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Abstract: Localization is the problem of determining a robot’s location in an environment.  Monte Carlo Localization 
(MCL) is a method of solving this problem by using a partially observable Markov decision process to find 
the robot’s state based on its sensor readings, given a static map of the environment.  MCL requires a model 
of each sensor in order to work properly.  One of the most important sensors involved is the estimation of 
the robot’s motion, based on its encoders that report what motion the robot has performed.  Since these 
encoders are inaccurate, MCL involves using other sensors to correct the robot’s location.  Usually, a 
motion model is created that predicts the robot’s actual motion, given a reported motion.  The parameters of 
this model must be determined manually using exhaustive tests.  Although an accurate motion model can be 
determined in advance, a single model cannot optimally represent a robot’s motion in all cases.  With a 
terrestrial robot the ground surface, slope, motor wear, and possibly tire inflation level will all alter the 
characteristics of the motion model.  Thus, it is necessary to have a generalized model with enough error to 
compensate for all possible situations.  However, if the localization algorithm is working properly, the result 
is a series of predicted motions, together with the corrections determined by the algorithm that alter the 
motions to the correct location.  In this case, we demonstrate a technique to process these motions and 
corrections and dynamically determine revised motion parameters that more accurately reflect the robot’s 
motion.  We also link these parameters to different locations so that area dependent conditions, such as 
surface changes, can be taken into account.  These parameters might even be used to identify surface 
changes by examining the various parameters.  By using the fact that MCL is working, we have improved 
the algorithm to adapt to changing conditions so as to handle even more complex situations. 

1 INTRODUCTION 

Localization is the problem of determining a robot’s 
accurate location in an environment based on 
inaccurate sensor information.  For most complex 
tasks, a robot must know its current location before 
it can perform any useful actions.  In fact, a robot 
needs to know its current location in order to find a 
specific subsequent location where it needs to 
perform an action.  Effective localization is 
fundamental to most mobile robot applications.  The 
problem of localization arises from the fact that all 
physical sensors are inaccurate.  If the encoders on a 
robot gave the exact distance moved without error, 
then there would be no localization problem.  After 

any motion, the robot would be at the location given 
by the encoders.  Unfortunately, no physical sensors 
are perfect.  Robots commonly have some type of 
range sensor which is used together with a map of 
the environment to determine the actual motion.  Of 
course, range sensors are also prone to error.  
Localization is the problem of compensating for all 
of these errors and producing an accurate position. 

One common algorithm for localization is Monte 
Carlo Localization (MCL) (Thrun et al 2005).  MCL 
combines various sensor models and a map of the 
environment, using a recursive Bayes filter to 
estimate the belief state of the robot’s location.  
Obviously, the quality of these models is important.  
Although MCL is robust to some errors in the 
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models and map, the combination of different errors 
can cause it to fail. 

Since most of the time MCL works properly, 
finding the correct localization for the robot, it is 
possible to correct various errors in the models to 
allow MCL to converge to a correct solution even 
more accurately.  Although improvements are 
unnecessary when the algorithm is already working, 
by making corrections the errors should not build up, 
and future situations may be easier to solve 
correctly.  Since minor errors in MCL can combine 
to produce problems, reducing minor errors when 
they have no impact prevents those same errors from 
building up with other errors to cause localization 
failures. 

One situation where reducing minor errors is 
critical is in the case of global localization.  This is a 
special case of localization where the robot’s starting 
position is unknown.  In this case, the entire space 
must be searched and minor errors can easily cause 
global localization to fail.  If some of these minor 
errors can be removed during ordinary execution, 
then global localization in the future may be easier. 

