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Abstract: This paper provides a small interactive Web example (the Car1 example) that illustrates parts of the 
software life cycle processes of specification, refinement and implementation in an object-oriented 
environment. Part of the software system is specified in Z, data- and operation refined and then 
implemented into HTML, XML, XSD and JavaScript. Short descriptions of the refinement processes 
comprising data refinement, operation refinement and operation decomposition are given. The main focuses 
of the study are to firstly investigate how effective (or not) a formal specification is for an interactive Web 
system, and secondly to illustrate a selection control structure in the refinement process.  

1 INTRODUCTION 

This paper evaluates the specification of a part of a 
small interactive Web system (the Car1 example) in 
Z, the subsequent data and operation refinement, and 
then the implementation into HTML, XML, XSD 
and JavaScript.  

 One of the aims of the paper is to evaluate how 
effective a formal specification is for the Car1 
example, with particular emphasis on the use of a 
selection control structure. This control structure has 
been specified and refined formally and in detail.  

 In sections 2, 3, and 4 the concepts of 
specification, refinement, and control structures are 
described respectively. From Section 5 the Car1 
example is presented, with the previous three 
concepts included. In Section 9 some conclusions 
are drawn. Following Section 9 are the references, 
Appendix A which contains the programs of the 
Car1 example and Appendix B which explains some 
Z notation. 

2 SPECIFICATION 

The Z notation uses mathematical concepts, 
particularly set theory, to specify data and 
operations. This allows for reasoning about systems, 
for example checking the consistency of the data and 
the various operations, as well as verifying the 
correctness of subsequent system development 
during refinement (Ratcliff, 1994, Lightfoot, 2001, 
Smith, 2000, Woodcock, 1996, Jacky, 1997). 

3 REFINEMENT 

The two main stages of refinement are data 
refinement and operation refinement. Data and 
operation refinement can be looked at as that part of 
the development process that corresponds to the 
design phase of the traditional software life cycle. 
Ways to represent the abstract data structures that 
will be more amenable to computer processing are 
chosen, as well as the translation of abstract 
operations into corresponding concrete operations. 
The concrete operations are, however, still expressed 
in the language of schemas (using Z) and describe 
only the relationship among the components of 
before and after stages. This does not indicate how
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such changes of state are to be expressed in an 
implementation computer language (Ratcliff, 1994, 
Jacky, 1997, Derrick, 2001). 

 In operation refinement the process of 
conversions of descriptions of state changes can be 
carried into executable instruction sequences. 

4 CONTROL STRUCTURES 

All programs can be written in terms of only three 
control structures, namely the sequence structure, 
the selection structure and the repetition structure. 
The if structure is called a single-selection structure, 
because it selects or ignores a single action. The 
if/else structure is called a double-selection 
structure, because it selects between two different 
actions (or groups of actions) (Deitel, 2002). 

5 THE CAR1 EXAMPLE 

In brief, in the Car1 example, the information of 6 
cars is given in an XML document car1.xml. This 
information is used to display the Web site 
demonstrated in Figure 2. The make, model number, 
year, price and picture of each car are given. The 
price of some cars is more than R200000.00 and 
some are less. The user can choose either one to get 
a display of the make, model number, year and price 
for the relevant cars. This if selection structure in the 
JavaScript program constitutes the crux of the 
discussion regarding the refinement of the 
specifications of the programs.  

6 Z SPECIFICATIONS 

Basic types, sets, data, constants, choices and 
messages:  Basic types (given sets): 
[MAKE, MODEL, YEAR, PRICE, IMAGE, X] 
 Refer to figures 1. The following are these sets: 
X = {01, 02, 03, 04, 05, 06} e N This represents 
the record counter for the data. 
MAKE = {(01, Peugeot), (02, Audi), (03, Citroën), 
(04, Mazda), (05, Mercedes), (06, Mercedes)} e X 
ß MAKE 
MODEL = {(01, 307CC), (02, A6), (03, C5), (04, 
1.6), (05, E-class), (06, SLRMcLaren)} e X ß 
MODEL 
YEAR = {(01, 2004), (02, 2004), (03, 2004), (04, 
2004), (05, 2002), (06, 2004)} e X ß YEAR  

PRICE = {(01, 250000.00), (02, 340000.00), (03, 
150000.00), (04, 170000.00), (05, 540000.00), (06, 
640000.00)} e X ß PRICE 
IMAGE = {(01, car(01).jpg), (02, car(02).jpg), (03, 
car(03).jpg), (04, car(04).jpg), (05, car(05).jpg), (06, 
car(06).jpg)} e X ß IMAGE 
STR::= Price| Year| Model| Over| Under; N: Natural 
numbers; ∅: Empty set; maxSize: N; n: N The 
number of cars. For this example n = 6. 
 

