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Abstract. We consider the problem of gathering a swarm of robots which is
initially randomly dispersed over a domain in the plane. A stochastic method for
the cooperative control of a swarm of mobile robots is presented. The network of
mobile robots is modeled by a swarm performing a directed random walk. The
swarm dynamics are governed by a system of stochastic difference equations. The
motion is controlled by a robot leader, which transmits the coordinates of the
gathering point to the swarm as the network cooperative control signal. We study
the case where the control signal is corrupted by noise and find that the gathering
process is robust to noise and efficient. The swarm dynamics display anomalous
diffusion and Levy flights, where the robots move along straight lines over many
time steps, followed by short random walks in the vicinity of the gathering point.

1 Introduction

The term Levy flight was introduced by Mandelbrot and is described in his book on
fractals [6] as a sequence of jumps separated by stopovers. In plates 296 and 297 in
his book, he gives the example where each stopover is a star, a galaxy or a cluster of
stars or galaxies, thus showing that the global structure of matter distribution in the uni-
verse is composed of clusters separated by Levy flights. The clusters themselves can be
decomposed into self-similar miniclusters, resulting in a fractal structure. Since then,
other phenomena have been described as displaying Levy flights and anomalous diffu-
sion. In the present work, we show that controlled swarm robotic motion is displaying
anomalous diffusion and Levy flights.

Robots are used in many practical applications such as industrial robots in manu-
facturing, spacecraft and rover robots for space exploration and unmanned air vehicles
(UAVs) for reconnaissance, surveillance and tactical military missions. Other possible
applications include underwater missions by autonomous underwater vehicles (AUVS)
such as formation control and rendezvous, search and rescue missions and exploration
and mapping of unknown environments. In many applications, single robots are em-
ployed in the performance of a given task. It has been recognized for some time, how-
ever, that the use of collaborating multiple mobile robots can have significant advan-
tages in achieving complex tasks and missions, which otherwise might not be achiev-
able with single robots. Consequently, in recent years, there has been an interest in the
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cooperative control of networked collaborating mobileatshwith distributed resources
such as sensors, computing power and communications [2].10,

Consider the problem where of a group of mobile robots has bepersed in a
given area, and that it is required to gather the robots irvitiaity of a given point.
For example, consider the case where a group of robots haarfiorpm a mission in
a remote area, where they have landed by parachutes. Ths mdgonow randomly
scattered in a wide area and need to be gathered into a mudlbrsanea in the vicinity
of a designated location before starting their mission. 3iecific task now is for the
robots to collectively move towards the gathering point. 8asider swarms on the
order of200 robots dispersed in a two-dimensional domain on the ordérkah by 1
km.

Itis assumed that each autonomous robot is equipped witmpa&ss and is capable
of moving in a given azimuthal direction for a given distari€ach robot has a low level
control and navigation system that can detect its locati@il #mes and guide it from
one point in the domain to the next at the right speed and tatien. It is also assumed
that each autonomous robot is equipped with a collision d&stbale avoidance control
system for preventing collisions with other robots and ablgts. The robots network
architecture consists of a leader robot acting as a sereercammunicating with the
other robots as clients.

The robot swarm cooperative control method is describebdemext section. Each
robot has a microprocessor computing device on board capdbiunning the robot
swarm algorithm. We propose to use this paradigm algoritera #op level discrete
event controller for the cooperative control of the swarm@cttrobot sends the best so
lution found at any given time to the leader or other centratpssing station through
its communication channel. The leader in turn computes khieaf) best solution and
transmits the result as a control signal to the network. Tbled® Swarm Optimization
(RSO) is a stochastic population based method that belorhe tclass of biologically
inspired algorithms. It is based on the paradigm of a swarimsafcts performing a col-
laborative task such as ants or bees foraging for food usiemical or some other type
of communication, see for example [1] and [3]. The swarmlligience method was
originally developed by [4] and later described in greatdét [5]. An overview of the
method as extensively applied to various function optitidraproblems of increasing
difficulty has recently been presented by [7]. Here the PS@aakis and adapted for
use as a top level discrete event cooperative control mdth@dswarm of autonomous
robots.

In the next section we develop the robot swarm algorithm egtimmunication noise
and we explain how it can be applied to solve the swarm gathgnioblem. In section
3, results of simulations are described for a swarm of 200tmtyathering in a noisy
environment. We show that the robots trajectories followy #ights and compute the
probability distribution for the flights lengths.