It has already been demonstrated that the static 
map of the environment required by MCL can be 
updated during ordinary execution to accommodate 
changes in the environment (Milstein, 2005).  In this 
article, we demonstrate that it is also possible to 
update the parameters of the motion model during 
execution of MCL to provide a more accurate idea 
of how the robot moves through the environment.  In 
general, a single, simplified, motion model is created 
that reflects some idea about how a robot moves.  
This model is necessarily a generalization because 
the robot’s motion is effected by various changing 
situations, such as the surface it moves on, and 
possibly the power of the batteries or the inflation 
and wear on the tires.  While all of these situations 
could be monitored and manually compensated for, 
it would require an enormous amount of work to 
create a motion model that reflected all of these 
different states.  It is also impossible to predict all 
possible circumstances, so such a complex model 
would be invalidated by any unanticipated change in 
conditions.  By automatically updating the motion 
model according to the observations, it is possible to 
optimize the model to any situation, even if that 
situation has not been predicted in advance.  As the 
model is updated, errors in MCL due to the motion 
model are reduced, leaving greater tolerance for 
errors caused by other factors. 

2 BACKGROUND 

Monte Carlo Localization uses models of various 
sensors, together with a recursive Bayes filter, to 
generate the belief state of a robot.  In fact, MCL is a 
specific instance of a POMDP.  A standard form of 
MCL uses a motion model to predict the robot’s 
motion together with a sensor model to evaluate the 
probability of a sensor reading in a particular 
location.  The sensor model necessarily includes a 
static map of the environment.  The algorithm can be 
applied to virtually any robot with any sensor 
system, as long as these two models can be created.  
One common implementation where MCL is very 
successful is on a wheeled robot using a range 
sensor such as a laser rangefinder.  One benefit of 
this combination is that the map and location used 
by the algorithm are in a human readable format.  
Although we give the general algorithm in the 
following sections, which should be applicable to 
other robots, where application specific details are 
required, we assume the type of robot as described. 

2.1 Recursive Bayes Filter 

MCL is an implementation of a recursive Bayes 
filter.  The posterior distribution of robot poses as 
conditioned by the sensor data is estimated as the 
robot’s belief state.  A key detail of the algorithm is 
the Markovian assumption that the past and future 
are conditionally independent given the present.  For 
a robot this means that if its current location is 
known, the future locations do not depend on where 
the robot has been.  In virtually any environment this 
is the case, so making the assumption is reasonable 
in general. 
 To produce a recursive Bayes filter, we 
represent the belief state of the robot as the 
probability of the robot’s location conditioned by the 
sensor data, where sensors include odometry. 

          (1) 
 

xt represents the robot’s position at time t, zt the 
robot’s sensor readings at time t and ut is the motion 
data at time t.  To simplify the subsequent equations 
we use the notation that at = at, …, a0. 
 While this equation is a good representation of 
the problem, it is not much use since it can not be 
calculated as is.  By applying a series of 
probabilistic rules, together with the Markovian 
assumption, equation 1 is factored into: 

  (2) 
 

 
Obviously, p(xt-1 | zt-1, ut-1) is Bel(xt-1) giving us 

the recursive equation necessary for a recursive 
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Bayes filter.  η is a normalization constant that can 
be calculated by normalizing over the state space.  
p(zt | xt) is the sensor model, representing the 
probability of receiving a particular sensor reading 
given a robot’s location.  Finally, p(xt | xt-1, ut) is the 
motion model.  It is the probability that the robot 
arrives at location xt given that it started at location 
xt-1 and performed action ut.  The sensor and motion 
model are representations of the physical 
components of the robot and must be determined 
experimentally for each robot and sensor device. 

2.2 Particle Approximation 

It would appear that, given the two models, equation 
2 is all that is necessary to perform localization with 
MCL.  Unfortunately, a problem occurs with the 
integral.  The equation requires integrating over the 
entire state space.  Although we can evaluate the 
models at any point in the space, there is no closed 
form to the integral.  Further, the simplest kind of 
robot moves in a continuous, 3 dimensional state 
space with an x and y location together with an 
angle of rotation.  Calculating the integral over this 
space is impossible, especially for a real time 
algorithm.  In order to solve this problem, we 
approximate the continuous space with a finite 
number of samples.  The integral over the space 
becomes a sum over the finite number of particles.  
Of course, approximating the space results in a 
certain amount of error when low probability 
locations are not represented.  If the robot is really at 
one of these locations it can never be localized.  
However, if the number of particles is well chosen 
MCL works well in most situations. 

