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Abstract. In a partially known dynamic environment, two multi-robot strategic 
searching approaches are proposed in this paper: utility greedy approach and 
game theoretic approach.  It is assumed that a-priori probabilities of the targets’ 
distributions are provided.  A one-step dynamic-programming is used to for-
malize the utility functions for both approaches, which not only depends on the 
targets’ distribution probabilities, but also on travel cost.  Extensive simulation 
results shows that the proposed approaches are more efficient and robust com-
pared to the other heuristic searching strategies, and game theoretic approach 
guaranteed better worst-case performance and be more robust to handle the en-
vironmental uncertainty.  

1   Introduction 

To be more efficient for the searching task in an Urban Search and Rescue (USAR), it 
is reasonable to assume that some partial information are available either through 
distributed sensors installed  in the area, or based on some heuristics from human 
beings in the emergency situation.  One natural way to capture the available informa-
tion is to represent it as the likelihood of the target presence in the search space.  [1] 
[2] [3] proposed different searching strategies based on the priori probabilities of the 
target distribution.  However, these strategies are applied only to a single individual 
robot.  As we know, multi-robot systems are more desirable in some scenarios, such 
as exploration, USAR, and hazardous environments, due to the robustness, stability, 
adaptability, and scalability.  
   Some researches have been conducted on the multi-robot searching.   The interac-
tion between the robots is relative simple in [4][5][6] due to the special configura-
tions.  An alternative approach that proved to be more efficient consists of discretiz-
ing time and partitioning the continuous space into a finite collection of cells.  The 
search problem is then reduced to deciding which cell to visit at each time interval.   
   For a multi-robot system, the mutual interactions between individual robots sharing 
a common workspace could be much more complex in general cases.  The game 
theory seems to be a convenient tool for modeling and solving multi-robot interaction 
problems.  In principle game theory can be applied to solve the coordination problem 
and some researches have conducted using the game theory [7], [8], [9].  A pursuit-
evasion problem as a Markov game is described in [9], which is the generalization of 
a Markov decision process to the case when the system evolution is governed by a 
transition probability function depending on two or more player’s actions.  This prob-
abilistic setting makes it possible to model the uncertainty affecting the player’s mo-
tion.   
   In this paper, we propose game-theory based searching strategy for a multi-robot 
system in a partially known dynamic searching area. The searching area is partitioned 
into different regions, where the initial probability of the target distribution in each 
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region is given. When the searching task starts, the probability for each region will be 
updated dynamically based on the new searching status. A one-step dynamic pro-
gramming is applied to formalize the utility function for each robot to reduce the 
computation time. Based on this utility function, the decision making approach and a 
non-zero-sum game theory are proposed to coordinate a team of robots for the search-
ing task.  In addition, event-based discretisized approach rather that the fixed-time 
iteration is applied to further decrease the computation complexity. Compared to 
other multi-robot searching algorithms, the proposed approaches are more efficient 
and robust than other heuristic algorithms, especially under USAR environment 
where the wireless network is tend to be unreliable.   

2   Searching Strategies 

Assume there are N robots searching for a single target in an indoor area with J dif-
ferent regions.  The initially priori probability of the target distribution is provided.   
The searching area is discretized and partitioned into a finite collection of cells.  The 
robots can only be allowed to move to the adjacent ones.  Initially, N robots start from 
the entrance of the searching area.   The team of robots can be homogeneous or het-
erogeneous in terms of their searching capabilities.   
    To make the decision making procedure to be numerical tractable, the discretiza-
tion of the searching procedure does not depend on a pre-defined fixed time interval, 
instead, it only depends on the event.  A robot is busy when it is searching inside a 
region. Otherwise, it is free.  Initially all robots are set as free. A new event happens 
when a robot enters a region or finishes searching its current region, which can trig-
ger the update of the robot state.  With this event-triggered discretization, the search-
ing time is updated at each event.  Since the robots only communicate with each other 
upon new event it can reduce the communication overhead significantly compared 
with the fixed-time-interval discretization method.  

