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Abstract: This paper focus on the problem of how to measure in a reproducible way the localization precision of a 
mobile robot. In particular localization algorithms that match the classic prediction-correction model are 
considered. We propose a performance metric based on the formalization of the error sources that affect the 
pose estimation error. Performance results of a localization algorithm for a real mobile robot are presented. 
This metric fulfils at the same time the following properties: 1) to effectively measure the estimation error 
of a pose estimation algorithm, 2) to be reproducible, 3) to clearly separate the contribution of the correction 
part from the prediction part of the algorithm, and 4) to make easy the algorithm performance analysis 
respect to the great number of influencing factors. The proposed metric allows the validation and evaluation 
of a localization algorithm in a systematic and standard way, reducing workload and design time. 

1 INTRODUCTION 

Experimentation in Autonomous Mobile Robots 
(AMR) research is not an obvious task. This type of 
robots are complex systems. They incorporate a 
great number of interrelated hardware and software 
subsystems. Their navigation environment  must be 
specifically modelled and their components must 
operate in real time. Finally, any research 
contribution about autonomous behaviours in real 
environments requires a considerable effort in both 
theoretical and experimental works. 

Performance evaluation for such complex 
systems is likewise a complex task. Experiments 
must be controlled and reproducible, but it is not 
easy to repeat the experiments of another research 
group because of the high number of involved 
variables. There exist an important need to establish 
general frameworks of performance evaluation, in 
the context of intelligent systems (Meystel et al, 
2003) and more specifically about AMRs (Dillman, 
2004). The work of (Hanks et al, 1993) goes ahead 
and remarks the need of benchmarks that not only 
provide performance comparisons, but that also  
support the scientific progress by helping to analyze 

why the system behaves the way it does. 
Furthermore, the development of this area will be a 
requirement for AMR systems to reach the consumer 
market. 

A main feature for robot autonomy is the self-
localization capability. The robot must estimate by 
itself its pose (position and orientation) respect to a 
reference system, with enough precision to achieve 
the commended tasks. The particular problem we 
focus is how to measure in a reproducible way the 
precision of the pose estimations produced by the 
robot. The solution of this problem will allow the 
validation and performance evaluation of a 
localization algorithm in a systematic and standard 
way, reducing design time and workload. 

Our hypothesis is that it is possible to perform 
systematic and reproducible measurements of the 
pose estimation error in real navigation conditions. 
Although there are a great number of influencing 
factors, we believe that they can be enumerated and 
modelled. In section 2 we formalize the pose 
estimation process, In section 3, a reproducible 
performance metric for robot localization is 
proposed. Experimental results are presented and 
discussed in section 4, followed by the main 
conclusions in section 5.  
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2 THE PREDICTION-
CORRECTION MODEL 

Most solutions to AMR pose estimation follow the 
classic prediction-correction (or predict-update) 
closed loop state estimator model presented in 
Figure 1.  According to (Thrun, 2002), virtually all 
state of the art robotic mapping algorithms are 
probabilistic, and the single dominating scheme for 

state estimation is the Bayes filter, a recursive 
estimator that matches the prediction-correction 
model. A particular bayesian filter of common use in 
AMR localization is the Kalman Filter (Welch and 
Bishop, 2004). But other non-probabilistic solutions 
also follow this model, for example the possibilistic 
approach of (Bloch and Saffioti, 2002). This 
widespread and simple scheme estimates the robot’s 
pose in two steps: prediction and correction. The 
prediction is achieved by an algorithm (AP in 
advance) that implements the process model: 
                           ),ˆ(ˆ 1 kkk uxAx =+

−                       (2-1) 
where kx̂  is the estimation of the robot’s state at step 
k, ku is the control action that was ordered at step k 
to reach the step k+1, A is the process model, and 

1ˆ +
−

kx  is the a priori estimation of the robot’s state at 
step k+1. kx̂  must contain the robot’s pose, that is 
habitually in the form of a vector composed by two 
cartesian position coordinates and one orientation 
coordinate respect to a reference system external to 
the robot. In an AMR system the process model A 
often represents a fine tuned dead-reckoning model 
for the actual motor robot platform. It includes 
physical wheels dimensions, odometers resolution,  
models of the motor control algorithms, etc.  