2.3 Algorithm 

As the robot moves, it reports its odometry and 
sensor data to the MCL algorithm.  After each move 
each particle is moved randomly according to the 
motion model, based on the motion actually 
reported.  The particles are then updated with a 
weight determined by the sensor model for the 
particle’s location.  Finally, the particles are 
resampled by repeatedly choosing samples 
randomly, with replacement, from the current set, 
according to the weights assigned by the sensor 
model. 
 The effect of resampling is to replace the 
weight of the individual particles with the number of 
particles at that location.  On the robot’s next move 
the particles at a high probability location will 
spread out as they are moved randomly according to 
the motion model, with at least one landing in the 
robot’s new location.  Then the resampling will 

cause more particles to appear at the correct 
location, while incorrect locations die out.  
Assuming that the models and map are accurate, 
MCL will correctly track the robot’s changing 
location.  Various parameters can be tuned manually 
to adjust the rate of convergence and the behaviour 
of the models.  Once the belief over the robot’s 
location is generated, a single location for the robot 
can be found by looking at the mean of the particles. 

2.4 Motion Model 

The motion model p(xt | xt-1, ut) is a critical part of 
MCL.  Unlike the sensor model, which gives the 
probability of getting a specific sensor reading at a 
particular location, it is necessary to sample from the 
motion model.  Given a starting location and a 
reported motion (xt-1 and ut), MCL requires that we 
be able to choose a final location randomly 
according to the motion model.  This requirement 
precludes us from using any motion model that is 
very complex.  In fact, most motion models are a 
combination of simple Gaussian distributions.  For a 
holonomic wheeled robot the most common 
representation is with two kinds of motion leading to 
three kinds of error.  Each movement of the robot is 
represented as a linear movement followed by a 
stationary turn.  Although a particular robot 
probably does not follow these exact motions, if we 
break the robot’s motion into small increments we 
can use them as an approximation.   

Each translation of the robot is approximated by a 
Gaussian where the mean is the reported distance 
and the variance is the reported distance multiplied 
by a parameter.  This representation reflects the fact 
that the range error increases the further the robot 
travels.  Rotation is also represented by a Gaussian.  
The mean is again the reported angle, but the 
variance is a parameter multiplied by the angle 
turned, added to another parameter times the 
distance moved.  The variance takes into account 
both turn error, which increases as the robot turns, 
and drift error.  Drift error is defined as the robot 
turning when it tries to go straight.  Obviously, it 
increases the further the robot has travelled.  
Although it would seem that drift error should be 
minor, if it occurs at all, this is not in fact the case.  
Many holonomic wheeled robots use a system where 
the difference in motion between the drive wheels is 
used to turn the robot.  In such robots, moving 
forward is accomplished by turning both wheels the 
same amount, while turning is done by moving the 
wheels different amounts.  It is very likely that, 
while moving forward, the wheels turn at slightly 
different rates, causing the robot to rotate.  The three 
parameters involved in the model are often given as 
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kr for range error, kθ for turn error, and kd for drift 
error. 

These two Normal distributions together 
represent the motion model for many common 
robots.  However, the algorithms described in this 
paper should work for any model, provided it is 
possible to sample from it.  In general, some 
collection of Gaussians works well, since they are 
often good approximations to a physical system 
while at the same time being easy to sample from 
and optimize. 