Table 1: Car1 data file (given in car1.xml). 
X 
(recor
d 
counte
r) 

make model year img price 

01 Peugeot 307CC 2004 car(01).jpg 2500
00.0 

02 Audi A6 2004 car(02).jpg 3400
00.0 

03 Citroën C5 2004 car(03).jpg 1500
00.0 

04 Mazda 1.6 2004 car(04).jpg 1700
00.0 

05 Mercedes E-class 2002 car(05).jpg 5400
00.0 

06 Mercedes SLRMcLaren 2004 car(06).jpg 6400
00.0 

 
»_Car_System____________________ 
Æ»____________________ 
ÆÆcar1.html   (User Interface) 
ÆÆcar1.js; car1.xml; car1.xsd 
Æ–____________________ 
–__________________________ 

Figure 1a: The Z Car system. 
 
»_car1.html_____________________ 
ÆDisplay Welcome page; On click: car1.js [Detail of this 
Æspecification not relevant to the discussion] 
–__________________________ 

Figure 1b: The Car1.html file (User Interface). 
 
»_car1.xml_____________________ 
Æx: P X [X is not a field in the record, it is used 
Æonly in the schema as a record counter]  
Æmake: Xß MAKE; model: Xß MODEL;  
Æyear: Xß YEAR; img: Xß IMAGE; 
Æprice: Xß PRICE; n: N; car1.xsd;  
«_______________ 
Æ (x = dom make; dom model; dom year; dom  
Æ img; dom price); n = 6 
–__________________________ 

Figure 1c: car1.xml. 
 
»_car1.xsd_____________________ 
Æ X car1.xml 
Æ[Information not relevant to the discussion of this paper] 
–__________________________ 

Figure 1d: car1.xsd. 
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»__car1.js_____________________ 
Æ »__________________ 
 Æ ÆX car1.html; X car1.xml; X car1.xsd 
Æ Æmake!; model!; price!; img!; year! 
Æ Æn: N; n = 6; str?: STR 
Æ –____________________ 
Æ »_Init_________________ 
Æ Æx' = 0 
Æ –____________________  
Æ »_showPix()______________ 
Æ Æ(Ai:0..(n-1)• make(i)! ¶ model(i)! ¶ img(i)!) 
Æ –____________________  
Æ »_range(str)___________ ___ 
Æ Æ(str? = 'Over') fi (E i:0..(n-1) • price(i) > 200000 
Æ Æ¶ make(i)! ¶ model(i)! ¶ price(i)! ¶ year(i)! ¶ 
Æ Æimg(i)!)  
Æ Æ(str? = 'Under') fi (E i:0..(n-1) • price(i) < 200000 
Æ Æ¶ make(i)! ¶ model(i)! ¶ price(i)! ¶ year(i)! ¶  
Æ Æimg(i)!) 
Æ –____________________  
Æ »_ListAll(str)______________ 
Æ Æ[Information not relevant to the discussion of this 
Æ Æ paper] 
Æ –____________________ 
–__________________________ 

Figure 1e: car1.js. 

7 VERIFICATION AND 
REFINEMENT (Z) 

The Z data specifications for the schema Car1.xml 
data types and operation specifications for the 
schema range(str) can be refined as follows: 

7.1  Verifying Consistency of Global 
Definitions 

For the axiomatic description 
 
ÆGlobalDeclarations 
«_____________ 
ÆGlobalPredicates 
 
it must be established that there exists values for 
GlobalDeclarations that satisfy GlobalPredicates. 
For example from the type definitions, the state 
variables can be defined as follows: 
 
Æx: PX; make: X ß MAKE; model: X ß MODEL   
«_______________________ 
Æ(x = dom make; dom model) 
 
 
 

 

 

 
 

 
 

 
 

        
 

Figure 2: The Car Website.
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 Suppose x = {03} and make = {Citroën}. 
Therefore x = dom make. Therefore H∃ x: PX ∧ 
∃ make: X ß MAKE • true. By a simple property of 
logic H true. Also 
 
Æmake: MAKE (declaration of constant) 
 «______________  
 Æmake = Citoën (value of constant) 
 
 This description is consistent because it does not 
contradict x's declaration.   
 A number of consistency checks can be 
performed on the state space of Figure 1c.  
  
