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Abstract: A fuzzy logic resource allocation algorithm that enables a collection of unmanned aerial vehicles (UAVs) to 
automatically cooperate will be discussed.  The goal of the UAVs’ coordinated effort is to measure the 
atmospheric index of refraction.  Once in flight no human intervention is required.  A fuzzy logic based 
planning algorithm determines the optimal trajectory and points each UAV will sample, while taking into 
account the UAVs’ risk, risk tolerance, reliability, and mission priority for sampling in certain regions.  It 
also considers fuel limitations, mission cost, and related uncertainties.  The real-time fuzzy control 
algorithm running on each UAV renders the UAVs autonomous allowing them to change course 
immediately without consulting with any commander, requests other UAVs to help, and change the points 
that will be sampled when observing interesting phenomena.  Simulations show the ability of the control 
algorithm to allow UAVs to effectively cooperate to increase the UAV team’s likelihood of success. 

1 INTRODUCTION 

Knowledge of meteorological properties is 
fundamental to many decision processes.  Due to 
personnel limitations and risks, it is useful if related 
measurement processes can be conducted in a fully 
automated fashion.  Recently developed fuzzy logic 
based algorithms that allow a collection of 
unmanned aerial vehicles (UAVs) and an 
interferometer platform (IP) (Smith 2005) to 
automatically collaborate will be discussed.  The 
UAVs measure the index of refraction in real-time to 
help determine the position of an electromagnetic 
source (EMS).  The IP is actually an airplane with 
an interferometer onboard that measures emissions 
from the electromagnetic source whose position is to 
be estimated.  Each UAV has onboard its own fuzzy 
logic based real-time control algorithm.  The control 
algorithm renders each UAV fully autonomous; no 
human intervention is necessary.  The control 
algorithm aboard each UAV will allow it to 
determine its own course, change course to avoid 
danger, sample phenomena of interest that were not 
preplanned, and cooperate with other UAVs. 

Section 2 provides an overview of the 
meteorological sampling problem and a high level 
description of the planning and control algorithms 
that render the UAV team fully autonomous.  
Section 3 discusses the electromagnetic 
measurement space, UAV risk, and the planning 
algorithm. Section 3 also discusses the UAV path 
construction algorithm that determines the minimum 
number of UAVs required to complete the task, a 
fuzzy logic based approach for assigning paths to 
UAVs and which UAVs should be assigned to the 
overall mission.  Section 4 describes the control 
algorithm that renders the UAVs autonomous.  
Section 4 also describes the priority for helping (PH) 
algorithm, a part of the control algorithm based on 
fuzzy logic that determines which UAV should help 
another UAV requesting help.  The three subclasses 
of help requests are also discussed in this section.  
Section 5 discusses experimental results including 
UAV path determination, UAV path assignment, 
determination of which UAVs should fly the 
mission and the result of a request for help during 
the mission.  Finally, section 6 provides a summary.  
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2 METEOROLOGICAL 
SAMPLING AND 
COOPERATIVE 
AUTONOMOUS PLATFORMS 

For many applications it is useful to be able to make 
meteorological measurements in real-time.  
Examples include determining the index of 
refraction of the atmosphere to facilitate geo-
location (Smith 2005); determination of the presence 
and extent of such phenomena as radio holes and 
ducts, which may interfere with communications; 
tracking atmospheric contaminants (Spears 2005); 
and sand suspended in the atmosphere that can 
interfere with sensors. 

The fuzzy logic based planning and control 
algorithms that have been developed allow a 
collection of UAVs making up the UAV team to 
engage in cooperative sampling of the atmosphere in 
real-time without human intervention.  Each UAV 
will have its own control algorithm allowing it to 
determine new optimal trajectories in real-time 
subject to changing conditions.  Also, the control 
algorithm on the UAVs will allow them to cooperate 
to increase the probability of mission success.  There 
will be two different types of cooperation allowed 
by the control algorithm and three classes of help 
requests which are discussed in section 4. 

3 PLANNING AND RISK  

The measurement space consists of the 
electromagnetic propagation environment where 
UAVs and the IP make their measurements.  This 
environment includes sample points and the 
desirable neighborhoods that surround them.  The 
sample points or the desirable neighborhoods are 
where the UAVs will make measurements.  The 
method of determining the sample points and 
desirable neighborhoods is described below. 

