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Abstract: Greatest difficulties arise in 3D environments when we have to deal with a scene with dissimilar objects 
without pose restrictions and where contacts and occlusions are allowed. This work tackles the problem of 
correspondence and alignment of surfaces in such a kind of scenes. The method presented in this paper is 
based on a new representation model called Depth Gradient Image Based on Silhouette (DGI-BS) which 
synthesizes object surface information (through depth) and object shape information (through contour). 
Recognition and pose problems are efficiently solved for all objects of the scene by using a simple matching 
algorithm in the DGI-BS space. As a result of this the scene can be virtually reconstructed. This work is part 
of a robot intelligent manipulation project. The method has been successfully tested in real experimentation 
environments using range sensors. 

1 INTRODUCTION 

1.1 Statement of the Problem in a 
Practical Environment  

The work presented in this paper is integrated in a 
robot-vision project where a robot has to carry out 
an intelligent interaction in a complex scene. The 3D 
vision system takes a single range image of the 
scene which is processed to extract information 
about the identity of the objects and their pose in the 
scene. Figure 1a) presents the real environment with 
the components that we are using in our work: the 
scene, the immobile vision sensor and the robot. In 
the worst case, the complexity of this scene includes: 
no shape-restrictions, shades, occlusion, cluttering 
and contact between objects. Figure 1b) shows a 
prototype of a scene that we have dealt with.  
An intelligent interaction (grasping, pushing, 
touching, etc) of a robot in such a scene is a complex 
task which involves several and different research 
fields: 3D image processing, computer vision and 

robotics. There are three main phases in the 
interaction: segmentation of the scene into their 
constituent parts, recognition and pose of the objects 
and robot planning/interaction. In this paper we 
specifically present an efficient recognition/pose 
solution that allows us to know the layout of the 
objects in the scene. This information is essential to 
carry out a robot interaction in the scene. Therefore 
we have integrated this work as a part of the general 
project which is being currently used in real 
applications. 
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Figure 1: a) Robot interaction in the scene. b) Example of 
complex scene. 
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1.2 Previous Work on Contour and 
Surface Based Representations  

Object recognition in complex scenes is one of the 
current problems in the computer vision area. In a 
general sense, the recognition involves identifying 
an unknown object, which is arbitrarily posed, 
among a set of objects in a database. In 3D 
environments, recognition and positioning are two 
different concepts that can be separately handled 
when complete information of the scene is available. 
Nevertheless, if only a part of the object is sensed in 
the scene, recognition and pose appear closely 
related. In others words, the object is recognized 
through the computation of the best alignment 
scene-model. 

As we know, there is a wide variety of solutions 
to recognize 3D objects. Most of them use models 
based on geometrical features of the objects and the 
solution depends on the feature matching procedure. 

Among the variety of methods are those that 
recognize 3D objects by studying sets of 2D images 
of the object from different viewpoints. Some of 
these methods rely on extracting the relevant points 
of a subset of canonical views of the object (Roh, 
2000; Rothwell, 1995). The main drawback of these 
techniques is that the detection of relevant points 
may be sensitive to noise, illumination changes and 
transformations. There are also strategies that use 
shape descriptors instead of relevant points of the 
object (Trazegnies, 2003; Xu, 2005) but most of 
them need the complete image of the object to solve 
the recognition problem. 
 Matching and alignment techniques based on 
contour representations are usually effective in 2D 
environments. Thus, different techniques based on: 
Fourier descriptors (Zahn, 1972), moment invariants 
(Bamieh, 1986), spline curves (Alferez, 1999), 
wavelets (Lee, 2000) and contour curvature 
(Mokhararian, 1997; Zabulis, 2005) can be found in 
the literature. Nevertheless, in 3D environments 
these techniques have serious limitations. The main 
restrictions are: limited object pose, viewpoint 
restrictions (usually reduced to one freedom degree) 
and occlusions not allowed. Main troubles of the 
contour based techniques occur due to the fact that 
the silhouette’s information may be insufficient and 
ambiguous. Thus, similar silhouettes might 
correspond to different objects from different 
viewpoints. Consequently, a representation based on 
the object contour may be ambiguous, especially 
when occlusion circumstances occur. As a result, the 
matching problem is usually tackled by means of 
techniques that use surface information instead of 
contour information.  