2.1   Utility Function  

The utility can be defined as the searching payoff value by selecting which region to 
search on the next discrete time.  For a multi-robot system, to improve the collective 
searching efficiency, the utility value of each robot does not only depend on its own 
payoff value, but also on other robots’ decisions.   

Obviously, the utility associated with each robot depends on the probability of the 
target at each region. The higher the probability, the higher the utility value should 
be.  When the searching task starts, the probabilities of all regions are updated dy-
namically based on the current searching results.    For example, if one robot finishes 
searching in region 1 without detecting the target, then the initial probability of the 
target in region 1 is evenly distributed by all of unsearched regions on next discrete 
time, which can be expressed in the following equation. 
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where represents the priori probability of the target in each region, J is the maxi-
mum region number and n is the current discrete time.  However, this priority-only 
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based approach may tend to achieve the highest priority irrespective of the difficulty 
of that goal.    Therefore, we add the travel cost to the utility calculations.     
   The set of decisions made by the robot from 1 to N is denoted 
by .  The set of probabilities of the target from region 1 to region 
J is denoted by , where represents the priori probability of the 
target in each region, and i represents the region number.  To obtain the optimal solu-
tion, a Dynamic Programming Equation (DPE) is applied to define the utility function 
for robot n as follows.   
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where  is the utility function of robot n,  represent the decisions 
made by robot 1 to  robot N. represents the probability of target detection in 

region  by robot n.   represents the payoff gain of robot n 

searching the region , which is defined as follows: 

nU Nddd ,...,, 21

ndp

nd ),,,(
nnn dnddpg TTD

nd

),,,(
nnn dnddpg TTD =

nn

n

dnd

d

TkTk
p

21 +
,                                (3)                                      

where and represent the time required for robot n to navigate from its current 

position to region , and the time required for a robot to cover region , respec-
tively.  and  are scale factors which can be adjusted based on different envi-

ronmental structures.  
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pected utility of robot n by selecting different for the rest of the unsearched re-
gions after finishing the region with the assumption that other robots keep their 
current decision during this recursive procedure.  
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     In general, the utility is zero if the probability of target detection in region is 
zero.  If the probability of the target detection in region  is 1, which means this is 
the last room need to be searched. In this case, the utility function is only related to 
the payoff value by searching region . Otherwise, the utility is a recursive function 
defined in (2).  The dynamic programming is intractable for large-scale region num-
bers.  To reduce the computational time, one-step dynamic programming solution is 
applied in Equation (2).  The average expected teammate contribution is computed as 
the contribution that the teammate would make from its current pose. This approxi-
mation is reasonable when each step is relatively small. 
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     Considering the situation that several robots may choose the same region simulta-
neously based on their own utility functions, which may decrease the overall search-
ing performance. We define a factor  as follows: )(Dh
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where  is the travel time for robot n from its current position to the selected region 
i,  is the total travel time for robot m (m can be multiple robots from 1 to N, 
except n) from their current positions to region i.  The definition of  actually 
embeds the coordination between the multiple robots by cutting down the utility 
value, eventually it helps to prevent multiple robots picking up the same region simul-
taneously and improves the overall searching efficiency.   
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2.2   Searching Strategies 

Utility greedy (UG) approach is to select the next searching region with the highest 
utility value calculated by (2).  If more than one region has the same highest utility 
values, the robot will randomly pick one from them.  For the game-theory based (GT) 
approach, it is modeled as a multi-player cooperative non-zero-sum game since the 
coordination is embedded into the utility function through (4).  The players choose 
their strategies simultaneously at the beginning of the game.  Although the overall 
process of the searching is dynamic, we can treat it as a sequence of static game at 
each discrete time.   
    According to the current positions of robots, obstacles, and the probability of the 
target in each region, the utility matrix is calculated.  Then the Nash Equilibrium (NE 
) is applied for this nonzero-sum game.   When no pure Nash equilibrium strategy 
exits, a max-min method is applied to calculate the mixed-strategy equilibrium.  
Let denotes the probability of robot n choosing region j, and 

, we have .     
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    Utility matrix is a N-dimensional matrix for N robots, where there are J (region 
number) units at each dimension, and each cell of the matrix consists of N utility 
values for each robot at the corresponding position. can be estimated by solving 

the above linear equation, which can be simplified as 
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Since the game is a finite strategic-form game, the existence of the mixed-strategy 
equilibrium can be guaranteed.  The region with the highest probability is chosen for 
the next step. 