The measurement space also includes taboo 
points and the undesirable neighborhoods that 
surround them.  The taboo points are points of 
turbulence and other phenomena that could threaten 
the UAVs.  The undesirable neighborhoods 
surrounding them also represent various degrees of 
risk.  The method of specifying taboo points and 
quantifying the degree of risk associated with their 
undesirable neighborhoods employs fuzzy logic and 
is discussed in this section. 

The planning algorithm allows the determination 
of the minimum number of UAVs needed for the 

mission subject to fuel constraints, risk, UAV cost, 
and importance of various points for sampling.  Risk 
refers to turbulent regions or regions undesirable for 
other reasons, e.g., the presence of enemy observers 
or physical obstructions.  The planning algorithm 
automatically establishes the order in which to send 
the UAVs taking into account the UAV’s value; 
onboard sensor payload; onboard resources such as 
fuel, computer CPU and memory; etc.  The priority 
of sample points and their desirable neighborhoods 
are taken into account.  The planning algorithm also 
calculates the optimal path around undesirable 
regions routing the UAVs to or at least near the 
points to be sampled. 

In the planning phase, the location of the EMS is 
unknown.  Some positions are more likely than 
others for the EMS’s location.  When establishing 
likely positions for the EMS, human experts are 
consulted.  The experts provide subjective 
probabilities of the EMS being located at a number 
of positions.  These likely EMS locations are 
referred as hypothesis positions.  Ray-theoretic 
electromagnetic propagation (Blake 1986) is 
conducted from each hypothesis position to each 
interferometer element on the IP.  The points on the 
sampling grid nearest the points of each ray’s 
passage are the sample points.  The priority of a 
sample point is related to the subjective probability 
of the hypothesis position from which the associated 
ray emerges.  Sample points arising from the highest 
probability hypothesis positions have priority one; 
sample points associated with lower probability 
hypothesis positions, priority two; etc. 

Each sample point is surrounded by what are 
referred to as desirable neighborhoods.  Depending 
on local weather, topography, etc., the desirable 
neighborhoods are generally concentric closed balls 
with a degree of desirability assigned to each ball.  
The degree of desirability characterizes the 
anticipated variation in the index of refraction. 

A point may be labeled taboo for a variety of 
reasons.  A taboo point and the undesirable 
neighborhoods containing the point generally 
represent a threat to the UAV.  The threat may take 
the form of high winds, turbulence, icing conditions, 
mountains, etc.  The undesirable neighborhoods 
around the taboo point relate to how spatially 
extensive the threat is. 

When determining the optimal path for the 
UAVs to follow both the planning algorithm and the 
control algorithm running on each UAV take into 
account taboo points and the undesirable 
neighborhood around each taboo point.  The path 
planning algorithm and control algorithm will not 
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allow a UAV to pass through a taboo point.  Both 
the concepts of risk and risk tolerance are based on 
human expertise and employ rules each of which 
carry a degree of uncertainty.  This uncertainty is 
born of linguistic imprecision (Tsoukalas 1997), the 
inability of human experts to specify a crisp 
assignment for risk.   

Risk is represented as a fuzzy decision tree 
(Blackman 1999; Smith 2002a, 2002b, 2003, 2004a, 
2004b).  The risk subtree defined below is a subtree 
of the larger risk tree that was actually used.  The 
risk tree is used to define taboo points and the 
undesirable neighborhoods surrounding the taboo 
points.  

The root concepts on the risk tree use the 
membership function defined in (1-3), 
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where the “taboo point,” tabooq
G

 is the point at which 
the risk phenomenon has been observed.  The root 
concepts used on the risk subtree are given in (4), 
and the subscript α is an element of the root concept 
set , RC, i.e., 
 
∈α RC={Mountains, High Tension Wires, 

Buildings, Trees, Smoke Plumes, Suspended 
Sand, Birds/Insects, Other UAVs, Air 
Pollution, Civilian, Own Military, Allied 
Military, Neutral Military, Cold, Heat, Icing, 
Rain, Fog, Sleet, Snow, Hail, Air Pocket, 
Wind, Wind Shear, Hostile 
Action/Observation} 

 
 

(4) 

 
The norm in equation (2) is typically taken as an 
Euclidean distance.  The values taken by the 
quantity lΔ will be discussed in a future 
publication. 

