
A TRANSACTION MODEL AND IMPLEMENTATION
BASED ON MESSAGE EXCHANGE

FOR GRID COMPUTING

Zou Yali, Ling Hong
School of Management, Fudan University, Shanghai, China 200433

Wu Yonghua
Department of Computer Science and Engineering, Shanghai JiaoTong University, Shanghai, China 200030

Keywords: Grid computing, Transaction process, Message exchange.

Abstract: While grid computing is extending to apply to the commercial area, the need for transaction process that
ensures the dependency of grid computing is more urgent. This paper describes how short-lived and long-
lived transactions can be implemented with Web Service Resource Framework (WSRF) by proposing a grid
transaction process model (GridTP). It can manage and monitor the state of transaction participants via the
message exchange among those participants, and it can use atomic or cohesion transaction coordination
algorithms to coordinate the transaction participants to achieve a mutually agreed outcome.

1 INTRODUCTION

Grid computing has been widely accepted as a
promising solution to sharing large-scale resources
and accomplishing collaborative tasks (Foster et al,
2001). With the newly proposed grid computing
framework WSRF (Web Service Resource
Framework) (Czajkowski et al, 2004), the enterprise
field applications of grid have attracted more
attentions. Transaction, a mechanism ensuring all
the participants of some activity to achieve a
mutually agreed outcome, determines the successful
implementation of grid computing in practical
applications. Traditional transactions which hold
ACID (Atomicity, Consistency, Isolation, and
Durability) properties lock the resources involved
and the coordinator possesses the absolutely control
on participants. However, transaction for Grid
Services challenging the traditional researches,
because Grid Services which are loosely coupled
and heterogeneous often take a long time due to
business latency or user interaction. And
Coordinator cannot lock involved resources because
of the highly autonomy of Grid Services.

Our aim in this paper is to design a GridTP
model that facing the challenge. The proposed

model support both short-lived and long-lived
transactions using the same set of WSRF-based
messages. And GridTP should be used for both Grid
Service providers and client side applications.

 The rest of this paper is organized as follows:
In section 2 we simply review the related works. In
section 3 we describe the model of GridTP. In
section 4 we give a practical implementation of
GridTP. Finally, conclusions and future researches
are discussed in section 5.

2 RELATED WORK

There are some researches had discussed standards
and models concerning the traditional distributed
transaction such as X/Open DTP (Distributed
Transaction Process) (Jeong & Lew, 1998). But few
of them can effectively support long-lived
transaction. And WS-Coordination and WS-
Transaction (Cabrera et al, 2002) describe a Web
Services transaction framework that can
accommodate multiple coordination protocols. But
its coordination for business activity is too complex
and has not been described in detail. Business
Transaction Protocol (BTP) (Ceponkus et al, 2002)

225Yali Z., Hong L. and Yonghua W. (2006).
A TRANSACTION MODEL AND IMPLEMENTATION BASED ON MESSAGE EXCHANGE FOR GRID COMPUTING.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 225-228
DOI: 10.5220/0001240502250228
Copyright c© SciTePress

defines a set of messages exchanged between
coordinator and participants. However, the BTP
cannot well support the dynamic of grid transaction
and lacks of flexible recovery mechanisms.

Our implementation is based on XML message
exchange technology, soheterogeneous Grid
Services can easily communicate with each other.
Our implementation is also based on WSRF, which
can simply locate and access stateful resources.

3 GRID TRANSACTION
PROCESS MODEL

GridTP model is made up of following components:
message dispatcher, state message set, coordinator,
participant and client (Figure 1). The message
dispatcher, state message set, coordinator,
participant are Grid Services or resources deployed
in WSRF platform and the necessary parts of
GridTP. The client component is provided to
simplify the work when the client applications want
to use GridTP to support transactional Grid Services.
It’s an extended part of GridTP provides some APIs
for transactional operations such as start a new
transaction.

Now we give a detail introduction to each
component as follow:

Message dispatcher. It receives and parses XML
messages sent by other components, and then
dispatch the messages to different components
according to the message type and destination.

State message set. It contains all the participants’
addresses and states. This message set is updated
and managed by message dispatcher component.

Coordinator. It uses atomic or cohesion
algorithms to coordinate transaction according to
different transaction type.

Participant. It is a transactional Grid Service
running in WSRF environment and follows the
programming pattern of GridTP.