3   Simulation Results 

To evaluate the performance of the proposed game strategic searching approaches, 
the simulations with two robots using MATLAB have been conducted.  The search-
ing area is sketched as a square of 100 x 100 cells with multiple regions distributed. It 
is assumed that each robot takes 1 time unit to traverse one cell in the simulation.  
The searching time is calculated by the time units from the starting time till the target 
is found.   
   Two heuristic searching strategies are proposed for comparison. First one is called 
randomly selection (RS) approach, where each robot randomly selects the next region 
to search from the unsearched regions.  Second one is called probability-based (PB) 
approach, where each robot only picks the region with the highest probability at any 
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discrete time as its next objective region.  If more than one region has the same high-
est probability, the robot randomly picks one from them.  

First set of simulation is conducted, where 1000 runs for all four approaches are 
implemented.  The simulation results of mean value and the corresponding variance 
of searching times are shown in Fig. 1. It is obviously that the searching time of the 
UG and GT approaches are much less than that of the PB approach since the travel 
and searching time was ignored in the latter case, and the RS has the worst perform-
ance.  
   The performance of GT and UG approach are competitive, which is mainly depends 
how the game theory is applied in the simulation. When both robots are free, the 
utility matrix is calculated and their searching decisions are computed based on the 
game strategy.  However, if one robot is busy and the other one is free, the free robot 
will make its decision only based on the utility value instead of starting a new game.  
The motivation for this simplified procedure is to reduce the computational time.   In 
addition, since the other robot is busy in searching a region, it would make more 
sense to let it finish its current searching instead of reselecting the searching region 
again due to the new status.  If the second case happens very often, then the overall 
performance of game strategy tends to close to that of the utility greedy. 
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Fig. 1. Searching time (mean and variance) with different configurations. 

In the real world, the prior probability of the target distribution is not accurate.    To 
explore the system robustness to the prior probability variations, another 1000 runs of 
simulations are conducted for each strategy, where the target is distributed in the 
searching regions with the variations of the priori probability from 10% to 50%.   The 
simulation results in the configuration of 10-room are shown in Fig. 2.  As can be 
seen, the PB approach is very sensitive to the probability variation since the probabil-
ity is the only criteria for the robot to make searching decisions. It makes sense that 
the probability variation has no effect on the RS approach at all.  The GT and UG 
approach are much more robust than the PB approach, where the GT beats UG in 
both mean searching time and variance.  This indicates that the GT is more robust to 
handle environmental uncertainty compared to UG, although we have to pay the pen-
alty of more computational time for GT. 
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Fig. 2. Searching time (mean and variance) with different variations in probability of target 
distribution with a 10-room configuration. 
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5   Conclusions 

Utility greedy and game-theory based strategic searching approaches are proposed in 
this paper for a cooperative multi-robot searching task.    Comparing to other heuristic 
searching strategies, the simulation results demonstrated that the proposed two ap-
proaches are more efficient and robust.  In addition,  the game theory has guaranteed 
better worst-case performance and be more robust to handle the environmental uncer-
tainty.  Another advantage of using game theory based approach is that the explicit 
communication between the robots can be reduced significantly due to their mutual 
rationality.  Therefore, it can be applied to some emergency scenarios, such as USAR, 
where the RF communication tends to attenuate or even broken.  
   Our preliminary simulation only contains two homogeneous robots and one target 
in the searching task. The proposed algorithm can easily be extended to the heteroge-
neous robots with different moving speeds and local sensing capabilities by setting up 
different travel and covering time for each robot. Our future research will focus on 
multi-target searching by a large scale robot ream. 
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