  If the pose is estimated in open loop using only 
the AP, the estimation error in 1ˆ +

−
kx  increase 

monotonically along the trajectory and the robot will 
be lost or will collide. The classic solution to this 
problem is using exteroceptive sensors like sonar, 
laser, CCD cameras, etc. to capture some actual 
perception zk of the surrounding objects and 
comparing it against a map of the environment. Here 
begins the algorithm of the correction phase (in 
advance, AC), that fuses the a priori estimation with 

the information that comes from kz  to obtain the 
posterior state estimation kx̂ . The correction 
estimator function E is expressed as: 

               ))ˆ(,,ˆ(ˆ kkkk xHzxEx −−=                  (2-2) 
where H(xi) models the robot’s perception at a 

particular state xi. It must include the sensor model 
and the measurement model involved in the capture 
of kz .The estimator E must correct the a priori 
estimation by comparing the actual perception kz  

with H( kx−ˆ ), the expected perception at kx−ˆ . Every 
variable in this loop has an associated uncertainty, 
that have not been represented in the previous 
equations for simplicity. E may use the uncertainties 
of kx−ˆ , kz  and the uncertainty derived from the 

comparison of kz  with H( kx−ˆ ) to perform the states 
fusion. 

2.1 Estimation Error Evaluation 

The AP-AC tandem conforms an algorithm for the 
estimation of the robot’s pose (in advance, AEP). Its  
performance is typically evaluated by the error of 
the estimated pose (in advance, EEP) respect to the 
real pose. The particular operators that compute the 
EEP will be presented in the next section.  

Note that the EEP may be applied to both kx−ˆ  
and kx̂  estimations. The AC is responsible of the 
final estimation and, apparently, is the key of the 
process, but, how much effective is the AC respect 
to the AP? Suppose a robot with good quality 
odometers an a fine tuned AP (easy to build 
nowadays), precise enough to keep kx−ˆ  below the 
application location error requirements along several 
meters of trajectory. In most cases the AC will be 
just copying kx−ˆ  to kx̂ , but having to compute the 
code from H and E functions. A common situation is 
to find that AC (world model, sensor model, etc) 
complexity is much greater than the one of the AP. It 
is worth in such cases to spend a great deal of 
computation in the AC? How the computational load 
between the AP and the AC can be balanced without 
degrading the AEP performance? We propose to 
analyze the posterior estimation error relative to the 
a priori error as one of the key elements that may 
help to explain the performance of an AEP in terms 
of its internal components. This approach is one step 
ahead from the obtaining of a simple performance 
metric punctuation, in the sense of the (Hanks et al, 
1993) reference in section 1, and is the main part of 
the performance metric presented in section 3. 

Figure 1: The generic prediction-correction model. 
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Nowadays, there is no a widely accepted 
performance metric for measuring in a reproducible 
way the localization precision of  a mobile robot. 
Furthermore, there are few published works that 
propose performance metrics for robot localization. 
In (O’Sullivan et al, 2004) an interesting 
performance metric for map building is presented. 
Although the pose estimation is intimately involved 
in the map building task, this metric does not 
separate the performance of the pose estimation 
from the world modelling algorithms. (Gat, 1995) 
emphasizes on the experiments reproducibility and 
propose a performance metric for AMRs that 
measures the traversed distance and elapsed time to 
reach a goal. Here again the pose estimation 
performance is enclosed with another robot’s 
subsystems. In the general robot localization 
literature, a very common way to evaluate the EEP 
is to measure quantitatively the position and 
orientation error, see for example (Lee and Song, 
2004) and (Clerentin et al, 2005). Other works do 
not measure quantitatively the EEP, as (Sagüés and 
Guerrero, 2005) which controls the EEP by making 
the robot to stop periodically in a checkpoint marked 
on the  floor and counting the times it does inside the 
marks. Some works, such as (Porta et al, 2005), 
report in detail the experiments conditions. Others, 
like (Castellanos et al, 2001), also report the 
statistical significance of the obtained EEP 
distributions. But only few works as (Fox et al, 
1999), (Gutmann and Fox, 2002) and (Di Marco et 
al, 2004) present experimental results with enough 
quality and detail to match the requirements of a 
performance metric. Experiments conditions are also 
reported as exhaustively to be reproduced. In such 
cases, the pose estimation error is reported as a 
whole, without analysing the AC contribution to the 
final EEP, as exposed as follows. 