Surface matching algorithms solve the recognition 
problem using 3D sensors. In this case two different 
processes arise: surface correspondence and surface 
registration. Surface correspondence is the process 
that establishes which portions of two surfaces 
overlap. Using the surface correspondence, 
registration computes the transformation that aligns 
the two surfaces. Obviously the correspondence 
phase is the most interesting part of the algorithm. 
Recently Planitz et al. (Planitz, 2005) have published 
a survey about these techniques. Next, we will 
present a brief summary of the most important 
works that are closely related to ours. 

Chua and Jarvis code surrounding information at a 
point of the surface through a feature called Point 
Signature (Ching, 1997). Point signature encodes 
information on a 3D contour of a point P of the 
surface. The contour is obtained by intersecting the 
surface of the object with a sphere centered on P. 
The information extracted consists of distances of 
the contour to a reference plane fixed to it. So, a 
parametric curve is computed for every P and it is 
called point signature. An index table, where each 
bin contains the list of indexes whose minimum and 
maximum point signature values are common, is 
used for making correspondences. The best global 
correspondence produces the best registration.  

Johnson and Hebert (Johnson, 1999) have been 
working with polygonal and regular meshes to 
compare two objects through Spin Image concept. 
Spin image representation encodes information not 
for a contour but for a region around a point P. Two 
geometrical values (α,β) are defined for the points of 
a region and a 2D histogram is finally constructed.  

In (Yamany, 2002) a representation, that stores 
surface curvature information from certain points, 
produces images called Surface Signatures at these 
points. As a result of this, a standard Euclidean 
distance to match objects is presented. Surface 
signature representation has several points in 
common with spin image. In this case, surface 
curvature information is extracted to produce 2D 
images called surface signature where 2D 
coordinates correspond to other geometrical 
parameters related to local curvature. Geometric 
Histogram matching (Ashbrook, 1998) is a similar 
method that builds another kind of 2D geometric 
histogram. 

Zhang (Zhang, 1999) also uses 2D feature 
representation for regions. In this case a curvature-
based representation is carried out for arbitrary 
regions creating harmonic shape images. Model and 
scene representations are matched and the best local 
match is chosen. Adán et al. (Adán, 2004) present a 
new strategy for 3D objects recognition using a 
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flexible similarity measure that can be used in partial 
views. Through a new curvature feature, called Cone 
Curvature, a matching process yields a coarse 
transformation between surfaces. Campbell and 
Flynn (Campbell, 2002) suggest a new local feature 
based technique that selects and classify the highly 
curved regions of the surface. These surfaces are 
divided up into smaller segments which define a 
basic unit in the surface. The registration is 
accomplished through consistent poses for triples of 
segments. 

Cyr and Kimia (Cyr, 2004) measure the similarity 
between two views of the 3D object by a metric that 
measures the distance between their corresponding 
2D projected shapes. Liu, et al. (Xinguo, 2003) 
propose the Directional Histogram Model for objects 
that have been completely reconstructed.  
 Most methods described impose some kind of 
restriction related to 3D sensed information or the 
scene itself. The main restrictions and limitations 
are: several views are necessary (Roh, 2000; 
Rothwell, 1995), isolated object or few objects in the 
scene, shape restrictions (Yamany, 2002; Ashbrook, 
1998; Adán, 2004), points or zones of the object 
must be selected in advance (Johnson, 1999; 
Yamany, 2002; Zhang, 1999; Campbell, 2002) and 
occlusion is not allowed (Xinguo, 2003) .  
 In this paper we deal with the problem of 
correspondence and registration of surfaces by using 
a new strategy that synthesizes both surface and 
shape information in 3D scenes without restrictions. 
In other words: only a view of the scene is 
necessary, multi-occlusion is allowed, no initial 
points or regions are chosen and no shape 
restrictions are imposed. Our technique is based on a 
new 3D representation called Depth Gradient Image 
Based on Silhouette (DGI-BS). Through a simple 
DGI-BS matching algorithm, the surface 
correspondence is solved and a coarse alignment is 
yielded. 

The paper is structured as follows. DGI-BS model 
is presented throughout section 2 including the DGI-
BS representation for occlusion cases. Section 3 
presents the DGI-BS based surface correspondence 
algorithm and section 4 deals with correspondence 
verification and registration. Section 5 presents the 
main results achieved in our lab and finally 
conclusions and future work are set in section 6. 

