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Abstract: In this work, a model predictive control (MPC) method combined with support vector regression (SVR), is 
applied to the design of the thermoelectric (TE) power control in the SP-100 space reactor. The future TE 
power is predicted by using SVR. The objectives of the proposed model predictive controller are to 
minimize both the difference between the predicted TE power and the desired power, and the variation of 
control drum angle that adjusts the control reactivity. Also, the objectives are subject to maximum and 
minimum control drum angle and maximum drum angle variation speed. The genetic algorithm (GA) is 
used to optimize the model predictive controller. A lumped parameter simulation model of the SP-100 
nuclear space reactor is used to verify the proposed controller. The results of numerical simulations to check 
the performance of the proposed controller show that the TE generator power level controlled by the 
proposed controller could track the target power level effectively, satisfying all control constraints. 

1 INTRODUCTION 

The SP-100 was designed to provide a realistic and 
reliable source of long-term power for space 
exploration and exploitation activities. The SP-100 
system is a fast spectrum lithium-cooled reactor 
system with an electric power rating of 100 kW 
(Demuth, 2003) and its energy conversion system is 
based on a direct TE conversion mechanism. The 
control system is a key element of space reactor 
design to meet the mission requirements of 
economics, reliability, safety, survivability, and life 
expectancy. For a space mission with uncertain 
environment, rare events, and communication 
delays, all the control functions must be achieved 
through a sophisticated control system with a limited 
degree of human intervention from the earth. 

In order to optimize the reactor power control 
performance, techniques for the optimal power 
control of nuclear reactors have been studied 
extensively in the past two decades (Cho and 
Grossman, 1983; Shtessel, 1998). But it is very 

difficult to design optimized controllers for nuclear 
systems because of variations in nuclear system 
parameters and modeling uncertainties, and in 
particular, for the long-term operation of the SP-100 
reactor. 

This work employs the MPC method, which has 
received much attention as a powerful tool for the 
control of industrial process systems (Kwon and 
Pearson, 1977; Garcia et al., 1989). The basic 
concept of the model predictive control is to solve an 
optimization problem for a finite future at the 
current time. Once a future input trajectory is 
chosen, only the first element of that trajectory is 
applied as the input to the plant, and the calculation 
is repeated at each subsequent instant. This method 
has many advantages over the conventional infinite 
horizon control because it is possible to handle input 
and output constraints in a systematic manner during 
the design and implementation of the control. In 
particular, it is a suitable control strategy for 
nonlinear time varying systems. The MPC method 
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has been applied to a nuclear engineering problem 
(Na et al., 2003). 

Also, this work incorporates the support vector 
machines (SVMs) that have been successfully 
employed to solve nonlinear regression problems 
(Pai and Hong, 2005; Yan et al., 2004). The SVR is 
used to predict the future output that is required in 
the optimization objective of the model predictive 
control. That is, at the present time the behavior of 
the process over a prediction horizon is considered 
and the process output to changes in the manipulated 
variable is predicted by SVMs. In this application, 
based on this identified reactor model that consists 
of the control drum angle and the TE generator 
power, the future TE generator power is predicted. 
The objective function for MPC is minimized by a 
GA that is widely used for optimization problems. A 
lumped parameter simulation model of the SP-100 
space reactor is used to verify the proposed 
controller for a space nuclear reactor. 

2 MPC CONTROLLER USING 
SVR 

Figure 1 shows the basic concept of the model 
predictive control (Garcia, 1989). At first a set of 
present and future control moves are assumed, and 
the future behavior of the process outputs can be 
predicted over a prediction horizon L  with the 
assumed present and future control moves. Then the 
optimized M  present and future control moves 
( M L≤ ) are optimized to minimize a quadratic 
objective function. Although M  optimized control 
moves are calculated, only the first control move is 
implemented. At the next time step, new values of 
the measured output are obtained, the control 
horizon is shifted forward by one step, and the same 
calculations are repeated by using updated 
measurements. 

The purpose of taking new measurements at each 
time step is to compensate for unmeasured 
disturbances and model inaccuracies, both of which 
cause the measured system output to be different 
from the predicted one. At every time instant, model 
predictive control requires the on-line solution of an 
optimization problem to compute optimal control 
inputs over a fixed number of future time instants, 
known as the time horizon.  

Also, in order to achieve fast responses and 
prevent excessive control effort, the associated 
performance index for deriving an optimal control 
input is represented by the following quadratic 
function: 
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where the parameter ρ  determines trade-off 
between the TE power (system output) error and 
control drum angle (control input) move between 
neighbouring time steps, and z  is a setpoint (desired 
TE power). The estimate ˆ( | )y t k t+  is an optimum 
k -step-ahead prediction of the system output based 
on data up to time t . uΔ , )1()()( −−=Δ tututu , is 
an input move between neighbouring time steps. The 
parameters L  and M  are called the prediction 
horizon and the control horizon, respectively. The 
prediction horizon represents the limit of the instant 
in which it is desired for the output to follow the 
reference sequence. The constraint, ( 1) 0u t kΔ + − =  
for k M> , means that there is no variation in the 
control signals after a certain interval M . 
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Figure 1: Basic concept of a MPC method. 

