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Abstract: The paper considers a specific class of wheeled mobile robots referred to asmobile wheeled pendulums
(MWP). Robots pertaining to this class are composed of two wheels rotating about a central body. The main
feature of the MWP pertains to the central body, which can rotate about the wheel axes. As such motion is
undesirable, the problem of thestabilization of the central body in MWP is crucial. The novelty of the work
presented here resides in the construction of a three-imbricated loop controller that delivers the full control
strategy for the robot posture and copes with parameters uncertainties. Simulations on the performance of the
controlled system are provided.

1 INTRODUCTION

This paper introduces a three-loop robust control
scheme for controlling the posture of an anti-tilting
outdoor mobile robot, ATOM, moving on an inclined
plane. ATOM is composed of three rigid bodies: the
central body, a cylinder whose center of mass is offset
from its geometric center, and two spherical wheels
rotating about the central body, as shown in Fig. 1.
The system inputs are the two torques applied to the
wheels. According to its structure, ATOM pertains
to the class of Mobile Wheeled Pendulums (MWP).
Many developments in the field of MWP have been
reported recently: the US patent behind the Gin-
ger and then the Segway Human Transporter projects
(Kamen et al., 1999), JOE, a mobile inverted pendu-
lum (Grassser et al., 2002), and, more recently, Qua-
simoro, a quasiholonomic mobile robot (Salerno and
Angeles, 2004). A feature common to MWPs, that
is not encountered in other wheeled robots, is that
their central body, which constitutes the robot plat-
form, can rotate about the wheels axis. This motion
must not occur, leading to a new challenging prob-
lem for MWP which is the stabilization of the cen-
tral body, aside the classical control problem due to
nonholonomy. Therefore, although an intensive liter-
ature has dealt with the control of wheeled robots in
the past (Campion et al., 1990; Samson and Abder-

rahim, 1999; Astolfi, 1994; Wit and Sordalen, 1992;
Chwa, 2004; Guldner and Utkin, 1994), the control
techniques reported there cannot be applied to MWP
directly.
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Figure 1: ATOM robot.

For example, any attempt to control the robot mo-
tion in conventional input-output mode results in un-
stable zero-dynamics, unless a friction torque is in-
troduced between the central body and the wheels—
such friction damps naturally the oscillation and elim-
inates trivially the serious issue of unstable zero-
dynamics as it has been the case in (Grassser et
al., 2002; Salerno and Angeles, 2004). (Pathak et
al., 2005) were the first to attempt a solution to the
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problem of the unstable zero-dynamics. This was
done by introducing a two-layer controller. How-
ever, such stabilization of the central body is achieved
only locally, i.e., for inclination angles of the central
body near zero, as conventional linearization is em-
ployed. Moreover, the controller proposed there lacks
robustness with respect to parameters uncertainties.
Furthermore, most of the work done in the field of
wheeled robots to date, including the references cited
above, considers robots moving on a horizontal plane.
In the light of previous contributions, the novelty of
the work reported here is as outlined below:

1. To the best of the authors’ knowledge, this is the
first attempt to fully control the posture of a MWP-
class robot moving on an inclined plane.

2. The posture control is achieved simultaneously
with the stabilization of the central body, except
that no restrictions on the central body inclina-
tion are considered, thus rendering the control pro-
posed here global, and solving the unstable zero-
dynamics problem regardless of the central body
inclination. The control is accomplished by using
a three-loop feedback structure with (i) the inner
loop, based on input-output linearization, respon-
sible for the stabilization of the central body and
the control of the steering rate, (ii) the intermedi-
ate loop, based on an intrinsic dynamic property
that is referred to as thenatural behavior of the
system, responsible for the control of the heading
velocity, and (iii) the outer loop, based on sliding-
mode control and Lyapunov functions for naviga-
tion, responsible for the posture control. It is note-
worthy that after stabilizing the central body and
controlling heading and steering velocities, the sys-
tem becomes equivalent to any car-like robot, thus
allowing the application of conventional techniques
for position and orientation control. Therefore, the
structure of the external loop is based on the work
reported in (Guldner and Utkin, 1994), with an
additional improvement to ensure smooth entering
into the sliding mode.

