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Abstract: This paper discusses how to obtain local stability results from a fuzzy system for which global ones cannot
be obtained, basically due to infeasibility of some associated LMI problems. Two different approaches are
compared: modifying the consequent modeds setting up some relaxed LMI conditions if bounds on the
memberships are known. Some examples are used to illustrate the approaches.

1 INTRODUCTION 2 PRELIMINARIES

In many literature contributions, LMI stability condi- Let us consider a Takagi-Sugeno (Takagi and Sugeno,
tions (Boyd et al., 1994) are devised in order to prove 1985) (TS) fuzzy model:
stability and performance of Takagi-Sugeno (Takagi .
and Sugeno, 1985) fuzzy systems; however, such laws .
are usually independent of the values of membership r= Z pi(@)(4i - z) @)
functions, and fulfill for any arbitrary shapes of them =1 . .
(Tanaka and Wang, 2001; Wang et al., 1996). Knowl- wherey; represents membership functions such that:
edge of the shape of the membership functions may n
allow to lift some conservativeness. > pi(r) =1, pi(x)>0Vzi:l...n

For instance, if the usual Jacobian linearisation in i=1
x = 0 is stable, Lyapunov 1st theorem states that
there exists a region in which the system is locally
stable. The approach in this paper allows to explicitly
define a minimum spherical zone around the equilib-
rium point where Lyapunov stability conditions are
fulfilled, even in the case global quadratic-stability re- dav
lated LMIs are infeasible. Indeed, (Tanaka and Wang, V(z) >0, I <0 V(0)=0,vz#0
2001) shows that the basjn of attraction for fuzzy sys- 1p¢ analysis of the Lyapunov stability of TS fuzzy
tems may be membership dependent. systems may be approached as a linear matrix in-
_ The_ structure of the paper is as follows: Next SeC- gquality (LMI) optimization problem (Boyd et al.,
tion discusses notation and widely-known stability 1994).  The most popular Lyapunov Functions pro-
theorems. Section 3 discusses a transformation Ofposed in literature are quadratic forms7(z) =
a fuzzy model when the membership functions are ;.7 p,.  This type of Lyapunov functions fulfill the
themselves a convex combination of some vertices. grapijity conditions ifP is definite positive and if
Section 4 applies the results to find the largest lo-
cal quadratically stable region. Some examples are
provided in Section 5, and a conclusion section sum-
marises the main results.

Stability of fuzzy systems

Lyapunov stability theory proves that such a system is
stable if exist a functio¥ () such that:

V=> pa" (AT P+ PA)z <0 2)
i=1

That holds if
ATP+ PA; <0,i:1.m 3)
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The above equation is an LMI, hence widely avali-
able LMI optimization software either finds & or
determines that the LMI is infeasible. The reader
is referred to (Tanaka and Wang, 2001) for ample
discussion.

Remark: Note that the membership functiops
do not appear in the LMI conditions. Hence, the same
P defines a quadratic Lyapunov function for multi-
ple nonlinear systems with the same “vertex models”
as the original one. Such generality is a too restrictive
condition that in some cases results in infeasibility be-
ing the underlying system actually stable.

When the above LMI problems are unfeasible,
other alternative conditions must be sought. Fuzzy or
piecewise Lyapunov functions are discussed in (Jo-
hansson, 1999), Fuzzy Lyapunov functions are dis-
cussed in (Oliveira et al., 1999).

A different alternative, in the authors’ opinion,
is trying to achieveocal stability results in a zone

around the equilibrium as large as possible. Such a

result is motivated on the first Lyapunov theorem for
local stability: if the linearised system in= 0 is ex-
ponentially stable, then so it is the nonlinear one, for
initial conditions in a sufficiently small neighborhood
ofz =0.

3 LOCAL FUZZY MODELS

In order to analyze the local stability of a TS fuzzy
model (1) within a region, the original model is
modified using the information of the membership
functions.