2 DGI-BS MODEL 

2.1 Concept 

DGI-BS model is defined on the range image of the 

scene. Range image yields the 3D coordinates of the 
pixels corresponding to the intensity image of the 
scene. If the reference system is centred in the 
camera, the coordinate corresponding to the optic 
axis (usually Z axis) gives the depth information. So, 
the depth image is directly available. 

Let us suppose a scene with only one object. Let Z 
be the depth image of the object from an arbitrary 
viewpoint v and let H be the silhouette of the object 
from v. Note that the silhouette H can be marked in 
Z.  

After recording the list of pixels along the 
silhouette, we calculate (see Fig. 2 above), for every 
pixel j of H, a set of depth gradients corresponding 
to pixels that are in the 2D normal direction to Pj 
towards inside of the object. Formally 

                      (1) j
H

ij
iH ZZZ −=∇ ,

where 
tisiPPdpjHP ijj ...1·),(,,1, ===∈∀ …  (2) 

In expression (2), p is the number of pixels of the 
silhouette H, d is the Euclidean distance (in the 
depth image Z) between pixels Pj and Pi, and s is the 
distance between two samples. Note that the first 
pixel of H is selected at random. 

Once has been calculated for every point 
of H, we obtain a 

j
iHZ ,∇

pt×  matrix which represents the 
object from the viewpoint v. That is we have called 
DGI-BS representation from v. 
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Note that DGI-BS(v) is a small image where j-th  

column is the set of depth gradients for pixel Pj and 
i-th  row stores the gradients for points that are i·s 
far from contour pixels in the corresponding normal 
directions. Fig. 2 (below) shows an example of DGI-
BS using a colour code where black colour pixels 
correspond to samples that are outside the object. 
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Figure 2: Depth gradient concept (above). DGI-BS 
representation for a single view (below). 
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Figure 3: Viewpoints defined by the tessellated sphere and 
depth images synthetically generated (left). Whole BGI-
BS model (right). 

In practice a factor fmm-pixel turns into pixels. 
f

j
iHZ ,∇

mm-pixel is maintained whatever scene we work with. 
This change makes the DGI-BS representation 
invariant to camera-scene distance. 

2.2 The Whole DGI-BS Model 

The whole DGI-BS model of an object is an image 
that comprises k DGI-BS representations from k 
different viewpoints. In practice we use a 
synthesized high-resolution geometric model of the 
object to obtain the depth images. The viewpoints 
are defined by the nodes of a tessellated sphere that 
contains the model of the object. Each node N 
defines a viewpoint ON, O being the centre of the 
sphere (Fig. 3 left), from which the DGI-BS 
representation is generated. Thus, a whole DGI-BS 
model consists of an image of 
dimension . We have duplicated 
dimension p in order to carry out an efficient partial-
whole DGI-BS matching. Fig. 3 shows the whole 
DGI-BS model for one object. Note that this is a 
single image smaller than 1 mega pixel (1600x400 
pixels in this case) that synthesizes the surface 
information of the complete object. 

)*2),(( ptk ∗

2.3 DGI-BS with Occlusion 

Let us suppose that an object is occluded by others 
in a complex scene. In this case DGI-BS can be 
obtained if the silhouette corresponding to the non-

occluded part of the object is obtained in advance. 
We call this “real silhouette”. Therefore, it is 
necessary to carry out a preliminary range image 
processing consisting of two phases: segmentation 
and real silhouettes labelling. Since this paper is 
focused on present the DGI-BS and due to length 
limitations only a brief reference of these issues is 
given. More details can be found in (Merchán, 2002) 
and (Adán, 2005). 
 Segmentation means that the scene splits in a set 
of disjointed surface portions belonging to the 
several objects. Segmentation can be accomplished 
by discovering depth discontinuity and separating 
set of points 3D in the range image. We have used 
the technique of Merchán et al. (Merchán, 2002) 
which is based on establishing a set of suitable data 
exploration directions to perform a distributed 
segmentation. Since this issue is not the matter of 
this paper, from now on we will assume that the 
range and the intensity image are segmented in 
advance. 

Concerning the real silhouettes labelling, a 
generic silhouette H, corresponding to a segmented 
portion of the scene, is divided up into smaller parts 
which are classified as real or false silhouettes. To 
do that, we consider two steps: 

I. Define H as a sequence of isolated and 
connected parts. A part is isolated if all their points 
are far enough from every other contour in the image 
and connected if it is very close to another part 
belonging to another contour. In conclusion, this 
step finds the parts of the contours that are in contact 
and those that are not. 