3 DYNAMIC MOTION 

The MCL algorithm depends on certain static 
parameters that must be manually tuned for each 
implementation.  In particular, the sensor model 
relies on a static map of the environment, while the 
motion model requires parameters that reflect the 
specific robot’s motion in the particular 
environment.  Since most interesting problems occur 
in dynamic environments, or environments with 
different conditions in different areas, these static 
parameters are only a broad approximation.  
Fortunately, MCL is robust to errors in the map and 
motion model and will successfully localize a robot 
as long as these parameters are a reasonable 
representation.  However, the more error there is in 
the static parameters, the less tolerance the algorithm 
has for errors from other sources.  For example, if 
the environment changes so that the map becomes 
less accurate, perhaps because of furniture being 
moved, then an error in the motion model might put 
the robot in the wrong location.  If the changes in the 
map make an incorrect location look correct to 
MCL, then there is far less tolerance for the motion 
model to predict incorrect locations.  Either of these 
errors might be recoverable on their own, but both 
together could cause a localization failure.  If the 
motion model is correct, then the robot’s next 
location will be predicted correctly, and the fact that 
there is a similar location somewhere else won’t 
matter.  Similarly, if the map is accurate, then an 
incorrect prediction from the motion model will be 
low probability and will die out in favour of the 
correct location.  As errors in any static parameter 
build up over time, MCL’s tolerance towards 
additional errors is reduced until it becomes 
necessary to manually correct the parameters. 
 We already know that if MCL is successfully 
localizing the robot it is possible to automatically 
correct the map of the environment (Milstein, 2005).  
When the robot’s location is known, any differences 
between its sensor readings and the map are 
probably caused by errors in the map, rather than 

errors in the sensors.  This is especially true if the 
readings are repeated over time.  It is possible to use 
sensor readings taken when the robot is localized to 
correct the map.  With this modification the static 
map becomes more accurate over time, instead of 
less accurate.  Of course, it requires several 
observations to update the map, since a real 
environment might have transitory objects which 
should not be in the map, such as people.  Thus, 
even with a dynamic map, there are still errors that 
will reduce MCL’s tolerance to other problems. 

3.1 Motion Model Error 

On each step of execution, MCL uses the motion 
model to predict a new location for the robot, and 
then uses the sensor model to correct that location.  
Before the resampling step, the mean of the particles 
represents the location determined by the motion 
model.  After resampling, the mean represents the 
location of the robot according to the algorithm.  
This means that a side effect of executing MCL is a 
list of errors in the motion model.  By recording 
these values, we can dynamically generate a set of 
errors that can be processed to correct the model.  
Since each correction comes attached to a particular 
location, we can even record in what part of the 
environment the error occurred. 
 Given a set of errors, it would be quite easy to 
determine the variance of a Gaussian distribution, 
however, with the Gaussian motion model we are 
using it is not quite so simple.  The key realization is 
that we are not trying to calculate the variance, we 
are trying to find a parameter of the variance.  
Remember that the motion model for a differential 
drive robot depends on three parameters, range error, 
turn error, and drift error, represented as (kr, kθ, kd).  
If we let r be the distance travelled and θ be the 
distance turned, while r and θ are the estimations of 
these values returned by the motion model, then the 
distributions become: 

        (3) 
 

which are both single valued Gaussians.  From MCL 
we are given a set of {r, θ, r, θ} values and we wish 
to optimise the models in the parameters {kr, kθ, kd}.   

3.2 Variance Parameters 

Because we wish to determine parameters to the 
variance, instead of the variance itself, no standard 
technique for estimating Normal distributions will 
work.  In fact, the problem is no longer a single 
distribution, but rather a continuous set of 
distributions for each value of (r, θ).  Fortunately, 
the problem can be solved if we treat it as a general 

),(),,( rkkNrkrNr dr •+•=•= θθθ θ

LOCALIZATION WITH DYNAMIC MOTION MODELS - Determining Motion Model Parameters Dynamically in
Monte Carlo Localization

123



 

equation, instead of specifically as a probabilistic 
distribution.  The Gaussian equation for r becomes: 
 

 (4) 
 

Since we want to have an 
accurate model, we want the value of kr that 
maximizes the probability.  Given the set of data 
produced by MCL, we would like to maximize the 
probability obtained over that entire sample space. 
 

