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Abstract: The paper considers a specific class of wheeled mobile robots referredntobde wheeled pendulums
(MWP). Robots pertaining to this class are composed of two wheels rotating about a central body. The main
feature of the MWP pertains to the central body, which can rotate about the wheel axes. As such motion is
undesirable, the problem of tisebilization of the central body in MWP is crucial. The novelty of the work
presented here resides in the construction of a three-imbricated loop controller that delivers the full control
strategy for the robot posture and copes with parameters uncertainties. Simulations on the performance of the
controlled system are provided.

1 INTRODUCTION rahim, 1999; Astolfi, 1994; Wit and Sordalen, 1992;
Chwa, 2004; Guldner and Utkin, 1994), the control

. . techniques reported there cannot be applied to MWP
This paper introduces a three-loop robust control gjrectly,

scheme for controlling the posture of an anti-tilting
outdoor mobile robot, ATOM, moving on an inclined
plane. ATOM is composed of three rigid bodies: the
central body, a cylinder whose center of mass is offset
from its geometric center, and two spherical wheels
rotating about the central body, as shown in Fig. 1.
The system inputs are the two torques applied to the
wheels. According to its structure, ATOM pertains
to the class of Mobile Wheeled Pendulums (MWP).
Many developments in the field of MWP have been
reported recently: the US patent behind the Gin-
ger and then the Segway Human Transporter projects
(Kamen et al., 1999), JOE, a mobile inverted pendu-
lum (Grassser et al., 2002), and, more recently, Qua-
simoro, a quasiholonomic mobile robot (Salerno and Figure 1: ATOM robot.

Angeles, 2004). A feature common to MWPs, that

is not encountered in other wheeled robots, is that For example, any attempt to control the robot mo-
their central body, which constitutes the robot plat- tion in conventional input-output mode results in un-
form, can rotate about the wheels axis. This motion stable zero-dynamics, unless a friction torque is in-
must not occur, leading to a new challenging prob- troduced between the central body and the wheels—
lem for MWP which is the stabilization of the cen- such friction damps naturally the oscillation and elim-
tral body, aside the classical control problem due to inates trivially the serious issue of unstable zero-
nonholonomy. Therefore, although an intensive liter- dynamics as it has been the case in (Grassser et
ature has dealt with the control of wheeled robots in al., 2002; Salerno and Angeles, 2004). (Pathak et
the past (Campion et al., 1990; Samson and Abder-al., 2005) were the first to attempt a solution to the
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ROBUST POSTURE CONTROL OF A MOBILEWHEELED PENDULUM MOVING ON AN INCLINED PLANE

problem of the unstable zero-dynamics. This was which, combined to the sliding-mode controller of
done by introducing a two-layer controller. How- the outer loop, renders the full control scheme less
ever, such stabilization of the central body is achieved sensitive to parameters uncertainties.

only locally, i.e., for inclination angles of the central The paper is organized in sections 2—4 below. In

body near zero, as conventional linearization is em- :
ployed. Moreover, the controller proposed there lacks Section 2 we formglate the system state-space repre-
sentation. In Section 3 we construct the three-loop

robustness with respect to parameters uncertainties. A X .
Furthermore, most of the work done in the field of controller. In Section 4 we present the simulation re-

wheeled robots to date, including the references cited sults confirming the expected performance of the con-

above, considers robots moving on a horizontal plane. troller.
In the light of previous contributions, the novelty of
the work reported here is as outlined below:

1. To the best of the authors’ knowledge, this is the 2 MATHEMATICAL MODEL
first attempt to fully control the posture of a MWP-

class robot moving on an inclined plane. The spherical shape of ATOM’s wheels allows the ro-