The fuzzy membership function for the 
composite concept “risk” is defined as 

 
( ) ( )x,qmaxx,q taboo

RC
taboorisk

GGGG
α

α
μμ

∈
= . 

 
(5) 

 

The best path algorithm is actually an 
optimization algorithm that attempts to minimize a 
cost function to determine the optimal trajectory for 
each UAV to follow, given a priori knowledge.  The 
cost function for the optimization algorithm takes 
into account various factors associated with the 
UAV’s properties, mission and measurement space.  
Two significant quantities that contribute to the cost 
are the effective distance between the initial and 
final proposed positions of the UAV and the risk 
associated with travel. 

For purposes of determining the optimal path, 
the UAV is assumed to follow a rectilinear path 
consisting of connected lines segments, where the 
beginning and ending points of each line segment 
reside on the UAV’s sampling lattice.  Let A and B 
be two grid points on the UAV’s sampling grid with 
corresponding position vectors, BA rr

GG
and , 

respectively.  Denote the Euclidean distance 
between A and B as ( )BA r,rd

GG
.  Let ( )BA r,rv

GG
 be the 

speed at which the UAV travels in going from Ar
G

 to 

Br
G

.  If both BA rr
GG

and are sample points then the 
UAV travels at sampling velocity, otherwise it 
travels at non-sampling velocity.  The path cost is 
given by  
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where taboon is the number of taboo points, i.e., 
columns in the taboo point matrix 
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and tabooi n,,2,1i,t …

G
=  are the taboo points 

determined to exists in the measurement space when 
( )BA r,rtcos_path

GG
is calculated.  The quantity, β , is 

an expert assigned parameter.  Note that 
( )BA r,rtcos_path

GG
 is an effective time.  When risk is 

not present, i.e., ( )∑⋅
=

taboon

1i
Birisk r,t
GG

μβ  is zero, then 

( )BA r,rtcos_path
GG

 is the actual travel time.  When 
risk is present then the travel time is increased.  The 
time increase will be significant if the risk is high. 

If the candidate path for the mission consists of 
the following points on the UAV lattice given by the 
path matrix in (8), 
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Determining the optimal path for the ith UAV 

consists of minimizing the total path cost given by 
(9) such that there is enough fuel left to complete the 
path. 

The planning algorithm determines the path each 
UAV will pursue, which points will be sampled, the 
minimum number of UAVs required for sampling 
the points and makes assignments of UAVs for 
measurements at particular points.  UAVs are 
assigned as a function of their abilities to sample 
high priority points first.  The planning algorithm 
determines flight paths by assigning as many high 
priority points to a path as possible taking into 
account relative distances including sampling and 
non-sampling velocity, risk from taboo points, and 
UAV fuel limitations.  Once flight paths are 
determined, the planning algorithm assigns the best 
UAV to each path using the fuzzy logic decision 
rule for path assignment described in this section.   

The planning algorithm must assign UAVs to the 
flight paths determined by the optimization 
procedure described below in this section.  This is 
referred to as the UAV path assignment problem 
(UPAP).  The planning algorithm makes this 
assignment using the following fuzzy logic based 
procedure.  To describe the decision rule it is 
necessary to develop some preliminary concepts and 
notation. 

Each UAV will fly from lattice point to lattice 
point, i.e., grid point to grid point, let one such route 
be given by the matrix of points, 
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GG
…

GG
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where the ordering of points gives the direction of 
the route, i.e., starting at 1P

G
 and ending at 1P

G
.  Let 

the taboo points be those given in (7).  Let the 
degree of undesirability of the neighborhood 
associated with taboo points, tabooi n,,2,1i,t …

G
=  be 

denoted ( )jirisk P,t
GG

μ  for the route points 

pathj n,,2,1j,P …
G

= .  The definition of the mission 
risk is 
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Within the path specified by (10), let there be the 

following sample points to be measured, 

spj n,,2,1j,S …
G

= .  Let the function prio assign 

priorities to the sample points, i.e, ( )jSprio
G

 is the 
priority of the jth sample point.  The values that 

( )jSprio
G

 can take are positive integers with one 
representing the highest priority, two the next 
highest priority, etc.  The mission priority for 
Path is defined to be 

 

( ) ( )∑≡
=

spn

1i iSprio
1Pathprio_mission G . 

 
(12) 

 
Furthermore, let the ( )( )Path,iUAVT  be the amount 
of time it will take UAV(i) to fly and make 
measurements along Path . 