Æx: X; make: MAKE       
«______________ 
Æx =  03; make = Citroën 

 
This axiomatic description is also a verification 

of the consistency of the global definitions or H 
∃  Car1.xml' • x'  X ∧ make' ∈ MAKE which for the 
axiomatic description is true, therefore H 
∃  Car1.xml' • true and by a simple property of logic 
H true. This satisfies the verification for global 
definitions, which can also serve as part of a data 
refinement because a concrete data type was 
constructed that simulates the abstract one. 

7.2 Verifying Consistency of an 
Initial State 

A check must be done to ensure that a consistent 
initial state exists.  This check can be expressed as 
the initialisation theorem which has the following 
general form: H ∃ State' • InitStateSchema which can 
be extended to H ∃ State'; Inputs? • InitStateSchema 
if there are input variables for the initial state 
schema InitStateSchema.   
 The concrete initial state for Car1.js is: 
 
»_init _____________________ 
Æx' = ∅ 
–________________________ 
 
 To show that it is consistent:  
H ∃ x': PX; ∃ make': X ß MAKE • x' = dom make'.   
 If dom make' = ∅ then x' = ∅ which implies that 
there is a state Car1.js' of the state definition schema 
that satisfies the initial state description.  
 The above mentioned checks can also serve as 
data refinement where it must be determined 
whether every abstract state has at least one concrete 

representative and there exists a consistent initial 
state. 

7.3  Verifying Consistency of 
Operations 

For an operation that is defined as: 
OperationDeclarations | OperationPredicates, the 
consistency theorem is H ∃ OperationDeclarations • 
OperationPredicates. 
 Calculating its precondition can check an 
operation’s consistency. If the operation is 
inconsistent, its precondition will be false. A false 
precondition strongly suggests a defect in the 
operation description (Ratcliff, 1994). 
 The consistency theorem for the operation 
range(str) will be: (str? = ‘Over’) fi (E i:0..(n-1) • 
price(i) > 200000 ¶ make(i)! ¶ model(i)! ¶ price(i)! 
¶ year(i)! ¶ img(i)!). 
 Now assume that (str? = 'Over') fi false 
then (Ei:0..(n-1) • price(i) < 200000 ¶ make(i)! ¶ 

model(i)! ¶ price(i)! ¶ year(i)! ¶ img(i)!). 
 But according to the second statement in 

range(str) (Figure 1e): if  (str? = ‘Under’) fi (E 
i:0..(n-1) • price(i) < 200000 ¶ make(i)! ¶ model(i)! 
¶ price(i)! ¶ year(i)! ¶ img(i)!).   
 Then according to a simple property of logic H 
(str? = ‘Over’) fi (E i:0..(n-1) • price(i) < 200000 ¶ 
make(i)! ¶ model(i)! ¶ price(i)! ¶ year(i)! ¶ img(i)!) 
• false  and then according to a simple property of 
logic H false. This means that the assumption was 
false, and that the sequent predicate is not a 
contradiction, hence that range(str) is consistent. 

This means that the assumption was false, and 
that the sequent predicate is not a contradiction, 
hence that range(str) is consistent. 

7.4  Data Refinement 

Refer to Figure 1c, the abstract state Car1.xml,  
with an initial state: 
 
»_init_Car1.xml__________________ 
ÆCar1.xml' 
«____________________ 
Æx' = ∅ 
–_________________________ 
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and with (for example) an abstract operation on the 
data being the operation schema range(str) (from 
Figure 1e).  
 We plan to implement this system into a 
programming language that supports arrays and lists. 
We decide to refine the abstract specification to a 
detailed design based on sequences because we 
expect this will be easier to map into the target 
programming language. The reason for this is 
because sequences are sorted lists. 

For the refinement the concrete representation of 
Car1.xml is not a set but a sequence Car2.xml of 
elements of type X, X ß MAKE, X ß MODEL, X 
ß YEAR, X ß IMAGE and X ß PRICE. 
 The concrete representative x is not a set but a 
sequence x1. The state set Car1.xml is re-expressed 
as:  
 
»_Car2.xml____________________ 
Æx1: seq X; make1: seq (X ß MAKE); 
Æmodel1: seq (X ß MODEL); year1: seq (X ß YEAR); 
Æimg1: seq (X ß IMAGE); price1: seq (X ß PRICE); 
«____________________ 
Æ(# ran x1 = # ran make1; # ran model1; # ran year1; #  
Æran img1; # ran price1) 
–_________________________ 
 