2 Cooperative Control of the Robot Swarm

In developing the robot swarm cooperative control methoe,incorporate physical
effects or constraints in order to implement the search atelty actual mobile robots



such as land vehicles, autonomous underwater vehicledam@aous unmanned aerial
vehicles. The first effect imposes a limitation on the spekethe vehicle, or equiv-
alently, a limit on the distanceél X,,,,,. it can move in a given typical time stefit.
Another effect taken into account is imperfect and noisy mamication between the
robots. At any given time, communication with one or moreatsttan be attenuated or
corrupted by noise. Therefore, rather than assuming tleagltthal minimum is avail-
able to the swarm at all times as in the case of perfect conwation, we introduce
noise in the control signal transmitted to all members ofstivarm.

The robot swarm cooperative control algorithm without aslyat speed constraints
and with perfect communication consists of minimizing adtion of several variables:

minimize f(X),where X € 2 C R*andf: 2 +— R
subject to the side constraints

Xmin S X S Xmam

using a directed random walk process described by the foltpaystem of stochas-
tic difference equations:

Xik+1) = X'(k)+AX (k+1) (2.1)
AXH(k+1) = w(k) X (k) + errb(PU(k) — X' (k))+

cors (PI(k) — X*(k)) (2.2)

Herek is the discrete time counter, andc, are real constantsi andr?, are random
variables uniformly distributed between 0 and 1. The suggsindex: denotes robot
numberi € [1, Ng] whereNr, is the number of robots in the swarm. The locatitiik)
is the best solution found by robott timet = k£ and P?(k) is the global minimum at
time ¢ = k. The factorw(k) can be either constant or time dependent. If it decreases
with time, the search process can usually be improved asethels approaches the
global minimum and smaller steps are needed for betterutgnl For example, the
parametetv(k) can be set to decrease from an initial valuevgf= 0.8 to a final value
of wy = 0.2 after N time steps:

w(k) = wy + (wo — wy) (N — k) /N (2.3)

The system of equations (2.1-2.2) describes a directecbranehlk for each robot
1 in the swarm, similar to a Brownian motion of a tracer pagtici a fluid. Whereas
Brownian motion is an undirected random motion, the motiba mbot in the swarm
will have a velocity that will start as a random motion, butlveventually decay as
the particle approaches a poift(k) in the domain where the function reaches a local
minimum and as the swarm as a whole approaches a péifit) of the domain where
the function reaches a global minimum, that is,



P'(k) = argmin{f(X"(k))}

PI(k) = argmin{f(P'(k))}, i € [1, Ng] (2.4)

The following initial conditions are needed in order to sthe solution of the sys-
tem of difference equations

X0) = Xppin + 1" AX ppas (2.5)

AXmaw = (Xmax - Xmin)/Nw (26)

N, is a typical number of grid segments along each componereposition
vector X. For example, if the domain consists of a two dimensionahsguiomain
of 1000 m by 1000 m, then wittV,, = 50, we can use a typical distance segment of
AX e = 1000 m/N, = 20 m. If we take a typical speed of an autonomous robot
asV. = 1 m/s, then the typical time will be, = AX,,,./V. = 20 s. We can now
measureX in units of AX,,,.., V in units of V, and At in units oft.. The equations
will then have exactly the same form in non-dimensionalalzigs.

Placing a limit on the magnitude of the velocity componeneaé€h robot in any
given direction for a given time step, we can impose a coimgtoan the magnitude of
the distance traveled in any time step as:

|AX (k4 1)| < AXpnan (2.7)

Under these assumptions, the equations of motion of thenslwacome:

Xik+1)=X'(k)+

sign(AX (k + 1)) (min[|AX (k +1)|, AX naz)) (2.8)

AX U (E+1) = wk) XU (k) + crri (PY(E) — X (k) +

+eory(PI(k) — X'(k)) (2.9)
subject to the side constraint

Xomin < X'(k+1) € Xnaz (2.10)

The signum function term sige X (k + 1)) is added in order to keep the original
direction of the motion while reducing the length of the step



3 Swarm Gatheringin a 2-D Domain

The cooperative control method described in the previocismseis applied to the prob-
lem of gathering a swarm of robots at a given point in the plakie consider a two
dimensional domaim2 C R?, defined by the coordinates:

X1 € [leianlmaz] = [_5007500]

X2 S [XQminaXQmaz] - [75007500] (31)

which forms a square of 1000 m by 1000 m, with the origin at theter of the
square. We choose the number of grid segment¥,as= 50, so that the maximum
distance traveled by any robot in any directinor X5 in one time step is@m, which
we choose as one distance unit or 1 DU. The equivalent timeAin=TU= 20 s is the
time it takes a robot to travel along 1 DU at a typical speed wif'd.