Lemmal if the membership functiong(z) of a
fuzzy system described (@) in a region of 2 can

be themselves expressed as a convex sum of some

vectorsvy:
=Y By(a)vy, Ve (4
p=1
where:
p(x) = [p1(x), pa(x), .., pn ()]
Zﬂp )=16,(2) >0Ve eQp:1...n
Then the system can be transformed to:
i= Bpla)A 5)
p=1
where .
Ay = vpid 6)

Proof: The expressiof¥) can be substituted in the
system equatiofi):

Ny

wlz) = Y Bpla)vy (7)
p=1
Up = [Up1,Vp2,. .., Upn (8)
pi(z) = Z Bp () vpi 9)
p=1
z = Z Z Bp(x)vpA; - x (10)
i=1p=1
T = z Bp(z) vaiAi T (11)
p=1 %
so the local representation of the systenflin
= Z Bp(z -x Ve el
where:
Zﬁp )=18,(2) >0Vz € Qp:1.
O

The convex-combination conditions for the mem-
bership functions required in the above lemmas are
easy to meet. Indeed; are assumed known in fuzzy
systems. Then, the result below may be applied to
obtain a (possibly conservative) vertex set.

Notel Let us consider a regiof2. If boundsuM
and p* on the extremum values of the membership
functions inQ2 can be computed, in such a way that:

M > , ™ < min
pit 2 maxpi(z)  pf < minpg(z) (12)
then there exist a set ¢f,(z), p = 1,...,n, So that
the vector of membership functions
.u“(x) = [.ul(‘r)7 .[142(17)7 s 7,[Ln(-73)]
may be expressed in as:
vp, T EQ (13)

r) = Zﬂp(x)

where:

Zﬁp

Indeed, the linear restrictiong > u; > u,
", = 1 describe a bounded polytope with a finite
number of vertices (Luenberger, 2003).

)=108p(z) >0VzeQp:1...n
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Well-known linear-programming-related methods results in

to obtain the membership vector vertices may be used

23 = {(0.15,0.5,0.35)}

in an LP problem (Luenberger, 2003)). A related al- models is:

ternative is described below.

Lemma?2 Consider the seE; of at most2”~! vec-
tors defined by:

Yo ={f1, s lim1, X, i1y ooy flnls

X=1- Y iy
1<j<n
i
suchthafi; € {u}’, "}y j # i, p" < X < p'}
(14)
Then, the vectors belonging to the set
Y= U ¥, (15)

satisfy(13) for somegs,.

¥ = {(0.35,0.3,0.35), (0.15, 0.5, 0.35),
(0.3,0.3,0.4), (0.15,0.45,0.4)}

4 STABILITY ANALYSISIN A
ZONE

The knowledge of the membership functions will al-

low to obtain some local stability analysis results for
a fuzzy systems. Two alternatives may be applied:
the first one will use the above defined local models;
the second one will use some relaxations on LMI con-
ditions via additional variables and knowledge of the
minimum and maximum bounds on membership.

4.1 Local Fuzzy Models

Indeed, as there is only one equality restriction in i ) )
memberships, all except one of them are “free” to By using the transformed models discussed in the pre-
attain an extremum value; the remaining one must Vious section, local stability results may be obtained
fulfill the add-1 restrictiorand be inside its required by the lemmas in Section 2.
bounqs. The above I(_ama produces the union of a_II the|_emma 3 The ellipsoidal regio2*

“all minus one” combinations, and the sought vertices p T
will belong to such set. Q* ={z\a" Pz <V, P> 0} (16)

Example.  For instance, if three memberships s a basin of attraction of the equilibrium poimt= 0
have minimum and maximum values given by of the systenfl) if

{0.15,0.3,0.35and{0.6,0.5,0.4, the set; is origi-
nated by the four combinations:

{(X1,0.3,0.35), (X5,0.5,0.35),
(X3,0.3,0.4), (X4,0.5,0.4)}

with X; =1 —0.65 = 0.35, X5 = 0.15, X3 = 0.3,

X4 = 0.1. As X, is out of the required range, the

candidate vertices kept are:
¥ ={(0.35,0.3,0.35), (0.15,0.5,0.35),
(0.3,0.3,0.4)}
The set; is generated by:
{(0.15, X1, 0.35), (0.6, X5, 0.35),
(0.15, X3,0.4), (0.6, X4,0.4)}

with X; = 0.5, X5 = 0.05, X5 = 0.45 and X, = 0.
Hence,

35 ={(0.15,0.5,0.35),(0.15,0.45,0.4) }
Regarding the third membership,

{(0.15,0.3, X1), (0.6, 0.3, X3),
(0.15,0.5, X3), (0.6,0.5, X4)}
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17)
Vir < min{z? Pz \z € 0Q} (18)
whereodf) denotes the boundary 6f and P verifies:

ATP 4+ PAL <0 pil,...,n, (19)
i.e., all trajectories with initial state if2* converge
assymptotically ta: = 0.
Proof: As, by Lemma 1, the system can be ex-
pressed iM) as:

= Zﬁp(x)A; T
p=1

if the LMI (19)is feasible for a positive definite matrix
P,V (z) = 2" Pz is a decreasing function with time,
so a Lyapunov function has been obtained ensuring
thatQ* is an invariant set. La Salle’s theorem (Khalil,
1996) ensures that every solution starting(in will
approachz = 0.

As the expression of the local systgjis not valid
outsidef?, then the local stability can only be proved
in the largest ellipsoid2* contained in(2, which will
be defined by a value df,, equal to the minimum
value ofV (z) in the boundary of2 (92). O
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The following lemma is useful in order to set up
an LMI characterisation of the largest ellipsoidSin
which is a Lyapunov equipotentfal

Suppose defined as a symmetric polytope that
containse = 0:

Q={z\|a]z| <1i:1,...n,} (20)
Lemmad © = {z\z7Q 12 <1}, Q =QT >0
is an ellipsoid contained if2 which itself contains
the maximum volume sphere centered at 0 if the
LMI problem

minimizeA
subjecttor] > Q' >0

Q>0,a7Qa; <1, i=1,..n,

is feasible. Then, no other ellipsoid {& contains a
larger centered sphere. O

The proof appears in (Boyd et al., 1994) chapter 3.

Theorem 1 Consider the syster(il). The largest
spherical basin of attraction af = 0 provable by

a quadratic Lyapunov function in a symmetric poly-
topic regionf) has a radius\~z given by the solution
of the following LMI problem:

minimize\ subject to

AM>P > 0 (21)
P > 0 (22)
P j .
( af alj ) S0, P (23)
ATP+PA, < 0,p:lon, (24
and Q is defined as(20). The ellipsoid® =

{x\2T Pz < 1} is, of course, also contained in the
basin of attraction ofc = 0.

Proof: Conditions 24 imply that trajectories inside
any equipotential region defined B/converge to the
pointz = 0, as shown in Lemma 3.

Applying the Schur complement, the conditi¢a3)
are equivalent to

T p-1 -
a,P~"a, <1,i:1.n,

Then, condition$23) keepO inside(? and the condi-
tion (21) along with the LMI objective, maximize the
radius of the quadratically invariant sphere contained
in ©, from Lemma 4. O

!Largest is here understood as containing the largest

spherical ball around = 0, i..e, guaranteeing stability for
the largest initial distance to the origin.

4.2 Relaxed LMI Conditions

Another way to approach the problem is relaxing
the LMI conditions using que information about the
membership functiong; in the zoneQ) in which lo-
cal stability is studied. This will allow to express
some results (possibly more conservative than the pre-
vious one) using the minimum and maximum val-
ues of memberships in the zone (or some bounds on
them), without the need of calculating transformed lo-
cal models.

Assume that, in the zorf, the limits of ; are

pit <y < py! (25)
Then, for any positive € R:
i <yt =ty et (26)
i=1

where>"" , u; = 1 has been used in the equality.
Then, for any positive definita/}'':

uijN]Mx < ,uj»w iuixTNjMx (27)
1=1
Hence, the term
i ,ui,uéuxTNJMx — ,uijNJMa: >0
i=1
may be added to the stability condition (3), so that if

> pwia (AP + PAYz + > pip} a" NN x
1=1 =1
—/Lj;vTNJMx <0 (28)

then, the equation (2) holds. Reordering the terms,
the LMI conditions below are obtained:

(ATP+ PA;) + Né‘wNJM <0, Vizj (29)
(ATP+ PAj) = (1= p} )N} <0, N} >0 (30)

and adding the conditiop”* < p;, for any positive
symmetric matrixV;", the expression

;Lj:vTijx — Zuiu;-n:vTijx >0 (31)
=1
can be proved analogously to the maximmj‘f’ case.