3 PERFORMANCE METRIC 

We propose a performance metric for benchmarking 
the correction algorithm AC based on formalizing 
the error sources to prevent hidden factors that could 
falsify the obtained EEP. The metric is composed by 
the following steps: 

1. Experiments framework report 
2. Run conditions report 
3. Analysis of the absolute estimation error 
4. Analysis of the estimation error relative to the 

a priori error 
Steps 1 and 2 are a collection of  requirements to 

describe the navigation experiments (runs) with 

enough detail to be reproducible. Steps 3 and 4 are 
the metric itself. The term “run” is used here as a 
controlled experiment in which the robot travels 
along a monitorized trajectory. The AEP developer 
should decide the rooms and trajectories depending 
on his/her research objectives. During every run, the 
trajectory’s real poses xi should be sampled with 
enough frequency to obtain representative statistical 
distributions. This sampling should be done using 
measurement instruments external to the robot and 
its precision, the ground truth of the experiment, 
should be at least twice the AEP’s expected 
precision. The robot should record the a priori and 
posterior estimations produced for each sampled real 
pose. In consequence for every run i three traces of 
poses should be obtained: 

}ˆ...ˆ,ˆ{

}ˆ...ˆ,ˆ{
}...,{

21

21

21

Nii

Nii

Nii

xxxPEprio

xxxPEpost
xxxRP

−−−=

=
=

              (3-1) 

where RPi, PEposti, and PEprioi are the traces of 
real poses, posterior pose estimations and a priori 
pose estimations from the run i, respectively. Ni is 
the number of sampled real poses in the run i, and i 
= 1..R, being R the number of runs. Metric 
components are explained in the following sections. 

3.1 Experiments Framework Report 

In order to document the EEP factors with sufficient 
detail, the AEP developer should first describe the 
general experiments framework, common to every 
run. It should be reported the general objectives of 
the particular AEP development, the type of AMR 
(general or specific purpose, etc), the type of 
navigation environment (indoor, outdoor, office, 
domestic, industrial, etc.), and how these aspects 
condition the run selection. 

The AC should be documented in terms of the 
description of the E and H functions and their 
uncertainty models. Additionally, it should be 
reported as exhaustively as possible the frequency of 
the AC estimations: respect to the AP estimation 
frequency, to the absolute time, to the robot travelled 
distance, etc. The procedure and frequency of real 
poses measurement, and its ground truth should also 
be reported. In the case of simulated runs, it should 
be described the simulator internal models. 

3.2 Run Conditions Report  

This report must contain the experiment features that 
may change between runs. For each run, the place 
where it has been performed should be described. At 
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least the walls and obstacles topology, their material 
properties and the ambient conditions should be 
presented. It should also be described any other 
factor that may affect the capture of the robot 
exteroceptive sensors. Additionally, the run 
trajectory should be included, at least the RPi, 
PEposti, and PEprioi traces and (i = 1..R). A 
graphical 2D floor projection is a conventional way 
to present the trajectories. The criteria for 
trajectories generation should be reported.  

It should be justified why each run is 
representative of real trajectories and how the 
statistical parameters derived from it are valid, in 
terms of sufficient number of  samples, use of 
random or controlled trajectories, etc. The eventual 
environment changes during the run should be 
quantified, to describe the degree in which the run 
represents dynamic environments, for example, 
number of perceptible people during the run, etc. 

3.3 Analysis of the Absolute 
Estimation Error 

The objective of this analysis is the absolute AEP’s 
performance in terms of position and orientation 
errors of the captured posterior estimations PEposti. 
Lets first define the EEP as a set of a position error 
EEPXY and an orientation error EEPT:  

),ˆ()ˆ(
),ˆ()ˆ(

iiTiT

iiXYiXY

xxdxEEP
xxdxEEP

=
=

                (3-2) 

where xi is the real pose measured under 
controlled conditions when the robot produced the 
estimation ix̂ , dXY is the euclidean distance between 
positions over the plane of the floor, and dT is the 
absolute orientations angle difference (euclidean 
distance over the orientation dimension). We chose 
euclidean distances because they are intuitive and of 
common use. For example, the requirements of an 
AEP development project can be expressed as “The 
95% of the EEP should be under 20cm, 5º.” 