Client. The client component facilitates using the
GridTP to support transactional Grid Service.

4 IMPLEMENTATION OF
GRIDTP

In order to describe clearly, we give the following
definitions:

Definition 1. Business Message (BM) is a 5-
tuple {T,TxID,S,R,MSG}.T represents message
type; TxID represents current transaction ID; S
represents the address of message sender; R

Figure 2: The WS-Resource description of Status Message

represents the address of message receiver while
MSG is the part used for transferring the parameter
defined by applications.

Definition 2. Transaction Message (TM) is a
5-tuple {T,TxID,S,R,OP}. T represents message
types; TxID represent current transaction ID; S
represents the address of message sender; R
represents the address of message receiver; OP is
transactional operation.

Definition 3. Transaction State (TS) is a 3-
tuple {TxID,P,S}. TxID represents transaction ID; P
represents the address of participant; S represents the
state value.

Definition 4. Atomic Transaction (AT) is the
transaction that all participants have to commit
synchronously or abort entirely, and need apply
atomic coordination algorithm to coordinate.

Definition 5. Cohesion Transaction (CT) is the
transaction that allows some candidates to abort
while others to commit, used for coordinating long-
lived transactions.

4.1 Coordination of Atomic
Transaction

Initiation of transaction: Application can request an
atomic transaction, so the client component sends a
TM-Begin message to the message dispatcher, and
the message dispatcher dispatches the message to an
available coordinator. Finally the coordinator
invokes local transaction manager to create a new
transaction and returns a TS-Begun message to
message dispatcher.

WEBIST 2006 - INTERNET TECHNOLOGY

226

Participants joining in: Participant sends a TM-
Enroll message which contains the transaction ID to
the message dispatcher. And according to the
transaction ID the message dispatcher dispatches
message to the corresponding coordinator to deal
with. Finally the coordinator returns a TS-Enrolled
message to message dispatcher, and returns to the
participant at the end.

Preparation for the transaction: When
coordinator receives the request asking for
transaction preparing, it fetches out the state
message set, and sends a TM-Prepare message to all
the participants in this set.

Committing of transaction: When coordinator
receives the request asking for transaction
committing, it fetches the state message set and
checks the state of all the participants. Once all the
participants are TS-Prepared, then the coordinator
sends a TM-Commit message to all the participants,
otherwise, sends a TM-Rollback message. Finally
client application will get TS-Cancelled or TS-
confirmed messages, while the former means the
transaction is cancelled, and the latter means
transaction executes successfully. Algorithms used
to coordinate the atomic transaction are two phase
commit protocol (2PC) (Gray & Reuter, 1993).

4.2 Coordination of Cohesion
Transaction

The initiation and joining of cohesion transaction are
similar as atomic transaction. But cohesion
transaction allows some candidates to abort while
others to commit. So we need to determine a final
confirm set according to the business logic, and only
the participant in this set can be entirely success or
fail. In addition, cohesion transaction allows
participants commit ahead of the whole transaction,
and need compensation transaction to cancel
transaction behaviour.

Committing of transaction: Client component
via coordinator checks state message set, and
confirms final transaction whether can be committed
according to the final confirm set. If can be
committed, then sends a message TM-Confirm to
the participants, the transaction successes. If cannot
be committed, then sends a message TM-Cancel to
all the participants. When participant receives the
message, then operates the compensate transaction
for the committed part.

Compensation of transaction: If the committed
participant cannot get the TM-Confirm message or
the TM-cancel message sent by the coordinate

within certain times, then automatically invokes
compensation transaction to recover.

Here we give the algorithms we used to
coordinate cohesion transaction.

Arithmetic 1: Cohesion transactions
coordinator

CTCoordinatorTM_Process{
 switch(ReceivedTM){
 case TM-Begin:
 create a new TM;
 return TS-Begun;
 case TM-Enroll:
 add participant to State Message

Set;
 return TS-Enrolled;
 case TM-Commit:
 foreach TS in(State Message Set){
 p=get participant address from

TS;
 if(p in Final Confirm Set){
 state=get state of p;
 if(state==TS-Cancelled){
send TM-Cancel to all participants;
 return TS-Cancelled;}}}
send TM-Confirm to all participants;
 return TS-Confirmed;}}

Arithmetic 2: Cohesion transactions

participant
CTParticipantTM_Process{
 switch(ReceivedTM){
 case TM-Commit:
 generate compensation transaction;
 commit transaction;
 return TS-Committed;
 case TM-Cancel:
 execute compensation transaction;
 return TS-Cancelled;
 case TM-Confirm:
 return TS-Confirmed;}}

4.3 WS-Resource Description of
Message Set

We simply model the state message set as stateful
resource (Figure 2) in WSRF environment. We
describe the model as follows:

Service Interface defines the service of visiting
and managing the stateful message resource. These
services are described by the wsdl files provided by
schema.