The fuzzy degree of reliability experts assign to 
the sensors of UAV(i) is denoted as ( )( )iUAVsrμ .  
This is a real number between zero and one with one 
implying the sensors are very reliable and zero that 
they are totally unreliable.  Likewise, 

( )( )iUAVnsrμ is the fuzzy degree of reliability of 
other non-sensor systems onboard the UAV(i).  This 
fuzzy concept relates to any non-sensor system, e.g., 
propulsion, computers, hard disk, deicing systems, 
etc.  The value of UAV(i) in units of $1000.00 is 
denoted as ( )( )iUAVV .  The amount of fuel that 
UAV(i) has at time t is denoted ( )( )t,iUAVfuel .  All 
the UAVs participating in a mission are assumed to 
leave base at time, ott = . 

Let UAV(i)’s fuzzy grade of membership in the 
fuzzy concept “risk tolerance” be denoted as 

( )( )iUAVtolrisk−μ .  The quantity, ( )( )iUAVtolrisk−μ , is 
a number between zero and one and will be simply 
referred to as UAV(i)’s risk-tolerance.  If the risk 
tolerance is near zero then the UAV should not be 
sent on very risky missions.  If the UAV’s risk 
tolerance is near one then it can be sent on very 
risky missions.  It seems natural to compare risk-
tolerance to value.  So the comparison can be carried 
out on the same footing, a fuzzy concept of value 
should be defined. 

The fuzzy grade of membership in the fuzzy 
concept “Value” of each UAV that can be assigned 
to the mission is defined as 
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( )( ) ( )( )
( )( ){ }jUAVValuemax

iUAVValueiUAV
j
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(13) 

 
The “max” operation in (13) is taken over the set of 
all possible UAVs that can be assigned to the 
mission. 

The advantage of the concept of “risk-tolerance” 
is that it gives the user an extra concept to exploit.  
If the UAV is not of great relative value, but it still 
might be needed for a crucial mission after the 
current one, it might be useful to give it a low risk 
tolerance so that it is not lost on the current mission.  
This may allow it to be used on the following 
mission. 

The final concept and related fuzzy membership 
function that must be defined is “slow”.  A UAV is 
said to be slow if it takes a long time to travel a 
particular path.  The fuzzy membership function for 
the concept “slow” is defined as follows: 
 

( )( )
( )( )
( )( ){ } .

j

slow

Path,jUAVTmax
Path,iUAVT
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(14) 

 
A “slow” UAV experiences a higher relative 
mission risk since it is in the field longer and may be 
exposed to risk longer. 

To construct the fuzzy membership function for 
the fuzzy concept “assign UAV to Path” (AUP) 
make the following definitions: 
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The Heaviside step function denoted as χ in (15) 
takes the value one when its argument is greater than 
or equal to zero and is zero otherwise.  The quantity 

fuelε is added to the fuel term to make sure the UAV 
selected has more than enough fuel.  Given the 
definition of ( )( )Path,iUAVnum  the fuzzy 
membership function that gives the grade of 
membership of UAV(i) in the fuzzy concept “assign 
UAV to Path” is defined as 
 

( )( )

( )( )
( )( ) ,

j

AUP

Path,jUAVnummax
Path,iUAVnum

Path,iUAV ≡μ
 

 
(19) 

 
where the “max” operation in the denominator of 
(19) is taken over the set of all UAVs that can be 
assigned to the path. 

4 CONTROL ALGORITHM 

Each UAV has a real-time algorithm onboard it that 
allows recalculation of paths during flight due to 
changes in environmental conditions or mission 
priorities.  These changes typically become apparent 
after the planning algorithm has run during the pre-
flight stage.  As in the case of the planning 
algorithm the control algorithm uses an A-star 
algorithm (Russel 2002) to do the best path 
calculation, employs fuzzy logic and solves a 
constrained optimization problem.  Although this 
can require a number of minutes of computation on 
a two to three gigahertz computer, this is considered 
adequate given the required UAV flight time 
between points. 

The control algorithms’ recalculation of flight 
paths can be triggered by a number of events such as 
weather broadcasts that indicate new taboo regions 
or changes of priority of sample points.  For those 
changes that do not require UAVs supporting each 
other, the control algorithm does not differ from the 
planning algorithm.  The control algorithm is faster 
by virtue that it only need process those parts of the 
measurement space where there have been changes 
relative to sample or taboo points. 

