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Abstract: In this article, a neural network model is presented for forecasting the average speed values at highway 
traffic detectors locations using the Fuzzy ARTMAP theory. The performance of the model is measured by 
the deviation between the speed values provided by the loop detectors and the predicted speed values. 
Different Fuzzy ARTMAP configuration cases are analysed in their training and testing phases. Some ad-
hoc mechanisms added to the basic Fuzzy ARTMAP structure are also described to improve the entire 
model performance. The achieved results make this model suitable for being implemented on advanced 
traffic management systems (ATMS) and advanced traveller information system (ATIS). 

1 INTRODUCTION 

Traditional models of traffic congestion and 
management lack the adaptability and sophistication 
needed to effectively and reliably deal with 
increasing traffic volume on certain road stretches. 
A realistic estimate of  planned routes travel cost 
with reasonable accuracy is essential for successful 
implementation on an advanced traveller 
information system (ATIS) for use in an intelligent 
transportation system (ITS).  An ATIS consists of a 
route guiding system (RGS) that recommend the 
most suitable route based on the traveller’s 
requirements, using the information gathered from 
various sources as loop detectors and probe vehicles. 
The success of an RGS will depend on its ability to 
predict the anticipatory travel cost in addition to the 
historical and real-time travel cost. (Dharia, A. and 
Adeli, H., 2003) 

Several aspects should be taken into account to 
evaluate the travel cost such as distance, time, 
economy, danger or personal preferences. From the 
distance point of view, the travel cost quantification 
will be strictly static, only dependent on the sum of 
the stretches length. A time based estimate will be 
dynamic and dependent on multiple factors. It could 
be directly measured or by the distance-speed 
relationship. For a economic estimate, toll fares, 
vehicle consumption and wear will be considered. 
Road accident risks as well as driving easiness at 

some particular stretches might be a decisive factor 
to rule out a route. Finally the traveller’s preferences 
for route services or particular scenarios such as 
mountain or landscape roads could affect the 
decision eventually. This article will focus on speed 
estimate in road stretches with traffic detectors using  
a Fuzzy ARTMAP neural network structure. As said 
before, speed may be used to calculated the travel 
time cost as long as distance is known.  

Neural network computing applied to travel cost 
forecast appeared to overcome the shortcomings of 
preceding methods whose forecasts deteriorate over 
multiple time steps (Park, D. and Rilett, L.R., 1999). 
A neural network provides a mapping between a set 
of inputs and corresponding outputs (Adeli, H. and 
Hung, S.L., 1995). The network is trained to learn 
this mapping using a number of training examples. 
Backpropagation (BP) is the most widely used 
neural network model in civil engineering 
applications, primarily due to its simplicity. 
However, backpropagation has shortcomings, 
including a very slow rate of convergence and 
arbitrary and problem-dependent selection of the 
learning and momentum ratios (Adeli, H. and Hung, 
S.L., 1994).   

A neural model for forecasting the freeway link 
travel time using counter propagation neural (CPN) 
network is presented in (Dharia, A. and Adeli, H., 
2003). There, it was showed that CPN model was 
nearly two orders of magnitudes faster than BP 
training algorithm for the same level of accuracy. In 
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this article, a neural network model based on Fuzzy 
ARTMAP is presented for forecasting the average 
speed values at highway traffic detectors locations. 
Faster as the aforesaid CPN model, the presented 
model gives lightly better average errors in 
forecasting values in more realistic both training and 
testing scenarios.  

2 FUZZY ARTMAP BASIS 

The Fuzzy ARTMAP, introduced by (Carpenter et 
al., 1992) is a supervised network composed of two 
Fuzzy ARTs (ARTa and ARTb) interconnected by a 
series of connections between their output layers. 
Each connection has an associated weight value (wij) 
between 0 and 1, and may be considered as the 
membership function value in the fuzzy sets theory 
of the corresponding network category. 
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Figure 1: Sample Fuzzy ARTMAP network. 

