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Abstract. Active learning for classification constitutes a type of learning prob-
lem where a classifier is gradually built by iteratively asking for the labels of data
points. The method involves a data selection mechanism that queries for the la-
bels of those data points that considers to be mostly beneficial for improving the
performance of the current classifier. We present an active learning methodology
for training the probabilistic RBF (PRBF) network which is a special case of the
RBF network, and constitutes a generalization of the Gaussian mixture model.
The method employs a suitable criterion to select an unlabeled observation and
query its label. The proposed criterion selects points that lie near the decision
boundary. The learning performance of the algorithm is tested with experiments
on several data sets.

1 Introduction

Active learning a classifier constitutes a special type of learning problem, where the
training data are actively collected during the training. The training data are available
as a stream of classified observations, but the information they carry is controlled from
the classifier. The classifier determines regions of interest in the data space, and asks
for training data that lie in these regions. The importance of active learning is well
established, see [2] for a study on the increase of classifier's accuracy as the number
of labeled data increases. Various active learning methods have been suggested; in [3]
a learning method for Gaussian mixture models [9] is proposed, that selects data that
minimize the variance of the learner. In [6] active learning for a committee of classifiers
is proposed, which selects data for which the committee members disagree. Based on
this selection method, in [7] they propose the use of available unclassified data by em-
ploying EM [5] to form a better selection criterion, that is used to train a naive Bayes
classifier. In [14] they train Gaussian random fields and harmonic functions, and select
data based on the estimated expected classification error.

We focus on a specific active learning scenario calledotha-basedactive learn-
ing, also studied in [7, 14]. In this case a set of labeled and unlabeled observations is
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available right from the start. During training we are alemto iteratively query the
label of unlabeled points, and use the acquired labels toanethe classifier. In prac-
tice this scenario is important when querying a field expeexpensive, as in medical
diagnosis, or when there is a huge quantity of unlabeled tthataprohibits thorough
labeling, as in text classification. The intuition behindbpbased learning is that the
unlabeled data can be exploited to construct a more detgéadrative model for the
data set.

In this work we propose a pool-based active learning for trabgbilistic RBF
(PRBF) classifier [11, 13]. It is a special case of RBF netwfdikthat computes at
each output unit the density function of a class. It adoptsister interpretation of the
basis functions, where each cluster can generate obsersaif any class. This is a
generalization of a Gaussian mixture model [9, 1], wheréehgster generates obser-
vations of only one class. In [4] an incremental learningoetym based on EM for
supervised learning has been proposed and we exploit thfsoohéo develop an active
learning method for PRBF.

In the following section we describe the incremental aligponifor supervised train-
ing of the PRBF based on EM. In section 3 we use this algorithtadkle the problem
of active learning. In section 4 we provide experimentalitss Some discussion in
section 5 concludes this work.

2 Incremental PRBF Learning

Consider a classification problem witti classes, wher& is known and each pattern
belongs to only one class. We are given a trainingset {(z(™,y(™") n=1,...,N}
wherez (") is ad-dimensional pattern, and™ is alabelk € {1, ..., K} indicating the
class of pattern:(™). The original sefX’ can be partitioned intd independent subsets
X, so that each subset contains only the data of the corresppaidss. LetV, denote
the number of patterns of classi.e. N, = | Xj]|.

Assume that we have a humber &f component functions (hidden units), which
are probability density functions. In the PRBF network (Hiyjall component density
functionsp(z|j) = f;(z) are utilized for estimating the conditional densities df al
classes by considering the components as a common pooll[l0jAus, each class
conditional density functiop(x|k) is modeled as a mixture model of the form:

M
plalk) =Y mfi(z), k=1,... K 1)
j=1

where f;(z) denotes the component densjtywhile the mixing coefficientr;;, repre-
sents the prior probability that a pattern has been gertefiamn the density function of
componeny, given that it belongs to clags The priors take positive values and satisfy
the following constraint:

M
dmw=1 k=1, K 2)
j=1



Fig. 1. The Probabilistic RBF network.