In order to obtain control inputs, the predicted 
outputs are first calculated by function 
approximation using SVMs, in which inputs consist 
of past values of control system inputs and outputs 
and of future control system input signals. Along 
with the introduction of Vapnik’s ε -insensitive loss 
function (Vapnik, 1995), SVMs also have been 
extended and widely used to solve nonlinear 
regression estimation problems. In SVM regression 
the concept is to map the input data into a high 
dimensional feature space and subsequently carry 
out the linear regression in the feature space. 
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Therefore, the SVM regression is used to predict the 
future output based on past inputs and outputs. 

2.1 Output Prediction 

The basic concept of the SVM regression is to map 
nonlinearly the original data x  into a higher 
dimensional feature space. Hence, given a set of data 
{ }N

iii y 1),( =x  where ix  is the input vector, iy  is the 
actual output value and N  is the total number of 
data patterns, the SVM regression function is 
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where )(xiφ  is called the feature that is nonlinearly 
mapped from the input space x , 

[ ]TNwww 21=w , and [ ]TNφφφ 21=φ . 
The parameters w  and b  are a support vector 
weight and a bias that are calculated by minimizing 
the following regularized risk function: 
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Here, λ  and ε  are user-specified parameters and 

ε)(xfyi −  is called the ε -insensitive loss function 
(Vapnik, 1995). The loss equals zero if the estimated 
value is within an error level ε . The regularized risk 
function can be rewritten by the following 
constrained form: 
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where the constant λ  determines the trade-off 
between the flatness of )(xf  and the amount up to 
which deviations larger than ε  are tolerated and 

[ ]TNξξξ 21=ξ , [ ]TNξξξ 21
* =ξ  are 

slack variables representing upper and lower 
constraints on the outputs of the system. 

The solution to the constrained optimization 
problem is given by the saddle point of the Lagrange 
functional: 
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The above equation is minimized with respect to 
the primal variables *,,, iib ξξw , and then 
maximized with respect to the nonnegative 
Lagrangian multipliers ** ,,, iiii ββαα . The 
minimum with respect to *,,, iib ξξw  provides the 
following conditions: 
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The Lagrange functional can be rewritten by 
using the above minimum conditions as follows: 
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subject to the constraints 
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By solving the above equation with standard 
quadratic programming technique, the values of 

*, ii αα  are found out. By substituting Eq. (7) into 
Eq. (2), the regression function becomes 
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where )()(),( xφxφxx i
T

iK =  is called the kernel 

function. A number of coefficients *
ii αα −  are 

nonzero values and the corresponding training data 
points have approximation error equal to or larger 
than ε . They are called support vectors.  

2.2 Objective Function Optimization 
by a GA 

The objective function of Eq. (1) can be solved by 
linear matrix inequality (LMI) techniques. In this 
work, a GA is used to minimize the objective 
function with multiple objectives. The GA has been 
known to be effective in solving multiple objective 
functions and is less susceptible to getting stuck at 
local minima compared to conventional search 
methods (Goldberg, 1989). 

We propose an SVM-based MPC methodology 
which is based on a dynamic nonlinear SVM model 
of the SP-100 space reactor. The optimization 
problem which needs to be solved online is no 
longer a linear problem but a complicated nonlinear 
problem which requires a tremendous computational 
effort. This calculation cannot be completed on time 
even by the fast computing systems [22]. Due to the 
peculiarity of the SVM model, conventional 
optimization techniques cannot be easily applied. 
Therefore, in this work, the online optimization 
problem is solved using a GA. 

In the GA, the term chromosome is referred to as 
a candidate solution that minimizes a cost function. 
The GAs require a fitness function and the fitness 
function evaluates the extent to which each 
candidate solution is suitable for specified 
objectives. The GA starts with an initial population 
of chromosomes, which represent possible solutions 
of the optimization problem. The fitness function is 
computed for each chromosome. New generations 
are produced by the genetic operators, such as 
selection, crossover, and mutation. The algorithm 
stops after the maximum allowed time has elapsed. 

A chromosome which is a candidate solution of 
the optimization problem is represented by gs , 
whose elements consist of present and future control 
inputs and has the following structure (Sarimveis 
and Bafas, 2003): 

( ) ( 1) ( 1)g g g gs u t u t u t M⎡ ⎤= + + −⎣ ⎦ , (11) 

where t  indicates the current time. Assuming we 
have chosen the number of chromosomes G , which 
will constitute the initial population, the crossover 
probability cp  and the mutation probability mp , the 
algorithm proceeds according to the following steps: 

Step 1 (initial population generation): Set the 
number of iterations 1iter = . Generate an initial 
population consisting of a total of G  chromosomes. 
The values are allocated randomly, but they should 
satisfy both input and input move constraints of Eq. 
(1).  