These connections form what is called the map 
field Fab. The weights of the map field are all 
initialised to 1.  The map field has two parameters: 
the learning rate βab, and vigilance criterion ρab, and 
an output vector xab. Figure 1 shows  a graphic 
sample representation of a Fuzzy ARTMAP 
network. 

The input data of both ARTa and ARTb are 
normalized values, between 0 and 1 (minimum and 
maximum expected input values respectively), and 
form the network input vectors a and b. This 
normalization ensures a proportional response of the 
network from the input data. Input vector of ARTa is 

put in complement coding form, resulting in vector 
A. Complement coding is not necessary in ARTb so 
the input vector B directly presented to the network.  

2.1 Training 

Fuzzy ARTMAP networks usage requires a training 
process before being able to classify input data.  In 
this process, a vector representing a data pattern is 
presented to ARTa, and a vector which is the desired 
output corresponding to this pattern is presented to 
ARTb. The relationship between these two vectors is 
learned through the weight values of the map field. 
The vigilance criterion of ARTa, ρa, varies during 
learning from a initial value called the baseline 
vigilance aρ . The vigilance parameter of ARTb, ρb, 
is set to 1 to perfectly distinguish the  desired output 
vectors.  

When vectors A and B are presented to ARTa and 
ARTb, both networks soon enter resonance. The map 
field vigilance criterion is then evaluated to verify if 
the winning neuron of ARTa corresponds to the 
desired output vector presented to ARTb. This 
criterion is: 

 abb
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where yb is the output vector of ARTb, J is the index 
of the winning neuron on the output layer of ARTa, 
wab

J corresponds to the weights of the connections to 
the Jth neuron of the output layer of ARTa and 
ρab∈[0,1] is the vigilance criterion of the map field. 
If the criterion is not respected, the vigilance of 
ARTa is increased just enough to select another 
winning neuron (ρa>|A∧wJ|/|A| ) and the vector A is 
repropagated in ARTa.  

When the vigilance criterion is respected, the 
vigilance value of ARTa is set to its initial baseline 
value aρ  and the map field learns the association 
between vectors A and B by modifying its weights 
as follows: 
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The weights in ARTa are also modified as: 

 

 ( ) ( ) JaJaJ wwAw ββ −+∧= 1  (3) 
 

In practice, the ARTa learning rate, βa, is set equal 
to βab, or simply β, defining the learning network 
capability.  
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2.2 Classifying 

During the training process the weight values of the 
Fuzzy ARTMAP were updating, as new patterns 
were presented to the network, till they reached a 
final value. At this point the network can be used as 
a classifier of the vector data presented to ARTa. 
ARTb is not used during this classifying process and 
learning network capability is deactivated (β=0).  
 ARTa will establish a winning node on its 
output layer from each input vector A presented to 
the network. The output vector of the map field is 
then set to:  

 
ab
J

ab wx =  (4) 
 

where J is the index of the winning node on output 
layer of ARTa, and wab

J is the corresponding weight 
values vector on the map field . The index J of this 
component is the number of the category in which 
the input vector A has been classified. The use of the 
map field is thus to associate a category number to 
each neuron of ARTa’s output layer. However, not 
just the category that best fits an input is the only 
result of the classifying process. The weight values 
associated with this category may also be useful to 
get ulterior information about the relationship 
between the input vector and the categories learned 
by the network in the training process.    

3 WORKING MODEL 

3.1 Training the Network 

The data for this experiment were collected through 
the Freeway Performance Measurement System 
(PeMS) project, and could be obtained thanks to the 
Next Generation Simulation (NGSIM) and Federal 
Highway Administration (FHWA) web page at  
http://ngsim.fhwa.dot.gov. PeMS project was 
conducted by the Department of Electrical 
Engineering and Computer Sciences at the 
University of California, at Berkeley, with the 
cooperation of California Department of 
Transportation. Available data from 5 detector 
stations on US 101 South for 11 days, from June 8 to 
June 22, excluding the weekends, are provided in 
this data set. Speed, volume and occupancy at each 
detector for the 5-minute time step are presented at 
each detector in each lane. 