Distributions of the posterior EEPXY and EEPT for 
the run i (i = 1..R) are defined as: 

}ˆ/)ˆ({
}ˆ/)ˆ({

ijjTi

ijjXYi

PEpostxxEEPEEPpostT
PEpostxxEEPEEPpostXY

∈=

∈=
 (3-3) 

The data of interest are the R bidimensional 
distributions EEPpostXYi vs. EEPpostTi. The 
distributions should be analysed in terms of the 
following parameters: 

- Ground truth limits: Every distribution point 
should be above the ground truth. 

- Relevant percentiles: 100%, 95%, 90%, etc. 
They allow runs comparisons in terms of 
position and orientation precision. 

- (If available) The theoretical limit of the 
optimal AEP performance. It lets to analyze 
what percentage of estimations are optimal. 

Observed differences between run distributions 
should be explained in terms of the run conditions 
factors presented in the previous section. If the 
differences are well explained and the runs are 
representative of the robot’s target navigation 
environment, the union of all distributions may be 
analyzed as a single bidimensional distribution to 
represent the global AEP performance metric. 

3.4 Analysis of the Estimation Error 
Relative to the a Priori Error 

This analysis focus on the AC performance. The 
objective is to measure the AC capability to 
effectively reduce the EEP, independently from the 
AP efficiency. The distributions of the a priori 
EEPXY and EEPT for the run i (i = 1.. R) are defined 
as: 

}ˆ/)ˆ({
}ˆ/)ˆ({

ijjTi

ijjXYi

PEprioxxEEPEEPprioT
PEprioxxEEPEEPprioXY

∈=

∈=
 (3-4) 

The data to be analyzed are the R bidimensional 
distributions EEPpostXYi vs. EEPprioXYi (EEPXY 
analysis) and the R bidimensional distributions 
EEPpostTi vs. EEPprioTi (EEPT analysis). Both data 
sets will be analyzed in the following way:  1) For 
every run, Quantify in a factor CXY the percentage of 
estimations jx̂  that improve the EEPXY: 

)ˆ()ˆ( jXYjXY xEEPxEEP −≤                (3-5) 
2) Quantify in a factor CT the same percentage for  

EEPT : 
)ˆ()ˆ( jTjT xEEPxEEP −≤                   (3-6) 

3) Quantify in a factor CXYT the same percentage 
that holds (3-5) and (3-6) at the same time.  

CXY, CT and CXYT factors represent the AC 
capability to really correct the EEP under the 
navigation conditions of the runs set.  

In the same way as the previous analysis, the 
differences between run distributions should be 
explained in terms of the run conditions factors. If 
the differences are well explained and the runs are 
representative of the robot’s target navigation 
environment, the union of all distributions may be 
analyzed as a single bidimensional distribution to 
represent the global AC performance metric. 
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The analysis may be extended by the addition of 
other elements, like the injection of noise to kx−ˆ  to 
increase the dynamic range of the a priori EEP. This 
range may be interpreted as the degradation level of 
the error sources that affect the AP. We can study 
the portion of any posterior EEP distribution in a 
particular interval of the a priori EEP range, and 
quantify how the posterior EEP distribution will be 
consequently affected. Additionally, the degradation 
of error sources that affect the another AC input, the 
zk perception, may be represented by designing 
various run experiments with different levels of 
perception noise. 

4 EXPERIMENTAL RESULTS 

The proposed performance metric has been applied 
to a particular AEP developed by the authors. The 
four metric steps are presented in next sections. 

4.1 Experiments Framework Report 

The target AEP is being developed in the frame of a 
research project which main objective is the design 
robotic platforms and tools for helping the AMR 
research groups. The aim of this AEP development 
is to implement a simple self-localization module 
that validate the robot  subsystems by showing 
autonomous navigation in indoor office 
environments.  