3. It is shown that a special choice of the general-
ized coordinates (Euler-Rodrigues parameters, as
opposed to Euler angles used in all the other ref-
erences), combined with a particular selection of
the system output functions in the inner loop,glob-
ally linearizes the dependence between the selected
output variables of the inner loop and the forward
acceleration of the robot. It is this feature that
makes the approach outlined here more powerful
than that of (Grassser et al., 2002; Salerno and An-
geles, 2004; Pathak et al., 2005), as it eliminates
the need to apply local linearization, rendering the
technique completely global and nonlinear. More-
over, this linear dependance allows us to imple-
ment a linear controller for the intermediate loop,

which, combined to the sliding-mode controller of
the outer loop, renders the full control scheme less
sensitive to parameters uncertainties.

The paper is organized in sections 2–4 below. In
Section 2 we formulate the system state-space repre-
sentation. In Section 3 we construct the three-loop
controller. In Section 4 we present the simulation re-
sults confirming the expected performance of the con-
troller.

2 MATHEMATICAL MODEL

The spherical shape of ATOM’s wheels allows the ro-
bot to recover its posture after flipping over, thus ren-
dering it anti-tilting. Moreover, the centers of mass of
the wheels are assumed, by design, to coincide with
the geometric centers of the spheres, while the center
of mass of the central body is offset from its geomet-
ric center. The wheels are denoted bodies 1 and 2,
while the central body is body 3, the symbols used
for the robot modeling being summarized in Table 1.
The Euler-Rodrigues parametersr0 andr are used to

Table 1: List of Symbols.

b Distance between the wheel centers
ci Position vector of the center of mass

Ci of theith body,i = 1, 2, 3
co Position vector of the geometric center

Co of the central body
d Offset between the geometric center

and the center of mass of the central
body

{i, j,k} Right-handed orthogonal triad descri-
bing the orientation of the inertial
frameF0

l Unit vector along the line of wheel
centers, directed fromC1 to C2

mc Mass of the central body
mw Mass of each wheel
n Unit vector normal to the inclined

plane
rw Radius of each wheel

r0, r Euler-Rodrigues parameters descri-
bing the orientation of the central body

{ui, l,vi} Right-handed orthogonal triad descri-
bing the orientation of theith body

v3 Unit vector directed fromC3 to Co

Ic Inertia matrix of the central body
Iw Inertia matrix of each wheel
θi3 Angular displacement of theith wheel

with respect to the central body
τi Torque applied to theith wheel
ωi Angular velocity vector of theith

body inF0
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describe the orientation of body 3 in the inertial frame
F0. In our previous work (Nasrallah et al., 2005), the
mathematical model of ATOM moving on a general
warped surface was developed. The terrain geome-
try enters the dynamics explicitly via the vectors nor-
mal to the ground at the contact points. Moreover, the
particular case corresponding to the motion on an in-
clined plane is also included. Furthermore, in a more
recent work (Nasrallah et al., 2006), we performed a
model reduction that facilitates understanding the in-
trinsic dynamic properties of the system. Therefore,
we present below the state-space formulation of the
reduced model.
The six-dimensional vector of generalized coordi-
natesq is defined as

q =
[

xco
yco

rT r0

]T
(1)

while the three-dimensional vector of independent
velocities is

v = [ vc ω3p ω3l ]
T (2)

where vc is the heading velocity of the robot,
namely,

vc =
rw

2
(θ̇13 + θ̇23 + 2ω3l)

while ω3p is the robot steering rate, given by

ω3p =
rw

b
(θ̇13 − θ̇23)

and ω3l is the projection along the line of (wheels)
centers ofω3, the angular velocity of the central body.
The nine-dimensional state vector thus becomes

xT =
[

qT vT
]

(3)

and the full state-space model of the system is, in
turn,

ẋ = f(x) + gp(r0, r)τp + gm(r0, r)τm (4)

where

f(x) =











vc hT i

vc hT j
(1/2)(r01 − R)(ω3pn + ω3ll)

−(1/2)rT (ω3pn + ω3ll)
fv











while

gp =
[

0T
6 gT

vp

]T
and gm =

[

0T
6 gT

vm

]T

with

fv =





rw(Fb + Fc + Gb + Gc)

(2rw/b)(Fa + Ga)