2. The posture control is achieved simultaneously POt to recover its posture after flipping over, thus ren-
with the stabilization of the central body, except dering it anti-tilting. Moreover, the centers of mass of
that no restrictions on the central body inclina- the wheels are assumed, by design, to coincide with
tion are considered, thus rendering the control pro- the geometric centers of the spheres, while the center
posed here global, and solving the unstable zero-0f mass of the central body is offset from its geomet-
dynamics problem regardless of the central body "C center. The wheels are denoted bodies 1 and 2,
inclination. The control is accomplished by using While the central body is body 3, the symbols used
a three-loop feedback structure wit}) the inner for the robot quelmg being summarized in Table 1.
loop, based on input-output linearization, respon- The Euler-Rodrigues parametegsandr are used to
sible for the stabilization of the central body and
the control of the steering rateii) the intermedi-

ate loop, based on an intrinsic dynamic property Table 1: List of Symbols.
that is referred to as theatural behavior of the b Distance between the wheel centers
Wgem, I’eSponSib|e f0r the Contr0| Of the heading C; Position vector of the center of mass
velocity, and {i7) the outer loop, based on sliding- C; of thei™ body,i = 1,2, 3
mode control and Lyapunov functions for naviga- co Position vector of the geometric center
tion, responsible for the posture control. It is note- C, of the central body
worthy that after stabilizing the central body and d Offset between the geometric center
controlling heading and steering velocities, the sys- and the center of mass of the central
tem becomes equivalent to any car-like robot, thus body _ _
allowing the application of conventional techniques {i,j,k} | Right-handed orthogonal triad descri
for position and orientation control. Therefore, the fbmg tg_? orientation of the inertial
structure of the external loop is based on the work : lS?\ri?Secotor e T ST ag]
repqr_ted ir_1 (Guldner and Utkin, 1994), with an centers, directecgi frord to O
%?glzlr?ggllié?;%r?r:/g&em to ensure smooth entering e Mass of the central body
: Moy Mass of each wheel

3. It is shown that a special choice of the general- n Unit vector normal to the inclined
ized coordinates (Euler-Rodrigues parameters, as plane
opposed to Euler angles used in all the other ref- Tw Radius of each wheel _
erences), combined with a particular selection of To, ¥ E_uler-hRodr_lgues_ parafmheters deslcl;" d
the system output functions in the inner logjgb- —— R'.n%tt_he ggegta:ut?]n 0 rt] (la t‘r:.er;trda °r. Y
ally linearizesthe dependence between the selected | (%1 Ve} b'lg " ance tot' ogcf)t:éthlrg g escn
output variables of the inner loop and the forward v Ulgi? ve?:tg?zril ea C'tzg (f)r ont’ toOCy
acceleration of the robot. It is this feature that T Inerfia maiix of the central body
makes the approach outlined here more powerful I, Inerfia matrix of each wheel
than that of (Grassser et al., 2002; Salerno and An- Ois Angular displacement of th&" wheel
geles, 2004; Pathak et al., 2005), as it eliminates with respect to the central body
the need to apply local linearization, rendering the - Torque applied to the” wheel
techqu_Je qompletely global and nonlinear. More- w8 Angular velocity vector of the””
over, this linear dependance allows us to imple- body in Fo

ment a linear controller for the intermediate loop,
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describe the orientation of body 3 in the inertial frame and

Fo- In our previous work (Nasrallah et al., 2005), the I 0
mathematical model of ATOM moving on a general

warped surface was developed. The terrain geome-  8v» = 0 » 8o = | (2ru/0)Ja
try enters the dynamics explicitly via the vectors nor- —Je 0

mal to the ground at the contact points. Moreover, the \1oreover h is a unit vector given by

particular case corresponding to the motion on an in- '

clined plane is also included. Furthermore, in a more h=1xn

recent work (Nasrallah et al., 2006), we performed a \,pile R is the cross-product matrix (CPM)

model reduction that facilitates understanding the in- ¢ actorr. and1 is the3 x 3 identity matrix.
trinsic dynamic properties of the system. Therefore, Furthermore’ the input torques and 7, have been
we present below the state-space formulation of thetransformed inta-. andr... as follows