Aleam = AXZm(w =
= (leaa: - lein)/Nw =20m = 1DU

Vilmaz = 1Valmar < AX1maz /At = DUJ/TU = 1m/s (3.2)

Initially, the swarm is randomly distributed in the domdinor in a subset domain
of £2. Attime k = 0, the control is started and the swarm is set in motion. Eabbtro
in the swarm is programmed to minimize its distance from tathering point , by
minimizing the function:

F(X1,X3) = (Xi — PY)* + (X5 — P§)? (3-3)
Here the control signaP? = (P{, PJ) transmitted to each member of the swarm

specifies the gathering point and’{, X34) is the location of théth robot in the swarm,
wherei € [1, Ngr]. The communication signal is corrupted by additive najse

P9 = (P{ +n,P] +n) (3.4)

n=N(0,0) (3.5)

where N (0, o) denotes random numbers having a normal distribution wito ze
mean and standard deviatien Without loss of generality, we choose the gathering
point at the origin, i.e.(P{, P5) = (0,0).

For the Gaussian noiggwe chose a standard deviation= 6 A X, 4, With § = 5.
As the noise level is increased, say with valuesyof 10, 20, 30,it becomes more
difficult to gather all the swarm at the origin. The other paeters appearing in the
equations of motion are, = ¢, = 2 andwy = wy = 0.8. The results of a simulation
of the gathering of th€00 robots are given in Figs. 1-6. The simulation was run for
N= 80 time steps. Fig.1 shows the locations of the robots as they sygead randomly



over the domain at the start of the simulation. It also shdweddcations after 10 time
steps, after 15 time steps and the locations of the swarmeamtiots gathered in the
vicinity of the origin after 80 time steps.
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Fig. 1. Swarm gathering stochastic process. Top left: Initial random swarnibdistm in the
domain. Top right: After 10 time steps. Bottom left: After 15 time steps. Bottigimtr After 80
time steps.

The trajectories of the first 50 robots in the swarm are showligs. 2-4. Fig.2 dis-
plays the coordinateX (¢) as a function of time. The coordinaté% (¢) as a function
of time are shown in Fig.3. Most Levy flights occur at the begig of the gathering
motion, up to about 30 time steps. After that the swarm agdesgn the vicinity of the
gathering point. This can also be seen in Fig.4, which dyspllae radial distancest)
from the origin, where?(t) = X3 (t) + X2(¢) for the first 50 robots in the swarm.

In order to obtain the probability distribution of the Levygfits, the lengths of
flights along straight lines are followed for each robot ia #twarm. Then the number
of flights for each given length are counted for all the robotthe swarm and put in
25 bins ordered from the shortest to the longest flights. Tdaéistogram is plotted
showing the frequency of occurence of the various flight fleegSuch a histogram is
shown in Fig. 5. The histogram does not follow a Gaussianibigton, but rather a
Levy distribution, which has a very long tail and an infinieriance.

Levy flights follow power laws of the form

N = (L/Lo)" (3.6)

which appear as straight lines with slopevhen displayed on a log-log scale

logN = alog(L/Lgy) = alogL — alogLg (3.7)
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Fig. 2. Trajectories X(t) of the first 50 robots in the swarm.
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Fig. 3. Trajectories X%(t) of the first 50 robots in the swarm.
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Fig. 4. Radial distances r(t) of the first 50 robots in the swarm.
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Fig. 5. Probability distribution of the Levy flights for the 200 robots.
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where N is the number of flights of length and L, is a characteristic length. For
the noise level described above, a valuemoE= —2.446 and a characteristic length
Ly = 11.62 were obtained. Such a plot is shown in Fig.6.

. . . . . . .
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Fig. 6. Power law of the Levy flights for the tail of the distribution.

4 Conclusions

A method for the cooperative control of a group of robots Hasea stochastic model
of swarm motion has been developed. The network of mobiletsis modeled by a
swarm moving randomly in the search domain with the globationoof the swarm
directed and controlled by a central unit which can be a leaat®t or a central server.
The motion of each robot in the swarm is governed by a systetwabtochastic dif-
ference equations. Usually, in the robot swarm method deeel in this work, the best
solution found collectively by the swarm serves as the @brsiignal for the network
of robots. However, in the swarm gathering problem, the lgrolis simpler, since the
coordinates of the gathering point, which serve as the obsignal, are fixed, except
for additive noise that is present in the communicationesystThe method was used
to solve the basic problem of collaborative gathering in a-thmensional domain. It
was found that the swarm can gather successfully in theityoirf a designated point
in the plane despite significant noise in the network comiations. Moreover, it was
found that the gathering process is efficient, in the sersdltle robots trajectories ex-
hibit anomalous diffusion, performing long distance Levghts along straight lines,
followed by local sticking random walks in a limited area lbétdomain in the vicinity
of the gathering point.
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