Fb + Gb





and

gvp
=





rwJd

0

−Jc



 , gvm
=





0

(2rw/b)Ja

0





Moreover,h is a unit vector given by

h = l × n

while R is the cross-product matrix (CPM)1

of vectorr, and1 is the3 × 3 identity matrix.
Furthermore the input torquesτ1 and τ2 have been
transformed intoτp andτm, as follows

τp = τ1 + τ2 and τm = τ1 − τ2 (5)

and
Fa(r0, r, v) = Ja[−4Cdω3pω3l + (2/rw)Cbω3pvc]

Fb(r0, r, v) = (Jc − Jb)(b/rw)Cb(ω3p
2 + ω3l

2)

+Jb(b/rw)Cdω3p
2

Fc(r0, r, v) = −Jd(b/rw)Cb(ω3p
2 + ω3l

2)

−Jc(b/rw)Cdω3p
2

Ga(r0, r) = −2Jamcgd(rw/b)(v3 × n)T
k

Gb(r0, r) = (Jc − Jb)(2mw + mc)grw h
T
k

+Jbmcgd u
T
3
k

Gc(r0, r) = −Jcmcgd u
T
3
k − Jd(2mw + mc)grw h

T
k

Ca(r0, r) = mc(rwd2/b)hT
u3 h

T
v3

Cb(r0, r) = mc(r
2

wd/b)hT
v3

Cc(r0, r) = (rw/b)(Icu − Icv)hT
u3 h

T
v3

Cd(r0, r) = Ca + Cc

Ia = 2(rw/b)2Iwu + Iwl + mwr2

w + mcr2

w/4

Ib = −2(rw/b)2Iwu + mcr2

w/4

Ic = Iwl + mwr2

w + mcr2

w/2

Id = Icl + mcd2

Ie(r0, r) = (rw/b)2[(Icu + mcd2)hT
v3

2
+ Icvh

T
u3

2
]

If (r0, r) = mc(rwd/2)hT
u3

Ja(r0, r) = (1/2)/(Ia − Ib + 2Ie)

Jb(r0, r) = Ic/(IcId − 2If
2)

Jc(r0, r) = (Ic − If )/(IcId − 2If
2)

Jd(r0, r) = (Id/2 − If )/(IcId − 2If
2)

3 POSTURE CONTROL

In this section we discuss posture control of ATOM
as it moves on an inclined plane. This control objec-
tive must be achieved simultaneously with the stabi-
lization of the central body in order to avoid unstable
zero-dynamics. The controller introduced here has a
triple-loop feedback structure, as shown in Fig. 2. The
task of the inner loop is to control, via the system in-
puts τp and τm, two variables: (i) the steering rate

1The CPM of a vectorv ∈ IR3 is defined, for every
x ∈ IR3 as well, asV = CPM(v) = ∂(v × x)/∂x

ICINCO 2006 - ROBOTICS AND AUTOMATION

36



ω3p, and (ii) a function of the system outputs. It is
worth noticing that this function is chosen judiciously
in order to stabilize the central body and to provide
a linear dependence with the heading accelerationv̇c.
Then, the task of the intermediate loop is to control
the heading velocityvc, while the task of the outer
loop is to control the robot position and orientation
via vc andω3p using sliding mode control with Lya-
punov function for navigation. Note that the interme-
diate loop benefits of an intrinsic dynamical property
that is referred to as thenatural behavior of the sys-
tem and was introduced in a previous work (Nasrallah
et al., 2006). In the present work, we will employ that
property.

Position
&

Orientation
control

Heading
velocity
control

Central body
oscillation

&

Turning rate
control

ATOM
v∗

c
ξ∗1

ω∗

3p

τp

τm

Figure 2: The block diagram of the robot and its associated
control scheme.

The triple-loop controller is designed in sections 1–
6 below. In Section 1 we introduce the normal form
leading to the input-output linearization of the system.
In Section 2 we synthesize the inner-loop. In Section
3 we derive the explicit relation between the heading
acceleration and the output function of the inner loop.
In Section 4 we synthesize the intermediate loop. In
Section 5 we define the Lyapunov function for nav-
igation and the sliding surface that will be used for
posture control and synthesize the outer-loop. In Sec-
tions 6 and 7 we analyze the system stability and the
zero-dynamics.

