOLOGY

146

redirecting overheads but to solve the heterogeneity
problems of the various redirecting methods
supported by LVS, DNS, and OpenCDN without
any modification. As a scheduling algorithm, we
developed the least response time scheduling
because the other algorithms are not suitable for a
video server cluster in that they don't consider the
difference among the sizes of content bandwidth.

The developed architecture and process have the
contributions that to the best of our knowledge, they
are the first architecture redirecting a client request
at the HTTP-level for video servers without any
modification or addition. We are currently
measuring the overheads of the developed prototype,
adding the other schedulings besides the least
response time scheduling, and developing the
intelligent distribution system according to the
content popularity.

REFERENCES

IPTV world forum 2006. http://www.iptv-
forum.com/2006/component/option,com
frontpage/Itemid,1/.

Internet Telephony: Voice Over Internet Protocol (IP).
http://engr.smu.edu/ venkatra/VoIPHTML.html.

T. Brisco. April 1995. DNS Support for Load Balancing.
http://rfc.net/rfc1794.html.

Whensong Zhang, Shiyao Jin, Quanyuan Wu. May 1999.
Creating linux virtual servers. In Proceedings of
LinuxExpo Conference.

Whensong Zhang. July 2000. Linux virtual server for
scalable network services. In Proceedings of Ottawa
Linux Symposium.

Patrick O' Rourke, Mike Keefe. April 2001. Performance
evaluation of linux virtual server. In Proceedings of
LISA Conference. pages 79–92.

Alessandro Falaschi. 29 June 2004. Open Content
Delivery Network Short Overview.

Microsoft Windows Media Homepage.
http://www.microsoft.com/windows/windowsmedia/d
efault.aspx.

Real networks Media Servers.
http://www.realnetworks.com/products/media_deliver
y.html.

Darwin Streaming Server.
http://developer.apple.com/darwin/projects/streaming/.

William J. Bolosky, Joseph S. Barrera, III, Richard P.
Draves, Robert P. Fitzgerald, Garth A. Gibson,
Michael B. Jones, Steven P. Levi, Nathan P. Myhrvold,
Richard F. Rashid. April 1996. The TIGER video
fileserver. In Proceedings of the Sixth International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV). pages 97–
104. Zushi, Japan.

Craig S. Freedman, David J. DeWit. May 1995. The
SPIFFI scalable video-on-demand system. In

Proceedings of ACM SIGMOD. pages 352–363. San
Jose, CA, USA.

Md. Huamyun Kabir, Eric G. Manning, Gholamali C.
Shoja. December 2002. Request-routing trends and
techniques in content distribution network. In
Proceedings of ICCIT. pages 315–320. Dhaka,
Bangladesh.

XML-RPC Specification. http://www.xmlrpc.com/spec.
T. Berners-Lee, R. Fielding, L. Masinter. January 2005.

Uniform Resource Identifier (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc3986.txt.

Sun Microsystems, Inc. March 1989. NFS: Network File
System Protocol Specification.
http://www.ietf.org/rfc/rfc1094.txt.

HTTP - Hypertext Transfer Protocol: A protocol for
networked information. June 26, 1995.
http://www.w3.org/hypertext/WWW/Protocols/.

Ariel Chhen, Sampath Rangarajan, Hamilton Slye.
October 1999. On the performance of TCP Splicing
for URL-Aware Redirection. In Proceedings of the
2nd USENIX Symposium on Internet Technologies
and Systems. Boulder, CO.

Vivek S. Pai, Mohit Aron, Gaurav Banga. October 1998.
Locality-Aware Request Distribution in Cluster-based
Network Servers. In Proceedings of the 8th
Conference on Architectural Support for Programming
Languages and Operating Systems. San Jose, CA.

ActiveXperts software. Network Toolkit based on
WinSock. http://www.activexperts.com/activsocket/.

THE GLOBALLY SCALABLE ARCHITECTURE FOR HETEROGENEOUS VIDEO SERVERS WITHOUT ANY
MODIFICATION

147