A UAV may requests help if it discovers a 
potential elevated system like a radio hole, 
malfunctions or suspected malfunctions.  All of 
these conditions can result in help messages being 
transmitted between the UAVs.  These help 
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messages can result in interactions between the 
UAVs based on transmission of the results of 
priority calculations for rendering support to the 
requesting UAVs.   

Currently in the control stage, when a UAV 
discovers an interesting physical phenomenon, is 
malfunctioning, or suspects due to internal readings 
that it is malfunctioning, it sends out a request for 
help.  Each UAV receiving this message calculates 
its priorities for providing assistance to the UAV in 
need.  This priority calculation gives rise to a 
number between zero and one, inclusive, which is 
subsequently transmitted to the original UAV 
desiring support.  The requesting UAV sends out an 
omni-directional message with the ID of the UAV 
with highest priority for contributing support.  The 
high priority UAV then flies into the necessary 
neighborhood of the requesting UAV to provide 
help. 

There are three classes of help request.  The first 
occurs when a UAV, the requester, determines it 
may have discovered an interesting physical 
phenomenon.  This phenomenon may be an elevated 
duct, radio hole, rain system or some other type of 
system with physical extent.  The requester desires 
to determine if the phenomenon has significant 
extent.  It will request that a helping UAV or UAVs 
sample likely distant points within this phenomenon. 

The second class of help request relates to a 
UAV that according to internal diagnostics may be 
experiencing a sensor malfunction.  This UAV will 
requests that another UAV or UAVs measure some 
of the points that the requesting UAV measured.  
This will help determine if the UAV is actually 
malfunctioning.  If the requesting UAV is 
determined to be malfunctioning, then it will fly 
back to base, if it is capable.  The determination of 
whether it is actually malfunctioning requires some 
consideration.  Since the second UAV will probably 
be measuring a distant point at a time different than 
the original requesting UAV made its 
measurements, potential variation in the index of 
refraction over time must be taken into account. 

When a UAV sends out an omni-directional 
request for help, those UAVs receiving the message 
will calculate their fuzzy priority for helping, 
denoted as “PH.”  The UAV that will ultimately 
help the requester is the one with the highest fuzzy 
priority for helping.  The fuzzy priority for helping 
takes into account a variety of properties of the 
potential helper.  The set of UAVs that receive the 
request for help from UAV(i) at time t is denoted 
as ),( tihelp .  If UAV(i) request help at time t and 
UAV(j) receives the message then UAV(j) will take 

into account the amount of time, denoted, 
( )( )jUAVtime_help , it will take it to fly from the 

point where it received the request to the point 
where it would provide support.  It also takes into 
account the amount of fuel UAV(j) has left at the 
time of the request, denoted ( )( )t,jUAVfuel ;  
UAV(j)’s fuzzy concept of price denoted as “price”, 
and UAV(j)’s fuzzy concept of “mission priority” at 
time, t .  Let the set of relevant UAV properties be 
denoted as prop_UAV and be defined as 
 

{ }price,prio_mission,fuel,time_help
prop_UAV =

 

 
(20) 

 
The fuzzy priority for helping denoted as PHμ  takes 
the form 
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The quantities αw  and αμ  for 

prop_UAV∈α are expert defined weights and 
fuzzy membership functions, respectively.  The 
fuzzy membership functions are defined in (22-25) 
and given below, 
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It is assumed that all evaluations are processed at 

time, t , so time dependence is suppressed in (21-25) 
for notational convenience.  A more sophisticated 
version of the control logic that takes path risk, 
changes in risk, UAV reliability, UAV risk-
tolerance and missed sample points into account will 
be the subject of a future publication. 

5 COMPUTATIONAL 
EXPERIMENTS 

The planning and control algorithms described in the 
previous sections have been the subject of a large 
number of experiments.  This section provides a 
description of a small subset of these experiments. 
They serve to illustrate how the algorithms were 
tested.  Due to space limitations only experiments 
involving up to three UAVs are discussed. 

UAV experiments using only one UAV 
demonstrate how the planning and control algorithm 
will determine the route the UAV flies so that it is 
successful in making measurements at sample points 
in space, while the UAV avoids taboo points, that is 
points in space that could damage or destroy the 
UAV.  Experiments using two UAVs illustrate how 
the control algorithm allows the UAVs to 
automatically support each other to increase the 
probability their joint mission is successful.   