3.1 Normal Form

The well-known notions ofvector relative degree and
normal form (Sastry, 1999) are the essential tools in
input-output linearization. The normal form is dis-
played here, while omitting the intermediate calcula-
tions for the sake of brevity. These calculations are
preceded by the determination of the dimension of the
largest linearizable subsystem, following the meth-
ods suggested in (Marino, 1986). As it turns out,
the dimension of the largest linearizable subsystem
of ATOM is four (Nasrallah et al., 2006). Therefore,
the output functions of the system, whose relative de-
gree must not exceed four, are chosen so as to secure
the control over the oscillations of the central body as
well as the robot turning rate. The specific form of the
first output functionξ1 involves a thorough analysis
of the dependence of the output upon the heading ac-

celeration of the robot. Specifically, the construction
employs the additional requirement that the function
ξ1 be chosen to be linear with respect to the heading
acceleration of the robot. The outputs are hence pro-
posed to be

ξ1(x) = uT
3 k

ξ2(x) = ξ̇1 = u̇T
3 k = uT

3 (k × n) ω3p − vT
3 k ω3l

ξ3(x) = ω3p

(6)
To complete the coordinate system, six more transfor-
mation functionsηi(x) are constructed. The distrib-
ution spanned bygp andgm being involutive, those
distributions are constructed by requiring that:

∂ηi

∂x

T

gj(x) = 0, j = 1, 2, 1 ≤ i ≤ 6

Consequently,

η1(x) = xco
η4(x) = hT i

η2(x) = yco
η5(x) = lT i

η3(x) = vT
3 k η6(x) = Jcvc + rwJdω3l

It is straightforward to demonstrate thatξ̇1 as well
as η̇i, for i = 1, . . . , 6, do not depend on the input
torques. Indeed,τp andτm act directly onξ̇2 andξ̇3,
as shown below:

ξ̇2(x) = d1 + (2rw/b)Jau
T
3 (k × n) τm + Jcv

T
3 k τp

ξ̇3(x) = d2 + (2rw/b)Jaτm

(7)
where d1 and d2 represent the system drift terms,
namely,

d1 = u̇T
3 (k × n) ω3p − v̇T

3 k ω3l − vT
3 k (Fb + Gb)

+(2rw/b)uT
3 (k × n) (Fa + Ga)

d2 = (2rw/b)(Fa + Ga)

3.2 Inner-Loop

Let ξ∗1 andξ∗3 denote the reference values forξ1 and
ξ3, respectively. Adopting a second- and first- order
system for the error dynamics ofξ1 andξ3, respec-
tively, yields:

ξ̇2 + k2 ξ2 + k1(ξ1 − ξ∗1) = 0

ξ̇3 + k3(ξ3 − ξ∗3) = 0

which, by virtue of eq. (7), implies:

τm = −d2 + k3(ξ3 − ξ∗3)

(2rw/b)Ja
(8)

and

τp = −

d1 + (2rw/b)Jau
T
3

(k × n)τm + k2 ξ2 + k1(ξ1 − ξ∗

1
)

Jc vT
3
k

(9)

Consequently,

τ1 =
τp + τm

2
, τ2 =

τp − τm

2
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3.3 Relation between v̇c and u
T
3 k

From eq. (4) the forward accelerationv̇c is

v̇c = rw(Fb + Fc + Gb + Gc) + rwJdτp

When the internal loop reaches its steady-state, i.e.,ξ1

andξ3 reach their associated reference values,ξ2, the
first-order time-derivatives ofξ1, vanishes; similarly,
ω3p andω3l vanish as well, thereby leading to

Fa = 0, Fb = 0, Fc = 0

and

τp =
Gb

Jc
, τm = −Ga

Ja

Thus, the acceleration in the steady-state is

v̇css
= rw

(

Gb + Gc +
Jd

Jc
Gb

)

which, after simplification, becomes

v̇css
= d3 + ka uT

3 k = d3 + ka ξ1 (10)

where

d3 = − (2mw + mc)gr2
w

2(Ic − If )
hT k

and

ka =
mcgrwd

2(Ic − If )

Equation (10) shows the possibility of controlling the
heading velocity of the robot via the output func-
tion ξ1, which represents the inclination of the central
body. Moreover, the linear form ofξ1 with respect to
the heading acceleration deliversglobal stabilization
of the central body.