The robotic platform used is Sancho-2 (see 
Figure 2), a mobile robot completely designed and 
built by the authors for research purposes. Its 

dimensions are 50cm wide, 50cm long and 50cm 
high, that contains the hardware of the motors and 
sensors control subsystems. High level software 
components are implemented in a laptop PC that is 
placed on the upper tray and connected by a serial 

cable. The wheels have a tricycle structure, with two 
motorized wheels and one castor wheel. The 
resolution of the odometric sensors is 1.2cm. The 
environment perception are achieved by a ring of 
twelve ultrasonic sensors, whose resolution is 4cm. 

Our AEP is an appearance-based approach and 
works as follows: Once the AP has produced the a 
priori estimation kx−ˆ , a complete sonar capture is 
fired.  It produces a 12 echoes vector (zk) that may 
be interpreted as a point in a 12 dimensions vectorial 
space. The AC correction estimator E is expressed 
as: 

              ))(,((ˆ 1
LPknnk GHzfHx −=               (4-1) 

The expected perception is modelled as a points 
cloud in the perception space by the following way: 
A grid GLP of local poses xi is generated around the a 
priori pose estimation kx−ˆ , and for each of them its 
expected perception H( ix ) is computed. The 
parameters of GLP are the position and orientation 
grid steps, sXY = 10cm and sT = 10º, and the grid radii 
from its centre, 40cm, 40º. These values determine 
the theoretical maximum EEP that our AC can 
correct. 

The H function models the robot environment as 
a previously given map where the walls and 
obstacles are represented by a set of 2D line 
segments. The function returns, for each particular 
ultrasonic sensor pose, the distance to the nearest 
line segment inside a sensor cone with an aperture 
angle of 30º. It does not calculate any kind of sonar 
rebounds or outliers. This model is also used to 
emulate the robot’s perception in the simulation 
tests. 

The actual perception zk is matched against the 
expected perception cloud using the fnn function that 
computes the nearest neighbour with the euclidean 
distance. The posterior estimation kx̂ is obtained by 
the H-1 function, by the identification of the grid 
pose that produced the nearest perception. 

As GLP is a discrete regular grid, the optimal 
estimation respect to the EEPXY or EEPT metric is 
obtained when the posterior estimation kx̂  is also the 
nearest neighbour in the positions plane or 
orientations axis, respectively. To formalize this 
concept we define  the maximum reachable 
precisions MPAxy (cm) and MPAt (º) parameters to 
be the worst EEPXY or EEPT metric values that an 
optimal estimation may obtain. It is easy to see that 
MPAxy = 0.71 sXY, and MPAt = 0.5 sT. These 
parameters will be needed in the section 4.3 and 
their values for the experiments are 7.1cm and 5º. 
The AP and AC estimation frequencies are equal 

Figure 2: The mobile robot Sancho-2. 
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and their value is 1 estimation per each 50cm 
navigated. In this project’s phase, the runs have been 
simulated. So, real pose measurement is exact and 
its frequency may be the same as the one for AC 
estimations, and the consequent ground truth is 
0.0cm and 0.0º. 

4.2 Run Conditions Report 

Figures 3, 4 and 5 show the walls topology and 
trajectories of the three runs, respectively. We have 
selected real places from our Faculty buildings with 
different areas and walls topologies to represent the 
indoor navigation environments in an typical office 
building. The navigation areas are small (2m2, R1), 
medium (13m2, R2), and big (81m2, R3), and the 
walls topologies are square (R1), open square (R2), 
and corridor (R3). Every wall segment has been 
modelled as having the same acoustic properties. 
Regarding to the ambient conditions, we have 
considered the room air temperature as a factor that 
may change the sound speed and influence the 
ultrasonic sensor precision. In our experiments this 
temperature was 25ºC. The runs do not include 
neither moving objects nor furniture changes. 

To determine the trajectories, we have adopted 
the criteria of travelling over most of the navigation 
area and preventing trajectories coincidences. In the 
corridor R3 the trajectory has been planned to 
diagonally traverse only one time the place. In the 

places R1 and R2 the trajectory draws an “8” over 
the floor, passing by the four extremes of an 
imaginary navigation rectangle. The runs produced 
18 (R1), 62 (R2) and 61 (R3) estimations, resulting 
in a total of 141 estimations. We did not increment 
the R1 estimations to prevent the distribution slant 
because this place is small and its punctuations are 
better than the other ones. 