                                     
           (5) 

 
Of course, (5) is a little unwieldy to calculate, but a 
standard trick is to notice that if we maximize p(r) 
we also maximize log(p(r)).  Thus we are left with: 

               
 (6) 

 
                    
which is quite straightforward to maximize using 
virtually any nonlinear technique.  A similar process 
for θ gives us a slightly more complicated equation 
which is just as easy to solve. 
 

 
      

(7) 
 
 

Using an efficient nonlinear optimisation 
algorithm, we can maximize these equations over 
the parameters kr, kθ, kd for sets of data obtained by 
MCL in real time.  Although the functions are not 
concave in these parameters, we have good starting 
parameters available, since MCL is already using a 
motion model.  The current parameters make a good 
starting point for the optimization.  The new 
parameters can be used immediately, while the data 
is still collected to further refine them. 

3.3 Algorithm 

Now that we have a method to update the motion 
model dynamically, we need to integrate it with 
MCL, hopefully without significantly affecting the 
runtime.  One of the benefits of MCL is that it is a 
fairly low cost algorithm and it is important that we 
do not make changes that significantly increase the 
amount of time it takes to run.  Since MCL must run 
in real time, whatever processing is necessary to 
update the motion model must not delay 
localization.  With these requirements in mind, our 
dynamic motion model MCL algorithm provides a 

minor alteration that allows the parameters of the 
motion model to be recalculated and used. 

At each MCL update step a {r, θ, r, θ} data point 
is recorded.  When enough new data points are 
recorded to make it worthwhile to calculate new 
parameters, the equation is maximized in the 
background, using whatever power is available when 
localization is finished.  When the maximization is 
complete, the new parameters are reported to the 
MCL algorithm.  In fact, MCL itself is unaware of 
the changing parameters, since it just runs normally. 

In order to reduce the complexity of the 
calculation, only the most recent set of errors are 
used.  When a predetermined number of corrections 
are recorded, each subsequent observation causes the 
oldest observation to be removed.  This creates an 
upper bound for the maximization routine and also 
allows the dynamic model to update to changing 
conditions.  For example, if the robot’s tires deflate, 
or water is spilled on the floor, the motion of the 
robot would change.  In that case, after a certain 
number of updates, all of the old data would be 
removed and the model would be calculated entirely 
based on the changed conditions. 

In order to accommodate different conditions in 
different areas, data points are not stored globally 
but are instead recorded by region.  Each region of 
the map has its own collection of data.  If there are 
insufficient points to calculate the parameters then 
the previous parameters are used.  However, once 
the robot traverses an area enough that it can update 
the motion model, it calculates the parameters and 
stores them with the area.  When it subsequently 
enters the same region, it can load the specific 
parameters.  Any reasonable algorithm for defining 
regions can be used, smaller regions will be more 
accurate but will take longer to receive enough data, 
while larger regions will update sooner but may 
represent multiple conditions. 

The results of this dynamic motion model 
algorithm are a map annotated with the motion 
model parameters for different regions.  Aside from 
changing the motion model during execution, the 
map can also be used to provide additional data for 
planning or analysis.  For example, if a region 
causes a high variance, then it might be better for the 
robot to avoid that region when path planning.  Also, 
a significant change in variance might indicate some 
kind of spill that should be dealt with.  A robot 
might also use the different parameters to identify 
different surfaces in the environment for another 
machine, perhaps planning a route that avoids 
certain kinds of surface. 

Although creating dynamic motion models uses 
successful localization to correct errors in the model, 
it does not preclude using the same data to correct 
other errors.  In particular, it is possible to 
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dynamically update the map of the environment as 
in (Milstein, 2005), while simultaneously 
dynamically updating the motion model.  In fact, 
using both of these together causes them both to 
work better than either one alone.  There is no 
reason why other parameters could not also be 
dynamically updated at the same time. 