II. Define H as a sequence of real (R) and false 
parts (F). The goal is to find which parts occlude to 
others (R) and which ones are occluded parts (F). 
The set of connected parts must be classified as real 
or false. Using Z (depth image) we compare the 
mean depths for each pair of associated connected 
parts (belonging to the contours H and H’) and we 
classify it. After comparing all connected pairs of H, 
the real silhouettes are finally obtained. See figure 4.  

After carrying out the real silhouette labelling 
process we can obtain the DGI-BS representation for 
every segmented surface of the scene. In the case of 
an occluded object, we build DGI-BS only for the 
longest real silhouette of H. In practice, one or two 
real parts (which correspond to one and two 
occlusions) are expected. Of course, cases with more 
occlusions are possible but in any case the largest 
real part must be at least 30% of H. Otherwise very 
little information of the object would be available. 

Note that in occlusions circumstances DGI-BS is 
a 'pt ×  sub-matrix of the non-occluded DGI-BS 
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version. Since a close viewpoint is available in the 
whole DGI-BS model, this property can be easily 
verified. Fig. 5 illustrates an example of this 
property. Now dimension p’<p but dimension t is 
image of the object is not complete more sampled 
points fall outside the object. That is why a few 
more number of black pixels appears in it. 

3 SURFACE CORRESPONDENCE 
THROUGH DGI-BS 

The whole DGI-BS model gives complete 
information of an object. Consider  to 
be a reference system O being the geometric 
centroid of the object, v being a viewpoint of the 
scene defined by the polar coordinates (ρ,θ,ϕ) and φ 
being the camera swing angle. When a surface 
portion Θ is segmented in a complex scene, DGI-
BS

),,,( ZYXO

Θ can be searched in the whole model of the 
object. Thus, two coordinates (kΘ, pΘ) in the whole 
DGI-BS space can be determined in this matching 
process: the best view (index k) and the best fitting 
point (index p). 
 
 
 
 
 
 

 

Figure 4: Scene C: range image processing: segmentation 
and real silhouettes labelling (R=Real and F=false 
silhouette). 

 
 

                                
Figure 5: DGI-BS representation of a non-occluded object 
(above) and DGI-BS representation of the same object 
under occlusion circumstances placed in the best matching 
position (below). 

Now we will present the sequence of steps in the 
surface correspondence algorithm. 

The segment is projected from camera viewpoint 
and the depth image ZΘ and its silhouette HΘ are 
obtained. After that, the real part of HΘ is extracted 
according to the procedure explained in section 2.3. 
If there are several real parts of the silhouette the 
longest one is chosen and the corresponding DGI-
BSΘ representation is generated. Then a scene-model 
matching in the DGI-BS space is carried out and two 

coordinates in the DGI-BS space are determined. 
For a database with n objects we have n candidate 

views, one for each object of the database, with their 
respective n associated fitting points. For every pair 
of index (k, p)m, m=1…n, a mean square 
error,  is defined for each candidate.  )(me BSDGI −

Note that the surface correspondence is based on 
both surface and contour information. Surface 
information is supplied by DGI-BS representation 
and contour information is intrinsic to the DGI-BS 
definition itself. However DGI-BS representation 
could be ambiguous, especially on flat surfaces and 
hard occlusion cases. Consequently, to make the 
surface correspondence algorithm more efficient, we 
have added extrinsic information of the silhouette. 
This information consists of the Function of Angles 
(FA). FA contains the tangent angle for every pixel 
of real part of the silhouette. This is a typical slope 
representation of a contour.  

Like , for every pair of index (k, p))(me BSDGI − m, 
m=1…n, FA matching error, , is calculated. 
Finally, by minimizing the error  the 
best surface correspondence is finally selected. On 
the other hand, a sorted list of candidates is stored 
for further purposes. Fig. 6 shows the best DGI-BS 
matching for several segments of scene C. It can be 
seen the DGI-BS of the best view (index k) and the 
DGI-BS of the segments at the fitting position 
(index p). The scene-model surface correspondences 
are shown on the right. 

)(meFA

FABSDGI eee .−=
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Figure 6: DGI-BS matching for several objects of the 
scene C. 