3.4 Intermediate-Loop

Let v∗

c denote the reference value for the forward ve-
locity. After compensation of the driftd3, the trans-
fer function of the intermediate closed loop in the
Laplace domain becomes

Vc(s)

V ∗

c (s)
=

(ka/s)C(s)

1 + (ka/s)C(s)

where C(s), the controller transfer function, has
the simple structure of a first-order system, namely,
kv/(1 + τvs). Thus,

ξ∗1 = −d3

ka
+ L−1[C(s)(V ∗

c (s) − Vc(s))] (11)

whereL−1 denotes the inverse Laplace transforma-
tion.
Moreover, knowing that|uT

3 k| is bounded by 1, the
value of ξ∗1 is to be restricted to[−1, 1]. However,
sincevT

3 k vanishes at the boundaries, this interval is
further restricted to [-0.99,0.99].

3.5 Outer-Loop

Once the inner and intermediate loops are imple-
mented, the system (ATOM + two internal control
loops) is equivalent to any car-like robot, since the
platform is stabilized and the new control inputs are
vc and ω3p, the heading and steering velocities, re-
spectively. For the construction of the position and
orientation controller, the technique introduced in
(Guldner and Utkin, 1994) is applied. It is based on
sliding-mode control with Lyapunov function, as ap-
plied to a navigation problem and is additionally en-
hanced by a feature allowing smooth entry into the
sliding mode. The central idea is to ensure that vec-
tor h is linearly dependent with a vectorǫ, which is
defined as the gradient of the chosen Lyapunov func-
tion. When linear dependency is achieved, the sys-
tem enters the sliding mode. The foregoing linear de-
pendence condition does not require any switching,
which guarantees that the distance between the cur-
rent position of the system and the sliding surface de-
creases monotonically.
Finally, without loss of generality, the origin of the
workspace is located at the goal posture and oriented
in such a way that the line of wheel centers is paral-
lel to the one of steepest ascent and the line joining
the center of mass of the central body to its geometric
center is normal to the plane. Therefore the reference
values for the posture controller are:

xco
= 0, yco

= 0 and |uT
3 k| = 1

Let s be the direction of steepest ascent of the inclined
plane, i.e.,

s = n × i

Then thex andy coordinates oḟco can be written as

ẋco
= vc hT i and ẏco

= vc cos β hT s

whereβ represents the inclination of the plane.
The Lyapunov functionV for the navigation problem
is chosen as

V (xco
, yco

) =
1

2

[

x2
co

2
+ y2

co

]

so thatǫ is defined by

ǫ(xco
, yco

) = −grad (V ) =

[

ǫx

ǫy

]T

=

[ −xco
/2

−yco

]T

Therefore, the equation of the sliding surface be-
comes

∆(q) = det

[

hT i ǫx/‖ǫ‖
hT s ǫy/‖ǫ‖

]

= 0 (12)

where‖ǫ‖ denotes the Euclidian norm ofǫ.
Differentiating∆ with respect to time leads to

∆̇ = −D1(q) ω3p + D2(q) vc
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where

D1(q) = hT i
ǫx

‖ǫ‖ + hT s
ǫy

‖ǫ‖
and

D2(q) =
xco

yco

4‖ǫ‖3

(

hT i
2 − 2 cos βhT s

2
)

hT i hT s

4‖ǫ‖3

(

− cos βx2
co

+ 2y2
co

)

Convergence of∆ to zero within finite time can be
achieved by imposing

∆̇ = −ζ
√

|∆|sign(∆) with ζ ≥ 0

leading to

ξ∗3 = ω∗

3p =
1

D1

(

D2 vc + ζ
√

|∆|sgn(∆)
)

(13)

Finally, introducing a positive scalarv0 as an auxiliary
control input yields

v∗

c = ‖ǫ‖v0 sgn(hT i ǫx) (14)

Therefore, eqs. (8), (9), (11), (13), and (14) consti-
tute the controller as implemented in three loops.

3.6 Analysis of the Stability

Equation (12) implieshT i = ±ǫx/‖ǫ‖. Considering
the positive case

ẋco
= vc hT i = vc ǫx/‖ǫ‖ = v0 ‖ǫ‖

ẏco
= vc cos β hT i = vc cos β ǫy/‖ǫ‖ = v0 cos β ǫy

Thus,

V̇ = −ǫ
T

[

ẋco

ẏco

]

= −ǫ2x v0 − ǫ2y cos β v0 ≤ 0

The same reasoning is employed for the negative case,
thus ensuring system stabilization by standard Lya-
punov asymptotic stability theory.