reduced model. P me

The six-dimensional vector of generalized coordi- T, =T1+ 72 and T, =TI — T2 (5)
natesq is defined as and
T . = — ;
a=[ e, ve, ™ 70 ] 1) Fa(ro,r,v) = Jo[-4Cawspwsi + (2/TZ)was§vc]
Fy(ro,r,v) = (Je — Jbp)(b/7w)Cp(wap™ + w31”)
while the three-dimensional vector of independent b (b/7)Cawsp?
velocities is Fu(ro,1,v) = —Ja(b/re)Co(wsp? + wai?)
T
v=[ v w3 w3 | ) —Je(b/rw)Cawsp®
) ) ) Ga(ro,r) = —2Jamcgd(ry/b)(vs x n)Tk
wh?re v. is the heading velocity of the robot, Go(ro, ) = (Jo — Jo) (2w + me)gre hTk

namely, +Jymegd ugk

T . . _ 2 _ T

Ve = £(913 + 03 + ngl) Ge(ro,r) = —Jemegd uzk — Jg(2my + me)gre h''k

2 Ca(r()a r) = mC(de2/b)hTu3 hTVS

while ws, is the robot steering rate, given by Cy(ro,r) = me(ri,d/b)hTvs
Ce(r0,1) = (Tw/b)(Icw — Iev)hTuz vy
Tw , A .
wap = ?(913 — 023) Ca(ro,r) = Ca + Ce
. . . . Io = 2(rw/b)2 Ly + Lt + mar? +mer? /4
and ws; is the projection along the line of (wheels) 5 R
: Iy = —2(rw/b) Ly + mer2, /4

centers ofvs, the angular velocity of the central body. ) .
The nine-dimensional state vector thus becomes o= Twt 4 mary, +mery, /2

- Ig= I +med?

— T T
x'=[q" v' ] ®3) Ie(ro,®) = (ro/b)*[(Teu + med®)hTvs® + I,hTus”)

and the full state-space model of the system is, in I;(ro,r) = me(rud/2)h"us
turn, Ja(ro,r) = (1/2)/(Ia — Iy + 21.)
Jy(ro,r) = Io/(IcIq — 215%)
Je(ro,v) = (Ie — If)/(IIa — 2I57)
where Ja(ro,v) = (Ia/2 = Iy)/(Lela — 215?)
v, hTi
ve b P RE CONTROL
f(x) = | (1/2)(ro1 — R)(w3pn + wgl) 3 OSTU CO O

T
—(1/2)r" (wspn + wyl) In this section we discuss posture control of ATOM
v as it moves on an inclined plane. This control objec-
while tive must be achieved simultaneously with the stabi-
lization of the central body in order to avoid unstable

x=f(x)+gp(r0,0)7p + 8m(r0,0)Tmn  (4)

g,=[0§ g }Tand gmn=|07 gl ]T zero-dynamics. The controller introduced here has a
) triple-loop feedback structure, as shown in Fig. 2. The
with task of the inner loop is to control, via the system in-
ro(Fy+ F. + Gy + Ge) puts 7, and 7,,,, two variables: 4) the steering rate
f, = (270 /0)(Fa + Ga) The CPM of a vectov € R? is defined, for every
Fy+ Gy x € R* aswell, asV = CPM(v) = 9(v x x)/0x
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wsp, and ¢s) a function of the system outputs. It is
worth noticing that this function is chosen judiciously
in order to stabilize the central body and to provide
a linear dependence with the heading acceleration
Then, the task of the intermediate loop is to control
the heading velocity,, while the task of the outer
loop is to control the robot position and orientation
via v, andws, using sliding mode control with Lya-
punov function for navigation. Note that the interme-
diate loop benefits of an intrinsic dynamical property
that is referred to as theatural behavior of the sys-
temand was introduced in a previous work (Nasrallah
et al., 2006). In the present work, we will employ that

property.