 

Figure 2: Fuzzy ARTMAP training structure. vtr(t): 
training speed value at instant t; vc

tr(t): training speed 
categorized value at instant t. 

Average speed data from June 13 to June 17 (5 
consecutive weekdays, making a total of 1440 
samples) collected from two stations with different 
traffic congestion levels (717486, light; 717489, 
heavy), were employed to train the net. Figure 2 
shows the structure of the Fuzzy ARTMAP during 
this process.  

Table 1: Training cases. 

Case
Input training 

subsets time step 
(min) 

ARTa 
input 
nodes 

ARTb 
input 
nodes 

No. of 
Categories

A 6*5 6 1 9 
B 6*5 6 1 81 
C 6*5 6 6 81 
D 6*5 4 4 81 
E 6*5 8 8 81 
F 1*5 6 6 81 

 
Six different structure model cases, shown in 

Table 1, were considered with different number of 
input and output nodes, categories and time step 
between consecutive input training subsets. In Case 
A, six ARTa input nodes and one ARTb input node 
were used to associate six consecutive 5-min time 
step normalized past speed values to one categorized 
future speed value in the map field of the Fuzzy 
ARTMAP, Fab. This categorized speed value is 
calculated as the average of the six 5-min time step 
speed values following the normalized speed values 
presented to ARTa, and categorized into one of  9 
possible categories. Numerically, these categories 
are linearly spaced and normalized speed values  in 
the range of  0-80 mph. In Case B, and following 
ones, the number of categories were increased to 81. 
In Case C, each six consecutive 5-min time step 
normalized past speed values presented to ARTa 
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were associated to six consecutive 5-min time step 
normalized future speed values presented to ARTb. 
In Case D and E the number of input nodes were 
changed to 4 and 8 respectively. Finally in Case F, 
with six input nodes anew, the consecutive sets of 
values presented to the ARTa and ARTb were 5 
minutes ahead of the former, instead of 30 minutes.  

A one-shot stable learning configuration, as 
shown in Table 2, has been adopted: conservative 
limit (α≅0) and fast learning (β=1), holding for 
fuzzy ART modules with constant vigilance 
(Carpenter, G.A. et al., 1992).   

Table 2: Training configuration network parameters. 

α β aρ  ρab ε 
0.001 1 0 0.95 0.001 

3.2 Testing the Network 

Average speed data from June 20 to June 22 (3 
consecutive weekdays following the training ones, 
making a total of 864 samples) collected from the 
same two stations that in the training process and 
shown in Figure 4.(a) and Figure 5.(a), were employed 
to make a test of the speed forecasting net capability. 
A test performance was made for each training case.  

Figure 3: Fuzzy ARTMAP testing structure. vts(t): testing 
speed value at instant t; vp(t): forecasting speed value for 
instant t. 

Figure 3 shows the structure of the Fuzzy ARTMAP 
during this process. Sets of consecutive 5-min time 
step normalized speed testing values were presented 
to ARTa. ARTb in testing phase is not used. A 
number of  forecasting speed values, equals to the 
number of input nodes in ARTb in the training 
phase, were obtained from each set. These 
forecasting speed values were calculated from the 
weight vectors of the map field Fab, wab, multiplying 
the selected weight vector, wab

J, by the speed value 
associated to the higher training category.  

The fuzzy ARTMAP configuration for the testing 
phase was similar to the one adopted in the training 
phase but with the learning capability deactivated 
(β=0), as shown in Table 3. 

Table 3: Testing configuration parameters. 

α β aρ  ρab ε 
0.001 0 0 0.95 0.001 

3.3 Forecasting Results 

The Fuzzy ARTMAP model have been implemented 
in MATLAB® Release 12 technical language on a 
mobile AMD Athlon™ XP 2000+ computer. In order 
to measure the forecasting accuracy, an average 
error term was defined in the following form: 
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where N is the number of predicted speed values; 
vp[t], the predicted speed value for moment t; vt[t], 
the testing speed value measured by the station 
detector at moment t. 