 Here is the concrete selection control structure 
operation of range(str): 
 
»_range1(str)____________________ 
Æ(str? = 'Over') fi (E i:0..(n-1) • price1(i) > 200000 ¶  
Æmake1(i)! ¶ mode1l(i)! ¶ price1(i)! ¶ year1(i)! ¶ 
Æimg1(i)!) 
Æ(str? = 'Under') fi (E i:0..(n-1) • price1(i) < 200000 ¶  
Æmake1(i)! ¶ mode1l(i)! ¶ price1(i)! ¶ year1(i)! ¶  
Æimg1(i)!) 
–__________________________ 
 The sequence should always hold the same 
elements as the set. A sequence is a function from 
natural numbers to elements, so the elements stored 
in the sequence are the range of this function. The 
range of the sequence must be the same as the set.  
 x = ran x1 ∧ x' = ran x1' also price = ran price1 
∧ price' = ran price1', etc..therefore  (E i:0..(n-1) • 
price(i) > 200000 ⇔ (E i:0..(n-1) • ran price1(i) > 
200000). 
 This must be true before and after any operation, 
so equations appear for unprimed and primed (') 
variables. We now form the implication that 
expresses the refinement. The predicate of the 
abstract operation range(str) appears on the right of 
the implication arrow, and the predicate of the 

concrete operation range1(str) is on the left, along 
with the equations relating make, make1, model, 
model1, year, year1, img, img1, price and price1. 
 When (str? = 'Over') then (E i:0..(n-1) • price1(i) 
> 200000) ¶ price = ran price1 ¶ price' = ran 
price1'.  Also when (str? = 'Under') then (E i:0..(n-
1) • price1(i) < 200000) ¶ price = ran price1 ¶ 
price' = ran price1'  

7.5  Proof of the Selection Control 
Structure Refinement 

When (str? = 'Over') fi then (Ei:0..(n-1) • price1'(i) 
> 200000) = (Ei:0..(n-1) • price1(i) > 200000) ¶ 
price = ran price1 ¶ price' = ran price1' fi price' = 
price. 
¤ (Ei:0..(n-1) • price'(i) > 200000)     
         [Assume 
antecedent] 
¤ (Ei:0..(n-1) • ran price1'(i) > 200000)   
     [Antecedent price' = ran price1'] 
¤ (Ei:0..(n-1) • ran price1(i) > 200000) [Given] 
¤ (Ei:0..(n-1) • price(i) > 200000)     
      [Antecedent price = ran 
price1] 
¤ true 
 

An equivalent proof for when (str? = 'Under'). 

7.6 Verifying the Correctness of the 
Concrete Initial State 

The concrete initial state must not describe initial 
states that have no counterpart in the abstract model 
(Ratcliff, 1994, Jacky, 1997, Derrick, 2001). A 
theorem of the following form is to be proved: 
Given the retrieve relation then: InitConcState H 
InitAbsState which says that ‘for each concrete 
initial state, there is a corresponding abstract one’. 
 Refer to the following schema definitions: 
»_init_Car1.xml___________________ 
ÆCar1.xml'    
«____________________ 
Æx' = ∅ 
–__________________________ 
 
and from the Data refinement the Car2.xml schema 
and 

FORMAL SPECIFICATION AND REFINEMENT FOR AN INTERACTIVE WEB EXAMPLE

93



 

»_Car2.xml'_____________________ 
Æx1': seq X; make1': seq (X ß MAKE); 
Æmodel1' : seq (X ß MODEL); year1': seq (X ß YEAR); 
Æimg1': seq (X ß IMAGE); price1': seq (X ß PRICE); 
«____________________ 
Æ(# ran x1' = # ran make1'; # ran model1'; # ran year1'; 
Æ# ran img1'; # ran price1') 
–__________________________ 
 
and 
 
»_init_ Car2.xml_________________ 
ÆCar2.xml'    
«____________________ 
Æx1' = 〈〉 
–_________________________ 
and from the Data refinement the Car1.xml schema 
and 
 
»_CARel_____________________ 
ÆCar1.xml; Car2.xml 
«____________________ 
Æx = ran x1 
–_________________________ 
 
and 
 
»_CARel'_____________________ 
ÆCar1.xml'; Car2.xml'    
«____________________ 
Æx' = ran x1'                                
–_________________________ 
 It must be proved that there is a state CARel' of 
the general model CARel (concrete to abstract 
relation) that satisfies the following: init_ Car1.xml H 
init_ Car2.xml. 
 CARel' acts as an extra hypotheses (given 
CARel'). The declarative part of the right-hand side 
schema text is just Car1.xml' which is provided by 
CARel' on the left.  The sequent is then unfolded into 
CARel'; Car2.xml' ⎥ x1' = 〈〉 H x' = ∅ which holds 
because x1' = 〈〉 on the left and x' = ran x1' in 
CARel'. 
 By substitution x' = ran 〈〉, and x' = ∅  
immediately follows. 