Central body

Position oscillation
& &

v Heading | ¢
velocity
Orientation control

control

Turning rate | 7,
control

celeration of the robot. Specifically, the construction

employs the additional requirement that the function

&1 be chosen to be linear with respect to the heading
acceleration of the robot. The outputs are hence pro-
posed to be

&1(x) = ujk
E(x)= & =ulk=ul(k xn) wsy, — vik wy
€3(x) = wsp
_ _ (6)
To complete the coordinate system, six more transfor-
mation functions);(x) are constructed. The distrib-

ution spanned bg, andg,, being involutive, those
distributions are constructed by requiring that:

T
(?)Z gi(x)=0, j=12 1<i<6
Consequently,
m(x) = e, na(x) = h'i
m(X) = Yo, (%) = 1"i
n(x) = vik  ns(x) = Jeve + rwdaws

Figure 2: The block diagram of the robot and its associated It is straightforward to demonstrate thét as well

control scheme.

The triple-loop controller is designed in sections 1—
6 below. In Section 1 we introduce the normal form
leading to the input-output linearization of the system.
In Section 2 we synthesize the inner-loop. In Section
3 we derive the explicit relation between the heading
acceleration and the output function of the inner loop.
In Section 4 we synthesize the intermediate loop. In
Section 5 we define the Lyapunov function for nav-
igation and the sliding surface that will be used for

posture control and synthesize the outer-loop. In Sec-
tions 6 and 7 we analyze the system stability and the

zero-dynamics.
3.1 Normal Form

The well-known notions ofector relative degree and
normal form (Sastry, 1999) are the essential tools in
input-output linearization. The normal form is dis-
played here, while omitting the intermediate calcula-
tions for the sake of brevity. These calculations are

as1;, fori = 1,...,6, do not depend on the input
torques. Indeeds, andr,, act directly oné,; and¢s,
as shown below:

£a(x) = dy + (274 /b)Joud (k x n) 7, + JvEik 7,

£3(x) = dy + (274 /D) JaTm

@

where d; and dy represent the system drift terms,
namely,

dl = ug(k X 1’1) Wwap — ng w3 — ng (Fb + Gb)
+(2ry/b)ul (k x n) (F, + G,)
= (2T1U/b)(Fa + Ga)
3.2 Inner-Loop

Let & and¢; denote the reference values fgrand

&3, respectively. Adopting a second- and first- order
system for the error dynamics gf and¢s, respec-
tively, yields:

bothyo+ki(&—&)=0
E3+ks(&—€5)=0

preceded by the determination of the dimension of the which, by virtue of eq. (7), implies:

largest linearizable subsystem, following the meth-
ods suggested in (Marino, 1986). As it turns out,

the dimension of the largest linearizable subsystem

of ATOM is four (Nasrallah et al., 2006). Therefore,

the output functions of the system, whose relative de- i
gree must not exceed four, are chosen so as to secure

the control over the oscillations of the central body as
well as the robot turning rate. The specific form of the
first output functioné; involves a thorough analysis

of the dependence of the output upon the heading ac-

_ da+ ks(§— &)
me (214 /b)J ®)
and

_di 4 (2rw/b)Jaug (k X )T + ko €2 4 k1 (61 — &)
Je V3Tk

(C)
Consequently,
Tp+ Tm

1 = 2 )

Tp — Tm

2

T9 —
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3.3 Relation between 7. and ulk

From eq. (4) the forward acceleratiopis
Ve = rw(Fb +F.+Gy+ Gc) + TdeTp

When the internal loop reaches its steady-state{i.e.,
andé; reach their associated reference valdesthe
first-order time-derivatives of;, vanishes; similarly,
wsp, andws; vanish as well, thereby leading to

F,=0, F, =0, F,=0

and

Gy

bl
J.m Ja
Thus, the acceleration in the steady-state is

Tp =

Ocss =Tw (Gb + Gc + :;dGb>

which, after simplification, becomes

V.. = dz + koulk =d3 + k& (10)
where
(2my +me)gre o
dyg = ——"7"—— 2 Y h'k
3 21, — 1Iy)
and

Megryd

kg = ————

2(Le — Iy)

Equation (10) shows the possibility of controlling the
heading velocity of the robot via the output func-
tion &, which represents the inclination of the central
body. Moreover, the linear form @f; with respect to
the heading acceleration delivegmbal stabilization

of the central body.