Figure 4 and Figure 5 show the forecasting speed 
(b) and the forecasting error (c) values over the 
testing days time. The maximum error values occur 
close to high traffic congestion situations in 717489 
station, when vehicles speed changes too fast in the 
5-min step time. This maximum error values are 
dramatically high but are quickly reduced as the next 
forecasting speed values are available. Hence, global 
error performance keeps a satisfactory level. Table 4 
shows the average error in forecasting speed for the 
considered cases.  

Table 4: Average error in forecasting speed. 

E(%) 
Station Case 

A 
Case 

B 
Case 

C 
Case 

D 
Case 

E 
Case 

F 
717486 4.12 2.91 3.16 3.77 3.12 2.64 
717489 14.78 13.95 10.96 9.67 15.84 7.78 
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(a) 717486 station detector speed data 

 
(b) 717486 station forecasting speed data 

 
(c) 717486 station forecasting speed error 

Figure 4: 717486 station data and forecasting results. 

Case B improves Case A forecasting precision by 
simply increasing the number of categories, 
particularly  with the 717486 station in which all 
speed values concentrate in a range of 30 mph. 

Forecasting precision for 717489 station, in 
which speed values change quickly close to high  
congestion situations, strongly improves in Case C 
as more predicted speed values are given (six instead  

 
(a) 717489 station detector speed data 

 
(b) 717489 station forecasting speed data 

 
(c) 717489 station forecasting speed error 

Figure 5: 717489 station data and forecasting results. 

of one) for the 30-min forecasting time interval 
considered. Applying no interpolation rule, six is the 
highest number of predicted values since detectors 
present new data each 5 minutes. 

The increase in the number of nodes in Case E 
implies that both the time interval of past speed 
values presented to the net and the time interval of  
forecasting speed values are longer, since the 
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number of nodes in ARTa and ARTb were equal in 
the training process. For the 717489 station, with  
speed values changing quickly close to high traffic 
congestion situations, the longer the forecasting time 
interval , the bigger the error will be. In Case D, the 
opposite situation occurs but the processing time 
increases substantially for the same forecasting time 
interval. No significantly error variation for 717486 
station  in Cases D and E.  

 
Figure 6: Case F model structure.vts(t): testing speed value 
at instant t; vpi(t): ith forecasting speed value for instant t; 
vp(t): forecasting speed value for instant t. 

The best error performance is achieved in Case F 
in which several forecasting speed values (up to the 
number of input nodes)  are obtained for a particular 
moment into the future (due to the time overlap of 
the input set speed values). An average of them is 
then made to get the final forecasting speed value.  
Figure 6shows the model structure designed for this 
particular case. 

3.4 Comparative Results 

The average errors in forecasting values presented in 
(Dharia, A. and Adeli, H., 2003) for BP and CPN 
models with the same duration of time step (5min) 
and the same number of input and output nodes (6), 
were slightly higher (11.5% and 10.9% respectively)  
than the one achieved for the Case F (7.8% for the 
station with the most congested traffic level) in the 
Fuzzy ARTMAP model. However, speed travel 
values, instead of travel time values, were predicted 
in the model presented in this article and real traffic 
data were used instead of simulated traffic data. 
Case F did not take more than 10 seconds (a rough 
measure was made) of processing time to carry out 
both training and testing phases with the conditions 
described above. BP and CPN models took 312.7 

and 3.8 seconds respectively just for the training 
process. Convergence behaviour of Fuzzy ARTMAP 
networks are faster and more independent of the 
initial weights than Back or Counter propagation 
networks. Actually, training convergence can be 
guaranteed as far as Fuzzy ART Stable Category 
Learning Theorem (Carpenter, G.A. et al., 1992) is 
satisfied.  