Figures 1-4 use the same labeling conventions.  
Sample points are labeled by concentric circular 
regions colored in different shades of gray.  The 
lighter the shade of gray used to color a point, the 
lower the point’s grade of membership in the fuzzy 
concept “desirable neighborhood.”  The legend 
provides numerical values for the fuzzy grade of 
membership in the fuzzy concept “desirable 
neighborhoods”.  If the fuzzy degree of desirability 
is high then the index of refraction is considered to 
be close to the index of refraction of the sample 
point at the center of the desirable neighborhood.  
This allows the UAV to make significant 
measurements while avoiding undesirable 
neighborhoods. 

Each sample point is labeled with an ordered 
pair.  The first member of the ordered pair provides 
the index of the sample point.  The second member 

of the ordered pair provides the point’s priority.  For 
example, if there are spn sample points and the 

thq sample point is of priority p , then that point 
will be labeled with the ordered pair (q,p). 

Points surrounded by star-shaped neighborhoods 
varying from dark grey to white in color are taboo 
points.  As with the sample points, neighborhoods 
with darker shades of gray have a higher grade of 
membership in the fuzzy concept “undesirable 
neighborhood.”  The legend provides numerical 
values for the fuzzy grade of membership in the 
fuzzy concept “undesirable neighborhood.”  UAVs 
with high risk tolerance may fly through darker grey 
regions than those with low risk tolerance.  When 
comparing planning and associated control pictures, 
if a point ceases to be taboo, the neighborhood 
where it resides is marked by a very dim gray star as 
well as being labeled by a dialog box as being an 
“old taboo point.”  New taboo points and their 
associated undesirable neighborhoods are labeled 
with dialog boxes indicating that they are “new.” 

UAVs start their mission at the UAV base which 
is labeled with a diamond-shaped marker.  They fly 
in the direction of the arrows labeling the various 
curves in Figures 1-4.   

Figure 1 provides the sample points, taboo points 
and sample path for one UAV as determined by the 
planning algorithm.  It is important to notice that the 
UAV’s path passes directly through each sample 
point, i.e., through the center of the concentric 
circular regions representing the fuzzy degree of 
desirability of neighborhoods.  Fortuitously, the 
taboo points and their neighborhoods are so 
positioned that they do not interfere with the UAV’s 
measurement process or its return to base. 

Figure 2 depicts the actual path the UAV flies as 
determined by the UAV’s real-time control 
algorithm.  The path determined by the control 
algorithm differs from the one created by the 
planning algorithm due to real-time changes in taboo 
points.  After leaving the UAV base new weather 
data was acquired informing the UAVs that the 
exact position of the third sample point, i.e., the one 
labeled (3,1) actually resides within an undesirable 
neighborhood.  Due to the high priority of the 
sample point and the UAV’s risk-tolerance, the 
UAV flies into the taboo points’ undesirable 
neighborhood as indicated in Figure 2.   

In both the planning and control algorithms the 
UAV measures sample points of two different 
priorities, with the direction of the flight path 
selected so that the higher priority points are 
measured first.  By measuring high priority points 
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first, the likelihood of an important measurement not 
being made is diminished, if the UAV can not 
complete its mission due to a malfunction, change in 
weather, etc. 

Also, due to movement of old taboo points or the 
emergence of new taboo points which are marked 
“New,” the path determined for the UAV using the 
control algorithm is significantly different than the 
one created by the planning algorithm.  The path 
change represents the control algorithm’s ability to 
reduce UAV risk. 

Figure 3 depicts the sampling path determined 
by the planning algorithm for an experiment 
involving two UAVs.  The first, UAV(1) follows the 
dashed curve; the second, UAV(2), the solid curve.  
The UAVs were assigned to the different paths by 
the fuzzy path assignment decision rule described in 
section 3.  UAV(1) is assigned to sample all the 
highest priority points, i.e., the priority one points.  
UAV(2) samples the lower priority points, i.e.; those 
with priority two.  Due to the greedy nature of the 
point-path assignment algorithm, the highest priority 
points are assigned for sampling first. 