Our AP a priori EEP distributions are upper-
bounded by the limits of 10cm and 5º. To full 
characterize the AC response, we have injected to 
the a priori estimation kx−ˆ an uniform noise 
distribution of which ranges are the theoretical limits 
of our AC, the grid radii (40cm, 40º). 

4.3 Analysis of the Absolute 
Estimation Error 

Figure 6 shows the three run distributions, under the 
described experimentation conditions, including the 
uniform noise injection to kx−ˆ . Each run distribution 
is represented with a different icon (see also Figure 

7). Vertical and horizontal lines show the MPAxy 
and MPAt limits, respectively (see section 4.1). 

Figure 4: The run R2. 
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In order to explain the runs differences, Figure 7 
reduces each run distribution to one point whose 
coordinates are the the merit factors mfxyi and mfti: 

                   
iii

iii

ttmft
xyxymfxy

σμ
σμ

+=
+=

                    (4-2) 

where μxyi and μti are the means of EEPpostXYi 
and EEPpostTi, respectively, and σxyi and σti are the 
standard deviations of EEPpostXYi and EEPpostTi, 
respectively. We explain the differences between the 
3 runs by the size and walls disposition of the place 
R1, the best result, is a small room and R3, the 
worst, is a corridor. 

Every punctuation is over the ground truth 
(0.0cm, 0.0º). The maximum errors are 34.0cm and 
7.2º that fall to 20.4cm, 5.7º at the 95% percentiles. 
The percentage of optimal estimations, i.e. inside 
both MPAxy and MPAt limits, are 53.2%. 

The AEP show better performance in orientation 
than in position estimation. If the final robot 
application may accept a small orientation error 
degradation, we could increase the sT grid parameter 
to reduce the poses number of GLP, and consequently 
reducing the computational cost of our AC. 

4.4 Analysis of the Estimation Error 
Relative to the a Priori Error 

Figure 8 compares the posterior EEPXY vs.  a priori 
EEPXY distributions. Figure 9 shows the same 
comparison in terms of the orientation error EEPT. 
The line in the figures shows the limit where the 
posterior EEP is equal to the a priori EEP. The 
correction factors of our AEP are CXY = 88%, CT = 
95% and CXYT = 84%. In future experiments we plan 
to perform runs for producing a controlled 
perception degradation. 

4.5 Discussion 

Performance metrics should measure the parameter 
of interest, the measurement precision should be 
enough and the metric process should be 

reproducible. The proposed procedure may 
effectively measure the interest parameter, the AC 
estimation error, independently from the particular 

AP to be used and other components performance, 
through the noise injection to the a priori estimation 

kx−ˆ . It has been shown that it is adequate to 
measure it in two ways: absolute and relative to the a 
priori error. It also has been shown that it is adequate 
to make this measurement in the form of a set of 
distributions instead of a single distribution or 
numeric value, because each run distribution may be 
affected by different factors from each others.  

The sufficient metric precision is justified by the 
requirement to the AEP developer to measure and 
report the ground truth of the real pose measurement 
process.  

The metric reproducibility is guaranteed by the 
high detail of the run conditions report and the runs 
separation requirement. A run may be easily 
reproduced using the report’s information. This is 
also a tool for experiment validation.  

This metric allows a great number of useful 
performance comparisons. Different run 

Figure 9: Relative orientation error distributions. 
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Figure 8: Relative position error distributions. 
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Figure 7: Absolute runs merit factor. 
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distributions may represent different run places, 
robot platforms (APs), AEPs, temperature or 
illumination conditions, trajectories in the same 
room, etc.  

5 CONCLUSION 

The proposed performance metric offers a 
contribution to the area of the mobile robotics 
performance measurement, in particular in the robot 
localization field. This metric differs from the works 
found in the literature in the fact that it fulfils at the 
same time the useful properties of 1) to effectively 
measure the estimation error of a pose estimation 
algorithm, 2) to be reproducible, 3) to clearly 
separate the contribution of the correction algorithm, 
and 4) to make easy the analysis of the algorithm 
performance  respect to the great number of 
influencing factors. 
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