4 RESULTS 

The dynamic motion model algorithm was tested 
using a 2 wheeled Pioneer 3-DX differential drive 
holonomic robot equipped with a 180 degree SICK 
laser rangefinder.  Data gathered by the robot over a 
traversal of the environment was processed by both 
the normal MCL algorithm and various 
implementations of the dynamic motion model MCL 
algorithm.  The parameters of the motion model 
were calculated by maximizing the equations as 
described using Matlab’s ‘fminsearch’ function.  
Dynamic map MCL (Milstein, 2005) was also used 
to see if the two dynamic methods could be used 
simultaneously.  The results show a marked 
improvement using dynamic motion models. 

At first, standard MCL was used with some 
default parameters for this class of robot.  Although 
these parameters work, they are general, high 
variance parameters that have not been specifically 
adapted to either the robot or the environment.  With 
these parameters the average error was 1.7% for 
range and 4.5% for angle. 

Figure 1: error vs. range for default parameters. 

Figure 1 shows the error in range versus distance 
moved for standard MCL.  Because it is impossible 
to separate the angle error caused by turning from 
the angle error caused by range any graph of angle 
error is not useful. 

Next, the dynamic motion model algorithm was 
used to calculate parameters based on the entire data 

set and MCL was run with these motion model 
parameters.  The resulting error was 1.0% for range 
and 2.9% for angle.  Of course, in practice this 
method is impossible, because it involves knowing 
the observations that will be made before they are 
actually recorded.  In practice, this method can be 
approximated by using a previous data set on the 
same environment to calculate the parameters.  
Figure 2 shows these motion parameters in action. 

Figure 2: error vs. range for global optimization. 

 The third test involved dynamic motion models 
with global data.  The parameters were updated 
during execution according to the preceding 
localization corrections.  With this method 1.2% 
range error and 2.6% angle error was recorded. 
 Finally, the full dynamic motion model 
algorithm was used.  Each region of the map, 
identified by the small circles, was updated with its 
own data and produced its own corrections.  This 
technique produced an error of 1.4% for range and 
2.8% for angle with characteristics as shown in 
figure 3. 

Figure 3: error vs. range for regional dynamic. 
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As these results show, dynamic motion models are 
better able to represent the robot’s motion, and 
localization becomes more accurate.  Table 1 shows 
a comparison of the various methods.  While all of 
the dynamic methods give similar results, they are 
far superior to the static motion model method that is 
the base case.  The particular method that is optimal 
in any given situation depends on the environment, 
although over the long run, the full dynamic 
technique should produce the minimum error.  
However, this convergence may require a large 
number of traversals in order to get the necessary 
number of data points for each region.  Until 
execution reaches this point, the other techniques 
have a temporary advantage, since they require less 
data. 

Table 1: Results of all algorithms. 

 % range error % angle error 
Default static 1.6592% 4.5311% 
Optimal static 1.0428% 2.9509% 

Global dynamic 1.2418% 2.6320% 
Regional dynamic 1.3882% 2.7878% 

 
 The technique of calculating the global 
optimum parameters provides very good results, 
especially in an environment like this with little 
change in surface.  Range error especially benefits 
from this technique, since it is relatively constant.  
However, generating this model requires manual 
collection and processing of data before execution, 
which somewhat defeats the purpose of a dynamic 
algorithm.  The benefit is that offline processing can 
handle a larger number of data points, resulting in 
more accurate parameters.  Of course, any changes, 
such as tire pressure, will invalidate the model.  
Although this technique uses part of the dynamic 
algorithm, it is not truly dynamic nor is it usually a 
practical method.   
 The choice between the two dynamic 
techniques depends on the circumstances.  If the 
environment has different surfaces then having the 
parameters change with the region provides a 
benefit.  If, on the other hand, the surfaces are 
constant but the robot changes conditions, a globally 
dynamic technique will update more quickly, since 
the data points are all processed into the same 
model.  A situation where this is useful might be 
when the robot changes its behaviour as its battery 
drains.  The global technique could adapt faster to 
changing robot conditions, but it cannot recognize 
different surfaces.  Note that the regional algorithm 
will eventually adapt to global conditions, but it will 
require more data since each region must be 
updated.  The choice depends strongly on the 