3.4 Intermediate-L oop

Let v} denote the reference value for the forward ve-
locity. After compensation of the driffs, the trans-
fer function of the intermediate closed loop in the
Laplace domain becomes

Ve(s) _  (ka/5)C(5)
V() 1+ (ka/s)C(s)

where C(s), the controller transfer function, has
the simple structure of a first-order system, namely,
ky/(1+ 7ys). Thus,

. d:
& >

ka
whereL ! denotes the inverse Laplace transforma-

tion.

Moreover, knowing thatul'k| is bounded by 1, the

value of &7 is to be restricted té—1,1]. However,

sincevik vanishes at the boundaries, this interval is

further restricted to [-0.99,0.99].

+L7HO(s)(VE(s) = Vel(s)] (A1)

38

3.5 Outer-Loop

Once the inner and intermediate loops are imple-
mented, the system (ATOM + two internal control
loops) is equivalent to any car-like robot, since the
platform is stabilized and the new control inputs are
ve andws,, the heading and steering velocities, re-
spectively. For the construction of the position and
orientation controller, the technique introduced in
(Guldner and Utkin, 1994) is applied. It is based on
sliding-mode control with Lyapunov function, as ap-
plied to a navigation problem and is additionally en-
hanced by a feature allowing smooth entry into the
sliding mode. The central idea is to ensure that vec-
tor h is linearly dependent with a vecter which is
defined as the gradient of the chosen Lyapunov func-
tion. When linear dependency is achieved, the sys-
tem enters the sliding mode. The foregoing linear de-
pendence condition does not require any switching,
which guarantees that the distance between the cur-
rent position of the system and the sliding surface de-
creases monotonically.

Finally, without loss of generality, the origin of the
workspace is located at the goal posture and oriented
in such a way that the line of wheel centers is paral-
lel to the one of steepest ascent and the line joining
the center of mass of the central body to its geometric
center is normal to the plane. Therefore the reference
values for the posture controller are:

Te, =0, Yo, =0 and |ulk|=1

Lets be the direction of steepest ascent of the inclined
plane, i.e.,
s=nxi

Then ther andy coordinates o€, can be written as
Ze, = Ve h”i and Yo, = Ve COS 3 h's

whereg represents the inclination of the plane.
The Lyapunov functiorV for the navigation problem
is chosen as

1’3 2
V(xco>yco) = 5 I 9 + yco:|
so thate is defined by
- T T
. — 2
€(Tc,sYe,) = —grad (V) = ‘ ] = |: fCO/ :|
L €y Ye,

Therefore, the equation of the sliding surface be-
comes

hTi
hTs

ex/|l€]
ey/ €l

where||€|| denotes the Euclidian norm ef
DifferentiatingA with respect to time leads to

A = —Di(q) wsp + D2(q) ve

A(q) = det [ } =0 (12
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where 4 SIMULATION RESULTS
Di(q) =hTi % +h's L . . : .
€ll [[€ll In this section we present the simulation results for the
and closed-loop system. The inclination of the plane is of
Te,Ye, (1742 T2 30% for all the simulations. ATOM succeeds to reach
Ds(q) = P (h i —2cosfh’s ) the origin at the desired orientation starting from dis-
Te LT tinct initial conditions. Below we display four exam-
h'ih's 2 49,2 ples:
g (oM + 2
o 1. coming from up right, Fig. 4(a)
Convergence ofA to zero within finite time can be
achieved by imposing 2o, =1, yo, =1 and uli=—v2/2
A = —¢\/|Alsign(A) with ¢ >0

. 2. coming from up left, Fig. 4(b)
leading to

* * 1 Te, = =2, Ye, =2 and uTi:_\/E/2
& =wiy = - (Dave+ CVIARen(8))  (23) 4
1 . . i\
Finally, introducing a positive scalag as an auxiliary 3. coming from down right, Fig. 4(c)
control input yields
vy = ||€l|vo sgn(hTiem) (14)