Once the outputs(x|k) have been computed, the class of data poiig determined
using the Bayes rule, i.e.is assigned to the class with maximum posterior

Plile) = 2 3)

p(z)
Since the denominator is independenkafie actually select the clagswith maximum
p(x|k)Py. The required priors ar, = N, /N, according to the Maximum Likelihood
solution.

It is also useful to introduce the posterior probabiliti@pressing our posterior be-
lief that componenj generated a patterngiven its class:. This probability is obtained
using the Bayes theorem

. T i\xr
P(jle, k) = <l @
>zt T fi(2)
In the following, we assume Gaussian component densitigdseajeneral form:
1 1 )
fj(iﬂ)(Qmjz)d/geXP{%]gWM } (5)

wherey; € R represents the mean of compongnivhile o7 represents the corre-
sponding variance. The whole adjustable parameter vettbeanodel consists of the
mixing coefficientsr;, and the component parameters (meapgnd variance&?),
and we denote it by.

It is apparent that the PRBF model is a special case of the RFonk, where
the outputs correspond to probability density functiond #re second layer weights
are constrained to represent the prior probabilitigs Given an RBF classifier with



Gaussian basis functions, itsth output isgy.(x) = > ; wjk exp{—3 |z — p;|*/07}.

If w;, are non-negative an@jj wjr = 1, theng; is a density function. Actually it

is the class conditional densip(z|k) that we estimate through PRBF. Furthermore,

the separate mixtures model [8] can be derived as a spedalafaPRBF by setting

w1, = 0 for all classeg:, except for the class that the compongibelongs to.
Regarding parameter estimation for the PRBF, the EM algoritan be applied for

maximization of the likelihood [11]:

K
©)=>_ Y logp(z|k) (6)

k=1xeXg

EM is an iterative procedure with two steps at each iteratiduring theExpectation
step, posterior probabilitie®*) (j|z, k) are computed using the current estimates of

i), 1" ando", according to:

(t)f]( (t) (t))

T ,LL7 ’ ]
S w fi(a w0 P)

During theMaximizationstep the new estimates of the component parameters are up-
dated according to:

K :
(t+1) _ D ket ZmGXk p) (Jlz, k)x

PO (jla, k) = (7)

! Y1 Yuex, PO, )
o _ Tkt Saex, POl Rl — TP
! delzzeXZP()( |z, f)
7r§2+1) = |X | Z PO |z, k) (8)
reXy

The EM updates eventually will converge to a maximum of tkelihood.

An important aspect of network training is the estimatiorthef number of basis
functions to be used. To tackle this the incremental apprdes been proposed in
[4]. The method contains two stages. We start with a netwaskriy only one node,
whose parameters are easily estimated from the statidtite draining data. During
the first stage we iteratively add new nodes to the networll, we reach the desired
complexity. Then the second stage follows, where we sglith@l nodes in order to
increase classification performance. In the next sectiangiwe more details for the
two stages.

2.1 Node Addition

Given a network withA/ nodes we can construct a network witi+1 nodes. If
the given class conditional density jgz|k), then adding a Gaussian nodér) =
N (x; p1q, 02) results in a new density(z| k) as follows:

pzlk) = (1 — ax) p([k) + o q(z) 9)



whereqy, is the prior probability that nodggenerates observations from clas$iow-
ever we have to estimate,, the meary,, and variancag of ¢. To do this effectively,
we search for appropriate parameter values so thatqpzdeear the decision boundary.
In our approach the parameters of the new component aremdagzt through a selec-
tion procedure among a set of candidate solutions. The gureecan be summarized
in three steps:

1. Define a set of candidate components using a data painigisechnique.
2. Adjust the parameters of the candidate components.
3. Use a selection criterion to choose the candidate conmpoim&t will be added.

Since it is not possible to directly specify a single good porent to add, we define
a set ofcandidate initialcomponent parameters, further adjust the parameters using
partial EM, and the best candidate parameter values?, a;) selected according to a
specific criterion are considered as the final componeninpetexs to be added to the
network.