4 CORRESPONDENCE 
VERIFICATION THROUGH 
REGISTRATION 

Let us assume that DGI-BSM is the best candidate 
obtained in the correspondence phase. Note that 
when the DGI-BS matching problem is solved a 
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point to point correspondence is established in the 
depth images ZΘ and ZM and, consequently, the same 
point to point correspondence is maintained for the 
corresponding 3D points CΘ and CM. Thus a coarse 
transformation T* between CΘ and CM is easily 
calculated. After that we compute a refined 
transformation that definitively aligns the two 
surfaces in a common coordinate system. Thus, 
through the error yielded by a registration technique, 
we can analyse the goodness of the coarse 
transformation T* and evaluate the validity of the 
DGI-BS matching. 

We have used the well known ICP registration 
technique. ICP algorithm has been widely studied 
since the original version (Besl, 1992) and many 
researchers have proposed a multitude of variants 
throughout the 90’s (Rusinkiewicz, 2001). In this 
work, we have used the k-d tree algorithm and the 
point-to-point minimization (Horn, 1988). 

The goodness of the registration and, indirectly, 
the recognition/pose result is validated taking into 
account the value of eICP. In other words, we want to 
establish if the candidate chosen in the 
correspondence phase was right or wrong. 

In order to calculate a threshold value for eICP, an 
off-line ICP process is performed over a set of 
random viewpoints for all synthetic models of the 
database. As a result of that an eICP histogram is 
obtained and a normal distribution is fitted to it. 
Finally we define: 

 ICPeZSe ICP −=max                 (4) 
where Z is the value of the normal distribution 
corresponding to the 100 percentile (Z=3,99), SICP is 
the standard deviation and ICPe  is the mean of the 
distribution. 

After carrying out the surface correspondence and 
alignment phases for the best candidate, if 

 we consider that the surface 
correspondence has been wrong. In this case, the 
next candidate in the list is taken and a new e

maxee
ICP

>

ICP is 
computed and evaluated again (see figure 7). 

 
Model M1st
Model L2nd
Model V3rd

..

..
Model Gn-th

DGI-BS point-to-point
correspondence

3D point-to-point
correspondence

Coarse transformation → T *

ICP → T

eICP<emax

Recognition and pose  
Figure 7: Correspondence verification and registration. 

5 EXPERIMENTAL RESULTS 

We have tested our algorithm on a set of 20 scenes 
captured with a Gray Range Finder sensor which 
provides coordinates (x,y,z) of the points of the 
scene. The depth map of the scene is obtained 
through the camera and sensor calibrations. Scenes 
are composed of several objects that are posed with 
no restrictions and with the same texture (Fig. 8). 
Dimension of the scene is 30x30 cm and the sensor-
scene distance is 120 cm. Our database is made up 
of 27 objects. 
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Figure 8: Some of the scenes used in our experimentation. 

The values selected for the parameters to create 
the whole DGI-BS representation are:  
• Factor fmm-pixel =10 pixels/cm, so depth image 

dimension is about 120x120 pixels. Likewise, 
depth images of segmented objects are converted 
using the same scale factor. This means that the 
correspondence method is independent of the 
object-camera distance.  

• The whole representations have been obtained by 
using a tessellated sphere of 80 nodes ( 80=k ). 
We have also used tessellated spheres with more 
resolution (320 nodes) but the results do not 
improve meaningfully and the computational time 
increases a lot.  

• Number of sampled pixels in the 2D normal 
direction 20=t  and distance in pixels between 
samples 5=s , so the penetration inside the depth 
image is 100 pixels. 

Figure 9 illustrates the recognition/pose process of 
occluded objects in scene F. The surface portions 
obtained after the segmentation phase appears on the 
left. In this case there are three portions 1, 2 and 4 
that are occluded. Their corresponding depth images 
are shown and the real silhouettes are marked onto 
them. Below we present the result of the scene-
model matching in the DGI-BS space for the best 
candidate. The best view (index k) at the best fitting 
position (index p) can be seen for all them. Finally, 
the depth image of the associated model is shown of 
the right. On the right we show the alignment and 
the spatial position of the models in the scene. We 
can see the 3D points of the scene and the 
registration result of segments. The corresponding 
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rendered models are superimposed onto the scene.  
 

 
Figure 9: Example of surface correspondence (left) and  
alignment of occluded surfaces (right). 