7.7  The concrete State Must be 
Consistent 

It has to be shown in general that  
 H ∃ ConcState' • InitConcState (InitConcState 
represents the initial concrete state) or for our 
example: H ∃ Car3.xml' • init_Car2.xml 

Car3.xml' is a state of the general model Car3.xml. 
 From the Data refinement it is concluded that the 
state sets x: PX; make: X ß MAKE; model: X ß 
MODEL; year: X ß YEAR; img: X ß IMAGE; 
price: X ß PRICE; are implemented as arrays with 
an index variable: x1: array [0..(maxSize-1)]; 
make1: array[0..(maxSize-1)]; model1: array 
[0..(maxSize-1)]; year1: array[0..(maxSize -1)]; 
img1: array[0..(maxSize-1)]; price1: 
array[0..(maxSize-1)]; n: 0..(maxSize-1). 
 It is assumed that the n elements of the x1 array 
are sorted in ascending sequence to ensure that no 
duplicates are kept in the array and to facilitate fast 
lookup of the array. For all the n elements of the x1 
array, the corresponding elements in the make1, 
model1, year1, img1, and price1 arrays have the 
same element number as the number of the x1 array. 
For example, make1(3) is the car make of the car 
represented by x1(3).   
 Add the following to Car1.xml: ⎥ maxSize: N to 
give: 
»_car3.xml_____________________ 
Æx: P X; make: Xß MAKE; model: Xß MODEL; 

  Æyear: Xß YEAR; img: Xß IMAGE; 
Æprice: Xß PRICE; n: N; car1.xsd  
«_______________ 
Æ(x = dom make; dom model; dom year; dom img; dom 
 Æprice); #x¯ maxSize -1; n = 6 
–__________________________ 
»_Car4.xml_____________________ 
Æx1: seq X; make1: seq (X ß MAKE) 
Æmodel1 : seq (X ß MODEL); year1: seq (X ß YEAR); 
Æimg1: seq (X ß IMAGE); price1: seq (X ß PRICE); 
Æn = 0..(maxSize -1) 
«____________________ 
Æ(# ran x1 = # ran make1; # ran model1; # ran year1; 
Æ#ran img1; # ran price1); #x1 = n 
ÆAi,j: dom x1 • i < j fi x1(i) < x1(j); n' = n 
–__________________________ 
»_Car4.xml'_____________________ 
Æx1': seq X; make1': seq (X ß MAKE); 
Æmodel1' : seq (X ß MODEL); year1': seq (X ß YEAR); 
Æimg1': seq (X ß IMAGE); price1': seq (X ß PRICE); 
Æn = 0..(maxSize -1) 
«____________________ 
Æ(# ran x1' = # ran make1'; # ran model1'; # ran year1';  
Æ# ran img1'; # ran price1'); #x1' = n'' 
ÆAi,j: dom x1' • i < j fi x1'(i) < x1'(j); n' = n 
–__________________________ 
 
 To show that it is consistent: Refer to Car4.xml': 
H ∃ x1': seq X; n': 0..(maxSize-1); ∀i, j: dom x1' • i < 
j ⇒ x1'(0) < x1'(1) < x1'(2), < .. x1'(maxSize-1);  
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#x1' = n'. If n' = 0 then x1' = 〈〉 that implies that there 
is a state (Car4.xml') of the general model Car4.xml 
that satisfies the initial state description init_ 
Car2.xml. 