Therefore, egs. (8), (9), (11), (13), and (14) consti- 4 coming from down left, Fig. 4(d)
tute the controller as implemented in three loops. s, v =1 tnd uli= _\/5/2

3.6 Analysisof the Stability

10 | AT Yo Al = 0

Furthermore, we test the controller performance
. L . versus the parameter uncertainties. We recall here
Ts _
Equation (12) implieh"i = *e, /|[¢[|. Considering 5t the controller is composed of three-imbricated

the positive case loops. The inner loop, based on input-output lin-
i, = vehTi=v.e,/||€]| = vo €] earization, is obviously dependent of the robot para-
jo. = vecos BhTi = v, cos Bey /||€]| = vo cos Be meters. As for th_e intermediate _Ioop, the judicious
Yeo ¢ ¢ 4 0 ¢ choice of the functiorg; allowed a linear dependence
Thus, between the heading acceleration of the robot and this
. P function. Therefore, we were able to implement a lin-
V=—€ [ y: } =—c2vg — 65 cosfuvg <0 ear controllerC(s), with constant parameters. For

- _ the outer loop the choice of the sliding-mode control
The same reasoning is employed for the negative caseand the auxiliary constant inpup rendered the con-
thus ensuring system stabilization by standard Lya- troller less dependent of the system parameters. Note

punov asymptotic stability theory. that the choice of the controller parameters was not
) ) a simple task since the system itself is nonsymmet-
3.7 Analysisof the Zero-Dynamics ric, due to theup anddown motion of ATOM on the

inclined plane. Therefore, we show two simulations
The zero-dynamics of the system is calculated by de- of ATOM moving on the same inclined plane with a
termining initial conditions and inputs such that the slope of30%, except that the robot and terrain pa-
output of the system remains zero for all the time rameters seen by the controller are over- and under-
(Nasrallah et al., 2005). If the initial posture with the estimated, respectively. The error on the normal vec-
statex, is such that the line of wheel centers is par- tor to the ground is 0f0%, while the error on the
allel to the direction of steepest ascent, and the line moments of inertia of the rigid bodies composing the
joining the center of mass of the central body to its robot and the offsef between the geometric and cen-
geometric center is perpendicular to the plane, then it ter of mass are df0%. In both cases, i.e., under- and
is a simple matter to verify that the zero dynamics is over-estimation, ATOM succeeds to reach the origin
described by with the desired orientation, which can be verified by
looking to the evolution in time of the—, y—, and
z— components of’, depicted in Fig. 4(a). The time
Here, v.,, the initial heading velocity, decreases to history of the signals., ws,, and{; are displayed in
zero because of the action of the outer-loop controller, Fig. 4(b), (c), and (d), respectively. The torques ap-
which secures stable zero-dynamics. plied to the wheels in Fig.5.

M =17, and 1; =0 for i =2...6

39



ICINCO 2006 - ROBOTICS AND AUTOMATION

-
o

[

)
@

over estimation

15
<
S
3
E
7
g
8
3
2
y (m) -05 05 x(m) =
0 5 10 15 20 25 30 35 40
Time (s)
05
.
0.4 ‘\ exact param.
\ — — —over estimat.

0.3 \ — = under estimat.

v_(mis)

0 T
-0.2
i exact param
— - - over estimat
T -06 — = under estimat.
e
&
3 08
-1
-1.2
0 2 8 10
Time (s)
(©
0.4
exact param.
0.2 : ~ = = over estimat.
— — under estimat.
0 SRS N S
-0.2 . R
7 -
w /’
-0.4 ’ g
e
/( ‘
-0.6 0
v
-08
-1
0 5 10 15 20 25 30 35 40
Time (s)

(d)

Figure 4: Controller performance versus parameters uncer-
tainties: time-history of: (a) the—, y—, andz— compo-
nents ofC,; (b) ve; (C) wsp; and (d)¢; .

Figure 3: Manoeuvres performed by ATOM on the inclined
plane: reaching the origin at the desired orientation from (a)
up right; (b) up left; (c) down right; and (d) down left.
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