Table I shows a summary of the results for all 
objects of the scenes A to H. 60,5% of the objects 
were occluded. We have included some important 
information like errors in the segmentation phase 
(‘seg. error’) and noise in the range image (‘noise’). 
A segmentation error would imply that two objects 
were labelled as one object or that an object was 
segmented in several segments. The first case 
corresponds to two surfaces that are joined and 
where there are not depth discontinuities between 
both surfaces. This is quite uncommon case but of 
course the approach would fail. The second case 
occurs in self-occlusion circumstances but the 
method works as in a single occlusion case except 
that the surface portions will be smaller than in non-
occlusions cases. In all cases the scenes were 
segmented in their constituent parts achieving 100% 
of effectiveness. On the other hand, the noise in the 
range is due to shades or highlighting regions. 
Coordinate k, which corresponds to the best 
matching view, is evaluated as right (R) or erroneous 
(E) in the column ‘view’. This is a visual evaluation 
that report us the total percentage of failures in the 
DGI-BS matching phase. In our experimentation we 
obtained 2,6 % of failures in this phase (1/38).  
The column labelled ‘candidate’ means the first 
candidate of the list that verifies max  and 
that finally is chosen as candidate. In 63,2 % of the 
cases the first candidate was the first of the list and 
the average position was 2. Finally, the last column 
gives information about the ICP algorithm itself 
showing the number of iterations in the ICP 
algorithm. In summary we can conclude that the 
approach is highly effective (97,4%). 

eeICP <

Figure 10 shows examples of pose for multi-
occluded objects (scenes E, F and H) and the 
complete reconstruction of the scenes A, B and G. 

 

Table I. 

SCENE Object Occlusion Seg. 
error Noise  View Candidate eICP 

Iterations 
ICP 

1 Yes No No R 9º 0.1108 35 
2 Yes No No R 1º 0.1187 41 
3 No No Yes R 1º 0.1237 43 
4 Yes No Yes R 1º 0.1244 18 

A 

5 Yes No No R 8º 0.0836 51 
1 No No No R 1º 0.0693 35 
2 Yes No No R 1º 0.0997 21 
3 Yes No No R 1º 0.0924 45 
4 Yes No Yes R 5º 0.1163 36 

B 

5 No No No R 1º 0.0800 35 
1 Yes No No E 2º 0.1593 79 
2 Yes No No R 2º 0.1339 18 
3 Yes No No R 6º 0.1979 30 
4 No No No R 1º 0.1393 22 

C 

5 No No Yes R 3º 0.1427 25 
1 No No Yes R 1º 0.1640 29 
2 No No No R 1º 0.1545 23 
3 Yes No No R 1º 0.1617 38 D 
4 Yes No No R 3º 0.1559 35 
1 Yes No No R 1º 0.1235 32 
2 No No No R 1º 0.1337 18 
3 No No Yes R 2º 0.1421 44 
4 Yes No No R 1º 0.1515 47 

E 

5 No No Yes R 1º 0.1145 34 
1 Yes No No R 1º 0.1328 24 
2 Yes No No R 3º 0.0090 35 
3 No No No R 1º 0.1000 53 F 
4 Yes No Yes R 1º 0.0939 45 
1 No No No R 1º 0.1154 35 
2 Yes No Yes R 1º 0.1359 12 
3 Yes No No R 1º 0.1353 28 
4 Yes No No R 1º 0.1526 11 

G 

5 No No  Yes R 1º 0.1252 39 
1 Yes No No R 3º 0.1227 67 
2 Yes No No R 2º 0.1953 46 
3 Yes No Yes R 4º 0.1676 78 
4 No No Yes R 2º 0.1381 19 

H 

5 No No No R 1º 0.1335 50  
 

 
 

Figure 10: Example of recognition and pose of multi-
occluded objects (above) and rendered representation of 
the complete scene (below). 

6 CONCLUSIONS 

This work deals with the problem of correspondence 
and registration of surfaces by using a strategy that 
synthesizes both surface and shape information in 
3D scenes with occlusions. The method provides at 
the same time recognition and pose of segments of 
the scene. This work is part of a robot intelligent 
manipulation project. 

DGI-BS (Depth Gradient Image Based on 
Silhouette) representation is a complete and discrete 
representation suitable in 3D environments. 
Moreover, DGI-BS representation can be applied to 
obtain a complete model as well as a partial model 
of an object. This property allows us to use it in 
complex scenes with multi-occlusion. 

Recognitions and pose problems are solved by 
using a simple matching algorithm in the DGI-BS 
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space that yields a coarse transformation. 
Afterwards, registration is sorted out by computing 
ICP alignment of corresponded surfaces. 
 We are currently working on the detection and 
correction of wrong correspondences. Part of these 
problems may be due to noise and errors in 3D data 
acquisition stages.  
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