Figure 4 depicts the actual flight path the UAVs 
take during real-time.  Initially, UAV(1) is 
successful in measuring sample points one and two 
as assigned it by the planning algorithm.  Just 
beyond sample point two, UAV(1) experiences a 
malfunction.  UAV(1)’s real-time control algorithm 

subsequently sends out a help request informing the 
only other UAV in the field, UAV(2) of the 
malfunction.  UAV(2)’s control algorithm 
determines a new path for UAV(2) to fly so that the 
priority one points, labeled (3,1) and (4,1), that 
UAV(1) was not able to sample are subsequently 
measured.  After UAV(2) measures sample point 
five, its new flight path allows it to measure sample 
points three and four.  UAV(2)’s control algorithm 
determined it was very important that these priority 
one points be measured.  Unfortunately, due to the 
extra fuel expended in reassigning sample points 
three and four to UAV(2), UAV(2) did not have 
enough fuel to measure sample points seven and 
eight which were of priority two.  UAV(2)’s real-
time control algorithm determined the best possible 
solution in the face of changing circumstances and 
limited resources. 

It is important to note that the control algorithms 
running on UAV(1) and UAV(2) direct both UAVs 
to alter their return paths to the base due to the 
emergence of new taboo points making the planning 
algorithm determined flight paths too dangerous.  
The control algorithm uses each UAV’s fuzzy risk-
tolerance to determine how near each UAV may 
approach a taboo point. 

 
 
 
 

 
 
 
 
 
 

 

UAV 1 MISSION UAV 2 MISSION UAV 3 MISSION 

Locations Fly 
Mode 

Fuel Time 
Remain 
(minutes) 

Locations Fly 
Mode 

Fuel 
Time 
Remain 
(minutes) 

Locations Fly 
Mode 

Fuel 
Time 
Remain 
(minutes) 

Base  90.0 Base  85.0 Base  85.0
(1,1) NS 76.5088 (6,1) NS 67.9691 (11,3) NS 64.2839
(2,1) S 61.5088 (7,2) S 55.2412 (12,3) S 51.0412
(3,1) S 54.2662 (8,2) S 47.9986 (13,3) S 39.5559
(4,1) S 42.7809 (9,2) S 39.5133 (14,3) S 31.0706
(5,1) S 28.2956 (10,2) S 22.028 Base NS 6.2574
Base NS 6.7113 Base NS 11.7854    

 

Table 1: Details of three UAV mission depicted in Figure 5. 
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Figure 1: One UAV trajectory as determined by the planning 
algorithm. 

Figure 2: One UAV trajectory as determined by the 
real-time control algorithm. 

Figure 3: Trajectory of two UAVs as determined by the
planning algorithm. 

Figure 4: During flight, updates about environmental 
changes cause the real-time control algorithms on the two 
UAVs to change their trajectories. 
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Figure 5: Three UAV mission described in Table 1, an example of the AUP decision tree’s assignments. 

FUZZY LOGIC BASED UAV ALLOCATION AND COORDINATION

17



 
Figure 5 provides an example of the AUP 

decision tree’s assignment of three UAVs to three 
paths.  The highest priority locations are assigned to 
UAV(1) as it has the greatest fuel capacity, i.e., 90 
minutes.  UAV(1) however does not have enough 
fuel to handle the high priority points located at 
positions six and seven and therefore UAV(2) is 
assigned these points along with the second degree 
high priority locations.   

Table 1 provides numerical details of the tasks 
depicted in Figure 5.  The column labels have the 
following interpretation: “Location,” the UAV 
coordinates on the map; “Fly mode,” whether the 
UAV sampled from its previous location to its 
current position.  If the UAV sampled then a “S” 
was entered.  “NS” was entered if sampling did not 
occur.  “Fuel Time” refers to how much fuel 
remained by the time the UAV reached the 
associated location.   

6 SUMMARY 

Fuzzy logic based planning and control algorithms 
that allow a team of cooperating unmanned aerial 
vehicles (UAVs) to make meteorological 
measurements have been developed.  The planning 
algorithm including the fuzzy logic based 
optimization algorithm for flight path determination 
and the UAV path assignment algorithm are 
discussed.  The control algorithm also uses these 
fuzzy logic algorithms, but also allows three types of 
automatic cooperation between UAVs.  The fuzzy 
logic algorithm for automatic cooperation is 
examined in detail.  Methods of incorporating 
environmental risk measures as well as expert 
measures of UAV reliability are discussed as they 
relate to both the planning and control algorithms.  
Experimental results are provided.  The experiments 
show the algorithms’ effectiveness.   
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