WSRF specification is supported. Let WSRF
container knows the resources support which
protocols. There are mainly two protocols:

A TRANSACTION MODEL AND IMPLEMENTATION BASED ON MESSAGE EXCHANGE FOR GRID
COMPUTING

227

WS-ResourceLifetime: Means this resource
need container being managed according to the WS-
ResourceLifetime specification.

WS-ResourceProperty: Describes state
message set. Client component can visit and manage
this resource via WS-ResourceProperty
specification.

4.4 The Process of System Operation

As Figure 3 shows, the application via client
component interface initiates a transaction, and
client requests message dispatcher initiating
transactions. After dispatcher parses the request
message of initiating transaction, it sends message to
the available coordinator. Finally coordinator
initiates an atomic or cohesion transaction according
to the type of transaction, and returns TS-Begun
message contains a transaction ID to the message
dispatcher. Message dispatcher will maintain a
related state message set for this transaction.
Henceforth, all the messages among the participants
related with this transaction will be dispatched via
message dispatcher, and the state message set related
with this transaction will changed.

When client application requests committing
transaction, client component sends a TM-Confirm
message to message dispatcher. Message dispatcher
dispatches this message to coordinator to deal with.
When coordinator receives message, it will get
corresponding state message set according to the
transaction ID contained in message, and then sends
a TM-Prepare message to every participants. After
receiving TS-Prepared responding of every
participant, it further sends a TM-Confirm message
to every participant. At the end, when it gets the TS-
Confirmed messages of all the participants, it returns
TS-Confirmed message to Client component.

Figure 3: The Process of System Operation.

5 CONCLUSION AND FUTURE
WORK

We have proposed a GridTP model to support both
short-lived and long-lived transactions using the
same set of simple WSRF-based messages, without
breaking the architecture’s design. We also need to
work for a more flexible compensation mechanism
to recover failed transaction in any situation. Other
works like security and QoS (Quality of Service)
also should be considered in future research.

REFERENCES

Cabrera,F., Copeland,G., & Freund,T. et al.(2002).Web
services coordination (ws-coordination).

Cabrera,F., Copeland,G., & Cox, B. et al.(2002). Web
services transaction (ws-transaction).

Ceponkus, A. et al. (June 2002). Business transaction
protocol v1.0. Retrieved August 11, 2005, from
http://www.oasis2open.org/committees/download.php/
1184/2002206203.BTP-cttee-spec-1.0.pdf.

Czajkowski, K., Ferguson, D., Leymann, F., Nally, M.,
Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W.,
& Weerawarana. S. (March 2004). Modeling stateful
resources with web services v1.1.

Foster,I., Kesselman,C., & Tuecke, S.(2001).The anatomy
of the grid: Enabling scal-able virtual organizations.
International Journal of High Performance
Computing Application,,5.

Gray, J. & Reuter, A. (1993).Transaction Processing:
Concepts and Techniques. Morgan Kaufmann.

Jeong,I.C., & Lew,Y.C.(1998). Dce (distributed
computing environment) based dtp (distributed
transaction processing). In Information Networking,
(ICOIN-12) Proceedings, January 1998, 701-704.

<ws-resource
xmlns="http://grid.sjtu.edu.cn/gridtp/StatusMsgSet/

description/2005-8-10 ">
<resource-description>
<name>StatusMsgSet</name>
<txid>StatusMsgSet</txid>
<schema>counter.wsdl<schema>
<ejb-link>Counter</ejb-link>
<ws-ResourceLifetime>true
</ws-ResourceLifetime>
<ws-ResourceProperty>
<property name="msgSet"
type="java:Set" qname="msgSet">
</ws-ResourceProperty>
</resource-description>
</ws-resource>

WEBIST 2006 - INTERNET TECHNOLOGY

228