3.7 Analysis of the Zero-Dynamics

The zero-dynamics of the system is calculated by de-
termining initial conditions and inputs such that the
output of the system remains zero for all the time
(Nasrallah et al., 2005). If the initial posture with the
statex0 is such that the line of wheel centers is par-
allel to the direction of steepest ascent, and the line
joining the center of mass of the central body to its
geometric center is perpendicular to the plane, then it
is a simple matter to verify that the zero dynamics is
described by

η̇1 = vc0
and η̇i = 0 for i = 2 . . . 6

Here, vc0
, the initial heading velocity, decreases to

zero because of the action of the outer-loop controller,
which secures stable zero-dynamics.

4 SIMULATION RESULTS

In this section we present the simulation results for the
closed-loop system. The inclination of the plane is of
30% for all the simulations. ATOM succeeds to reach
the origin at the desired orientation starting from dis-
tinct initial conditions. Below we display four exam-
ples:

1. coming from up right, Fig. 4(a)

xco
= 1 , yco

= 1 and uT
3 i = −

√
2/2

2. coming from up left, Fig. 4(b)

xco
= −2 , yco

= 2 and uT
3 i = −

√
2/2

3. coming from down right, Fig. 4(c)

xco
= 2 , yco

= −7 and uT
3 i = 0

4. coming from down left, Fig. 4(d)

xco
= 1 , yco

= 1 and uT
3 i = −

√
2/2

Furthermore, we test the controller performance
versus the parameter uncertainties. We recall here
that the controller is composed of three-imbricated
loops. The inner loop, based on input-output lin-
earization, is obviously dependent of the robot para-
meters. As for the intermediate loop, the judicious
choice of the functionξ1 allowed a linear dependence
between the heading acceleration of the robot and this
function. Therefore, we were able to implement a lin-
ear controllerC(s), with constant parameters. For
the outer loop the choice of the sliding-mode control
and the auxiliary constant inputv0 rendered the con-
troller less dependent of the system parameters. Note
that the choice of the controller parameters was not
a simple task since the system itself is nonsymmet-
ric, due to theup anddown motion of ATOM on the
inclined plane. Therefore, we show two simulations
of ATOM moving on the same inclined plane with a
slope of30%, except that the robot and terrain pa-
rameters seen by the controller are over- and under-
estimated, respectively. The error on the normal vec-
tor to the ground is of10%, while the error on the
moments of inertia of the rigid bodies composing the
robot and the offsetd between the geometric and cen-
ter of mass are of20%. In both cases, i.e., under- and
over-estimation, ATOM succeeds to reach the origin
with the desired orientation, which can be verified by
looking to the evolution in time of thex−, y−, and
z− components ofCo depicted in Fig. 4(a). The time
history of the signalsvc, ω3p, andξ1 are displayed in
Fig. 4(b), (c), and (d), respectively. The torques ap-
plied to the wheels in Fig.5.
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Figure 3: Manoeuvres performed by ATOM on the inclined
plane: reaching the origin at the desired orientation from (a)
up right; (b) up left; (c) down right; and (d) down left.
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Figure 4: Controller performance versus parameters uncer-
tainties: time-history of: (a) thex−, y−, andz− compo-
nents ofCo; (b) vc; (c) ω3p; and (d)ξ1.
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Figure 5: Controller performance versus parameters uncer-
tainties: time history ofτ1 andτ2.

5 CONCLUSION
The work reported here delivers a robust posture con-
troller for a MWP-class robot moving on an inclined
plane. The challenging issue in this design is to be
able to control the posture of the robot simultaneously
while stabilizing of the central body, which results in
the absence of friction. Unlike previous attempts to
control such systems, our controller is global and less
sensitive to errors in the parameters estimation. We
show that deep insight into the internal dynamics of
the system, in conjunction with proper selection of
a coordinate system and the system output function,
are instrumental in the construction of feedback con-
trollers for nonholonomic systems underlying unsta-
ble zero-dynamics.
Future work will focus on generalization of the mo-
tion of the robot to a warped, smooth surface.
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