According to [4], in order to generate candidates, first wititian the dataset i/
subsets, one for each node as follows

Xj= {(z,k) € X, p(jlk,x) > p(ilk,x),Vi # j}

Then employing th&d-treepartitioning method we repartition eacfy in six subsets.
The statistics of the resulting subsets are probable e, andag. The corre-
sponding estimation of prior is;, = p(j|k)/2. Partitioning each node we credt&/
sets of candidate®, = {ax, g, ag}, so we have to select the most appropriate accord-
ing to a criterion. Fig. 2 illustrates the partitioning stadgor an artificial data set.

Fig. 2. Successive partitioning of an artificial dataset using the kd-tree meftilathe 14 parti-
tions illustrated in the three graphs are considered to specify candidatagtar vectors.

We have already mentioned that we wish the new componentgtabed at regions
in the data space containing examples of more than one dasay to quantify the



degree to which a candidate component satisfies this pyoiget computehe change

of the log-likelihood for class, caused by the addition of the candidate new component
g with densityp(x; 7). Thus, we compute the change of the Iog-likelihoﬁﬂ,(f) for
classk after the addition of

1 .
AC = - ogtelf) - gk =

1 q(x)
N, 2 L8 (1w ) ¢
x k
We retain thosé, that increase the log-likelihood of at least two classestisehrd the
rest. For each retainetj, we add the positivel L} terms to compute the total increase
of the log-likelihoodAL,. The candidatg* whose valueAL,. is maximum is added
to the current network, if this maximum value is higher thaprespecified threshold
(set equal to 0.01 in all experiments). Otherwise, we canditht the attempt to add a
new node is unsuccessful.

After the successful addition of a new node we apply the EMatp@quations to
the whole model with)M/ + 1 components, as described in the previous section. This
procedure can be applied iteratively, in order to add a mamimumber of nodes to the
given network. Figure 3 illustrates the addition of the fivgd network nodes.

Fig. 3. Addition of the first two basis functions. The nodes of the network aré&tipwith solid
lines, and the candidate nodes with dotted lines.

2.2 Node Splitting

After the stage of adding nodes, there may be nodes of theonetwcated to re-
gions with overlapping among classes. In order to increhsegeneralization per-
formance of the network we follow the approach suggestedL?j, [and split each



node. More specifically, we compuf(j|z, k) for every patternt € X, and check

if >, ex, P(jlz, k) > 0 for more than one class. If this happens, then we remove

it from the network, and add a separate component for eads.c&o finally every
subcomponent describes only one class. Splitting a conmbgnthe resulting subcom-
ponent of class is a Gaussian probability density functiptz|7, &), with meanyy,
variance matrinJ?,~c and mixing weightr ;. These parameters are estimated according
to:

1

Hjk = ‘ (12)
! ZJCEXk P(J|I7k)
ng _ ZmeXk P(.7|Tv k)|$ - :ujk‘Q (13)
! ZmeXk P(J‘x’k)
After splitting the class conditional density is
M
plalk) =Y mup(alj k), k=1,... K (14)
j=1

Using the above equations, the components whose regiofiaéiirte contains sub-
regions with data of different classes, are split into clgsscific subcomponents. The
parameters of each subcomponent are determined by thefdla¢erespective class that
belong to the region of the component (i.e. they have higltepios value). As shown
in [12], the class conditional likelihood is increased forcéasses after performing the
above splitting process.

3 Active Learning

In the previous section we described an incremental alguritor training a PRBF
network using labeled data. In the following we incorpottiie algorithm in an active
learning method, where we iteratively select unlabeledhgsdirom an available pool
of unlabeled points and ask for their labels. After the lataek given, the new points
are added in the labeled set and the network is trained aglaeincremental training
algorithm presented in the previous section is particuladited for such a learning
task, since it can naturally handle additional informaiiothe training by adding new
nodes to the network in case this is necessary. Otherwisgttbke learning procedure
should be applied from scratch.