4 CONCLUSIONS 

The Fuzzy ARTMAP neural network model 
described in this article provides an appropriated 
forecasting travel cost mechanism, in terms of 
average speed values for being integrated in travel 
cost estimates systems supplied with traffic dynamic 
parameters such as speed, occupancy or volume 
data. Multiple training and working configurations 
for the network are possible in order to match host 
system requirements, all of them with a remarkable 
time processing and forecasting error performance. 
Forecasting test results obtained accuracy levels 
under the 8% of precision from real congested 
highway traffic data. A figure slightly lower than 
previous neural network models developed for 
highway traffic predictions. So it represents a 
promising challenge in the evolution of neural 
networks appliance to intelligent transportation 
system (ITS). 

ACKNOLEDGEMENTS 

NGSIM Website - Home of the Next Generation 
Simulation Community, at http://ngsim.camsys.com 
- for the traffic data set. 

REFERENCES 

Adeli, H., 2002. “Automatic detection of traffic incidents 
using data obtained from sensors embedded in 
intelligent freeways ”. Sensor Review; Volume: 22   
Issue: 2; 2002 Research paper. 

Adeli, H., Hung, S.L., 1995. “Machine Learning-Neural 
Networks, Genetic Algorithms, and Fuzzy Systems”. 
Wiley, New York. 

Adeli, H., Hung, S.L., 1994. “An adaptive conjugate 
gradient learning algorithm for efficient training of 
neural networks”. Applied Mathematics and 
Computatio n 62 (1), 81–100. 

Carpenter, G.A., 2003. “Default ARTMAP”. Neural 
Networks, 2003. Proceedings of the International Joint 

... 

vts(t0-5) 
vts(t0-10) 
vts(t0-15) 
vts(t0-20) 
vts(t0-25) 
vts(t0-30) 

 
 

ARTa 

 
 

ARTb 

vp6(t0+5) 
vp5(t0+10) 
vp4(t0+15) 
vp3(t0+20) 
vp2(t0+25) 
vp1(t0+30) 

vts(t0) 
vts(t0-5) 

vts(t0-10) 
vts(t0-15) 
vts(t0-20) 
vts(t0-25) 

vp6(t0) 
vp5(t0+5) 
vp4(t0+10) 
vp3(t0+15) 
vp2(t0+20) 
vp1(t0+25) 

average
module 

vp(t0+5) 

ICINCO 2006 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

24



 

Conference on Volume 2,  20-24 July 2003 
Page(s):1396 – 1401 vol.2. 

Carpenter, G.A., et al., 1992.”Fuzzy ARTMAP: A neural 
network architecture for incremental supervised 
learning of analog multidimensional maps”. Neural 
Networks, IEEE Transactions on Volume 3,  Issue 5,  
Sept. 1992 Page(s):698 – 713. 

Dharia, A. and Adeli, H., 2003. “Neural network model 
for rapid forecasting of freeway link travel time”. 
Engineering Applications of Artificial Intelligence, 
Volume 16, Issues 7-8, October-December 2003, 
Pages 607-613. 

Jiang, G., et al., 2003. “The study on the application of 
fuzzy clustering analysis in the dynamic identification 
of road traffic state”. Intelligent Transportation 
Systems, 2003. Proceedings. 2003 IEEE. Volume 1,  
2003 Page(s):408 – 411 vol.1. 

Park, D., Rilett, L.R., 1999. “Forecasting freeway link 
travel times with a multilayer feedforward neural 
network”. Computer-Aided Civil and Infrastructure 
Engineering 14 (5), 357–367. 

Wang, X-H, Xiao, J.M.,2003.”A radial basis function 
neural network approach to traffic flow forecasting”. 
Intelligent Transportation Systems, 2003. Proceedings. 
2003 IEEE. Volume 1,  2003 Page(s):614 – 617 vol.1. 

NEURAL NETWORK MODEL BASED ON FUZZY ARTMAP FOR FORECASTING OF HIGHWAY TRAFFIC DATA

25