Step 2 (fitness function evaluation): Evaluate the 
objective function of Eq. (1) for all the chosen 
chromosomes. Then invert the objective function 
values and find the total fitness of the population as 
follows: 

1

1
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G

gg

F
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where ( )gJ t  is the objective function value for the 

g -th chromosome and the inversion of ( )gJ t  is a 
fitness value of the g -th chromosome. Then, 
calculate the normalized fitness value of each 
chromosome, meaning that the selection of 
probability gp  calculated by 

( )1/ ( )
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g

J t
p g G

F
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Step 3 (selection operation): Calculate the 
cumulative probability gq  for each chromosome 
using the following equation: 

1

, 1, ,
g

g j
j

q p g G
=

= =∑ . (14) 

For 1, ,g G= , generate a random number r  
between 0 and 1. Select the chromosome for which 

1g gq r q− ≤ ≤ . At this point of the algorithm a new 
population of chromosomes has been generated. The 
chromosomes with high fitness value have more 
chance to be selected. 

Step 4 (crossover operation): For each 
chromosome gs , generate a random number r  
between 0 and 1. If r  is lower than cp , this 
particular chromosome will undergo the process of 
crossover, otherwise it will remain unchanged. Mate 
the selected chromosomes. The crossing point is the 
position indicated by a random integer number z  
generated between 0 and 1M − . Two new 
chromosomes are produced by interchanging all the 
members of the parents following the crossing point. 
The crossover operation might produce infeasible 
offsprings and this situation is avoided by a simple 
correction mechanism for an input variable, which 
modifies the values of the input parameters after the 
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cross position so that the input move constraints are 
satisfied.  

Step 5 (mutation operation): For every member 
of each chromosome gs , generate a random number 
r  between 0 and 1. If r  is lower than mp , this 
particular member of the chromosome will undergo 
the process of mutation, otherwise it will remain 
unchanged. Each chromosome should satisfy both 
input and input move constraints of Eq. (1) after 
mutation.  

Step 6 (repeat or stop): If the maximum allowed 
time has not expired, set 1 iter iter= +  and return 
the algorithm to Step 2. Otherwise, stop the 
algorithm and select the chromosome that produced 
the lowest value of the objective function throughout 
the entire procedure. 

3 APPLICATION TO THE SP-100 
SPACE NUCLEAR REACTOR 

The SP-100 system is a fast spectrum lithium-cooled 
reactor system that can generate electric power of 
100 kW for space exploration and exploitation 
activities. The reactor system is made up of a reactor 
core, a primary heat transport loop, a thermoelectric 
generator, and a secondary heat transport loop to 
reject waste heat into space through radiators. The 
reactor core is composed of small disks of highly 
enriched (93%) uranium nitride fuel contained in 
sealed tubes. The heat generated in the reactor core 
is transported by liquid lithium and is circulated by 
electromagnetic (EM) pumps. The interface between 
the primary heat transport system and the energy 
conversion system is a set of primary heat 
exchangers. The energy conversion system uses the 
direct TE conversion mechanism. A temperature 
drop of about 500 K is maintained across the TE 
elements by the cooling effect of a second liquid 
lithium loop that transfers the waste heat from the 
converter to a heat-pipe radiator. 

The model predictive controller for the power 
level control is subject to constraints as follows: 

( 1) 0 foru t j j MΔ + − = > , 0 ( ) 180o ou t≤ ≤ , 
( ) 1.4ou tΔ ≤ . 

The sampling interval T  is 1 second. The external 
reactivity control uses the mechanism of the stepper 
motor control drum system (Shtessel, 1998).  

The regression function by SVMs is solved by 
using one fifth of a data set shown in Fig. 2. 77 
support vectors are collected at every interval (one 
per five data points) from the data of 1000 sampling 
points. 

Figure 3 shows the detailed performance of the 
proposed model predictive controller. It is shown 
that the TE generator power follows its desired value 

very well. It was known that the proposed controller 
meets several constraints very well and 
accomplishes the fast and stable responses.  
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Figure 2: Training data plot. 
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Figure 3: Performance of the proposed MPC controller. 
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In addition, a conventional proportional-integral 
(PI) controller was designed to compare the 
performance of the power level response with the 
proposed model predictive controller optimized by 
the GA (refer to Fig. 4). The PI controller has a little 
slower response and bigger overshoot and 
undershoot than the proposed MPC.  
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Figure 4: Performance of a PI controller. 

4 CONCLUSIONS 

In this work, the model predictive controller 
optimized by the GA and combined by SVMs was 
developed to control the nuclear power in the SP-
100 space reactor system. The future TE power is 
predicted by using the SVMs and the GA was used 
to optimize the model predictive controller. It was 
determined from many numerical simulation results 
that the proposed controller was able to actuate the 
control drum to regulate the control reactivity so that 
the TE generator electric power followed the set 
point changes according to load demands. Also, the 
performance of the new proposed controller was 
proved to be more efficient than that of the 
conventional PI controller. 
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