The crucial issue in active learning is to select the unkdb@bints that are benefi-
cial to the training of our classifier. We propose the sebectif a point that lies near the
classification boundary. In this way we facilitate the itef@addition of basis functions
on the classification boundary, as described in the prexdeason.

As a criterion of selecting a suitable point we propose thie i&f class posteriors
as estimated by the current PRBF model. Ket denote the set of unlabeled points and
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X, the set of labeled pointsX(;y U X, = X). For each unlabeled observatiore X,
we compute the class posterjk|x) for every class, and then find the two classes with
the largest posterior values:
kY = arg mﬁxp(kﬂx), kS = arg I;m(x) p(k|z). (15)
g k le

We choose to ask for the label éfthat exhibits the smallest ratio of largest class
posteriors (3):
(16)

()
Z = arg min log pi(ﬂ(l,_)‘x).
2€Xv  p(ky |z)

In this way we pick the unlabeled observation that lies alés¢he decision boundary
of the current classifier. Note that according to Bayes rwie classify observations
to the class with the maximum class posterior (3). Thus fonese on the decision
boundary holds thqt(ngm) |z) = p(fsg””) |z). Consequently if an observation approaches
the decision boundary between two classes, then the comdsyg logarithmic ratio of
class posteriors tends to zero.

Summarizing the presented methodology, we propose thanfiolyy active learning
algorithm:

1. Input: The setX, of labeled observations, the s&{; of unlabeled observations,
and a degenerate netwaFkR B F';—; with one basis function. Let alsb;, = XU
Xy whereXr the training set an’y, the validation set respectively.

2. Fors=0,...,5 -1
(a) Using training seX 7, add one node to the netwofkRBF';, s to form

PRBFjyst1.

3. Fors=0,...,5

(a) Using training seX, split the nodes oPRBF . to form PRBFjﬁ’f.

4. Select the networ® RBF;2"" in {PRBF;*",..., PRBF*'\} that achieves
highest classification accuracy on the validation’set

5. Set the current networlPRBF; = PRBFP'™.

6. If Xy is empty or a maximum number of iterations is reached teeminate else

(a) Pick a setX 4 of unlabeled observations according to (16), and for each
ask for its label;.

(b) Update the setsY;, = X1, U X4 andXy = Xy \ X 4. Add half of the points
of X 4 to the training seX'r and the other half to the validation s&t,.

(c) Goto step 2.

In all our experiments we usg = 3, and the number of unlabeled points selected at
each iteration was equal to 10 with half of them added to theitrg set and the other
half to the validation set. The labeled sét was initialized with50 randomly selected
data points equally distributed among classes.
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4 Experiments

For the experimental evaluation of our method we used tlarge Imulticlass data sets,
available from the UCI repository. The first is thatimagedataset that consists of 6435
data points with 36 continuous features and 6 classes. Tdmndés thesegmentation
set, that consists of 2310 points with 19 continuous feataral 7 classes. The third is
thewavefornset, that consists of 5000 points with 21 continuous featanel 3 classes.
In all experiments we applied our algorithm starting withrd@domly selected labeled
points, and actively selected 20 points at each iteration.

Figure 4 illustrates the generalization error as a funaticactive learning iterations.
It can be observed that in all cases the generalization demreases very rapidly in the
initial iterations after the addition of a few labeled painAfter the addition of about
500 points the error had reached a low value, and the addifionore points offers
slight improvement.
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Fig. 4. The generalization error using pool-based active PRBF learning oa thed¢ multiclass
datasets (satimage, segmentation and waveform).

5 Conclusions

We have proposed a pool-based active learning methodotwgiié Probabilistic RBF

classifier. We have exploited a recently proposed increahérgining algorithm that

sequentially adds nodes to the network. Due to the increatheature of this algorithm,

training does not start from scratch when new labeled datadded to the training set
and the method fits perfectly to the active learning framéw®do select the unlabeled
data to be added to the labeled set, we used a criterion ttiatadss the class con-
ditional densities for the unlabeled data and prefers tiposets that lie closer to the
decision boundary. Experimental results on three large di@asets indicate that the
proposed active learning method works sufficient well.
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