7.8 Determine Whether Every 
Abstract State Has at Least One 
Concrete Representative 

This can be achieved by determining if each abstract 
variable can be derived or ‘retrieved’ from the 
concrete variables by writing down equalities of the 
form:  AbsVar = Expr(ConcVars) where AbsVar 
represents an abstract variable of the abstract state, 
Expr an expression and ConcVars the concrete 
variable of the concrete state representing the 
abstract state. 
 For the example the predicate x = ran x1 will be 
referred to as the ‘retrieve relation’ CARel (concrete-
to-abstract relation) that brings together the abstract 
and the concrete states: 
 
»_CARel____________________ 
ÆCar1.xml; Car2.xml 
«____________________ 
Æx = ran x1 
–________________________ 
 
 The equality means that CARel is in effect a total 
function when viewed as ‘calculating’ the abstract 
state from the concrete one. Being total means that 
every concrete state maps to some abstract state. 
This implicit property of the retrieve relation being 
functional and total, characterises the fact that a 
simplified form of data refinement is discussed 
(Ratcliff, 1994). 
 Suppose, however, the ‘sorted’ invariant was 
removed from Car2.xml so that the array element 
order was immaterial. Assume that no duplicates are 
stored in the array.  The design will now include 
some redundancy in that each non-empty, non-
singleton set in the abstract state would have more 
than one concrete representation (Ratcliff, 1994). 
 For example, the abstract state   
〈model ⇛ {307CC, A6, C5, 1.6, E-class, 
SLRMcLaren}〉 will have 6! concrete representatives 
(of which two are shown): 〈model1 ⇛ 〈1.6, 
307CC,.., C5〉, n ⇛ 6〉 and 〈model1 ⇛ 〈C5, 
1.6,..A6〉, n ⇛ 6〉 
 In general, assuming no duplicates, there would 
be n! concrete representatives for a single abstract 
state. The implicit functionality of a retrieve relation 

such as CARel is not compromised because the 
relation expresses a calculation from concrete to 
abstract (Ratcliff, 1994). 

7.9  Operation Refinement 

Refer to range1(str) from the Data refinement with 
n' and n added: 
 
»_range1(str)____________________ 
Ærange1(str) 
Æn' = n 
–__________________________ 
 

This is a data-refined operation because the 
abstract range(str) operation is re-expressed as the 
concrete operation range1(str). range1(str) is 
refined into range2(str): 

 
»_range2(str)____________________ 
Æ(str? = 'Over') fi ((E i:0..(n-1) • price1(i) > 200000) ¶ 
Æ(θCar4.xml' = θCar4.xml) ¶((i)@ make1)! ¶ ((i)@ 
Æmodel1)! ¶ ((i)@ price1)! ¶ ((i)@ year1)! ¶ ((i)@ img1)!) 
Æ(str? = 'Under') fi ((E i:0..(n-1) • price1(i) < 200000) ¶ 
Æ(θCar4.xml' = θCar4.xml) ¶((i)@ make1)! ¶ 
Æ((i)@ model1)! ¶ ((i)@ price1)! ¶ ((i)@ year1)! ¶ ((i)@ 
Æ img1)!) 
Æ n' = n 
–_________________________ 
 
((i) @ make1) extracts the ith element of array make1.  
range2(str) can be refined into the following 
algorithm: (Let n be the number of Cars). 
[lookFor(str?, range(str))]        
    [Send str to the function range(str) (in car1.js)] 
for i = 0..(n-1) 
if str = 'Over' and price(i) > 200000.00    
       [Check for car prices > 200000] 
display make(i), model(i), year(i), img(i), price(i);
       [Display the values on the 
website] 
else  
if str = 'Under' and price(i) < 200000.00   
       [Check for car prices < 200000] 
display make(i), model(i), year(i), img(i), price(i);
       [Display the values on the 
website] 
endif 
endif 
endFor 
  
 This algorithm is implemented by the range(str) 
function of the car1.js program (refer to Appendix 
A). 
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8 IMPLEMENTATION 

The programs are provided in Appendix A. The 
programs include a car1.html program that provides 
the user interface, the car1.xml and its corresponding 
schema program car1.xsd provide the data input, and 
car1.js is a javascript program that does the 
calculations. This aids in the understanding of the 
process of refinement if the end product (the 
programs) are given to indicate where the algorithms 
of the refinement are leading to. The output of the 
programs should correspond with the results of the 
data refinements and the instantiations. This serves a 
dual purpose in that the output can be verified 
against the instantiations, and the instantiations 
against the output. Therefore the implementation 
serves to verify that the specifications are correct, 
and the specifications serve to verify that the 
implementation is correct (Dong, 2004, Sun, 2002, 
Woodcock, 1996, Deitel, 2002, Doke, 2002, 
McGrath, 2002). 

9 CONCLUSION 

From the extensive refinement of the selection 
control structure used on the data file, it can be 
concluded that such a detailed specification and 
refinement as illustrated in this paper will definitely 
reduce errors in the coding of the programs. The 
application of formal specifications and refinements 
also serves a dual purpose in that the code can be 
verified against the specifications, and the 
specifications can be verified against the code.  
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