environment, although the regional method is more 
adaptable. 
 These results demonstrate that adding dynamic 
motion models to MCL provides a benefit to 
localization.  Although slightly different dynamic 
techniques provide different advantages, they are all 
superior to the static technique.  Aside from the tests 
described above, several other data sets in different 
environments were examined, with similar results.  
One such test involved a similar robot in a different 
building where the floor was carpeted instead of 
concrete.  The map of the environment incorporated 
a serious error that caused localization to fail for 
most techniques.  One corridor was actually much 
shorter than it appears in the map, causing motion 
along part of that corridor to have a large bias.  
Because of this, the range error in the dynamic 
techniques actually increases, as they increase the 
variance to handle the error.  Only the regionally 
dynamic technique was able to successfully localize 
in this environment.   

Table 2: Results of all algorithms for high error data. 

 % range error % angle error 
Default static 7.2343% 5.9671% 
Optimal static 8.6733% 1.3428% 

Global dynamic 9.5313% 1.4835% 
Regional dynamic 10.9178% 1.7166% 

Figure 4: Environment used for the tests. 

5 CONCLUSION 

We have derived and implemented a technique for 
dynamically calculating the parameters of the Monte 
Carlo Localization motion model during ordinary 
execution of the algorithm.  Our technique requires 
very little overhead and provides a strong benefit 
over the ordinary technique of using a static model 
determined experimentally from a similar robot.  In 
fact, the most common current technique is to 
estimate the model and modify it using trial and 
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error until localization is successful.  The problem is 
that performing experiments to determine the 
parameters is a difficult and laborious process.  
Since the parameters of a real environment change 
over time, it is usually not worthwhile to develop an 
accurate model when an approximate one will still 
allow MCL to function.  Our dynamic motion model 
technique provides a viable alternative to both these 
methods, allowing an accurate model to be created 
and maintained without requiring skilled user input.  
Since the frequency and size of the updates can be 
modified to suit the platform, there is no reason not 
to use a dynamic model.  Because MCL is running 
properly when the dynamic algorithm is active, there 
is no urgency in processing the error data into new 
parameters.  Thus the additional run time required 
can be limited to what is available on the particular 
platform.  Allocating more time will result in more 
frequent updates, but since the alternative is no 
updates there is no reason not to use even the 
slowest possible rate.  In fact, very good results can 
be obtained by using offline processing to determine 
a new model whenever conditions change.  
Although the offline method does not provide all the 
benefits of our full regional dynamic algorithm, it 
provides a great improvement over the default 
method. 
 Another benefit of having dynamic motion 
models is that they can be used to automatically 
optimize a robot to different conditions in the 
environment.  This may be an important feature for a 
robot that runs autonomously between different 
areas.  It is impractical to perform laborious 
experiments to determine an optimal model for 
different regions, but a general model can be 
automatically refined into specific models for many 
different conditions. 
 By reducing the error due to the motion model 
in MCL, our technique provides localization with 
greater resilience to errors from other causes.  The 
more accurate the various models are, the more 
tolerance MCL has towards random events that 
might otherwise cause it to fail.  In some 
circumstances this may be a major benefit, but even 
if ordinary MCL is successful in an environment, a 
more accurate model cannot harm its execution. 
 Since dynamic motion model MCL provides an 
annotated map which includes motion model 
parameters, it may be possible to use those 
parameters in order to determine information about 
the environment.  For example, by discovering the 
parameters caused by various types of surface, the 
robot might be able to identify those same surfaces if 
it encountered them again. Also, the motion models 
might be taken into account in path planning in order 
to give the robot a preference for stable surfaces.  
Finally, a robot might detect a change in its 

parameters and use them to identify a malfunction, 
such as deflated tires.  These uses for dynamic 
motion models would provide additional benefits to 
the algorithm, above the improvements it makes to 
localization. 
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