Then (2) is positive if
(AT P+ PA;) + py' N

—pPNT <0 ViZj o (32)
(ATP+ PAj) — (1 — M )NM
m m M m
+(1 —p" )N <0, N7, ,N™>0 (33)

Note that, in the above expressiorsjs a fixed
number. If a bound ofi; is known for allj, the theo-
rem below can be proved.
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Theorem 2 Consider the systen(il). The largest
spherical basin of attraction of = 0 provable by m o
a quadratic Lyapunov function in a symmetric poly- 1
topic region2 has a radius\~ = given by the solution
of the following LMI problem in the variableB, N,
NM:

minimize\ subject to

—a 1% a
AM>P > 0 (34)
P >0 (35) Figure 1: Membership functions, (z2), 2 (x2).
P .
( ol af ) > 0, j:1.np (36) Define(; as a rectangle boundedin, unbounded
J inxz:

. . Q= {2\ [(01/pe)a] < 1}
Ai" P+ PA; — (1 — p" )N + (1 — p")N] wherek is the iteration number.
*Z(”yNJM —u'N™) <0, i: L.n (37) Note that the maximum and minimum values (gf

i in Q are easily obtained, and the Lemma 4 can be
: : o applied.
and €2 is defined as(20). The ellipsoid® = In the proposed procedure, the LMIs for= 1 are

{z\a" Pz < 1} is, of course, also contained in the ynfeasible. However, the linearised model is:
basin of attraction ofc = 0. ]
—0.5 0

4.3 Algorithm U e [ 0 —05 } 0

) ) i 4 . which is stable. Hence, there exists a zone around

The results in previous sections may be combined in ., _ (possibly small) where local stability holds.
order to obtain an algorithm to compute the largest The procedures in this paper allow to determine the
ball aroundr = 0 for which attraction is ensured. largest sphere around= 0 for which local quadratic

Basically, the procedure will first check the extreme stability holds.
cases: (1) checking for feasibility of LMI problems Let us consider for the fist iteratign = 0.1. The
as stated in Section 2 (2) checking for stability of the 1 aximum and minimum values afare, in that case:
linearised model around = 0. pM = 0.55, uit = 0.45, M = 0.55, pf* = 0.45

If the first one is unfeasible but the second one Then the vertices obtained in the regian are:
is feasible, selecting a polytopic region on the state

space and a scaling factprallows to set up a bisec- vy = [045 0.55 ]
tion procedure in order to determine the largest feasi- vy = [055 045 ]
ble p.
The local fuzzy model from Lemma 1 is described by:
5 EXAMPLES 4 o~ | 705 0l
L= 0.1 -0.5
Example 1. Let us have a fuzzy system given by: i 05 —0.1
43 = [ 0.1 —0.5 }
2
PR Zui(x)Ai:r (38) And, solving the LMIs:
=1
-05 -1 T :
1. /- { 05 _05} (39) AlTP+PA1 < 0
’ A" P+ PA; < O
Ay = { _0";’ —Oé} (40) X > 0
) ) ) local stability in a certain ellipsoidal region insiély
Figure 1 shows the membership functignsand p» is proved.
which, for simplicity, depend only om,. The value When the same procedure is applieghte 0.5 the
of & = 1 will be assumed. LMIs are unfeasible. The LMIs are, however, feasible
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Conveniently, we take the same region sh&pinat

in Example 1, the limitg./* and u;‘/f are the mini-
mum and maximum value qf; in the region(). The
maximump obtained is 0.26i,.e. 0.24 units less than
the obtained in the previous example. From this ex-
ample, the conditions discussed in Section 4.2 seem
more conservative than those in Section 4.1.

A e s e o oz o ae on 6 CONCLUSIONS

This paper shows howvocal stability results (the

largest sphere around = 0 for which a quadratic

Lyapunov function can be proven via LMI) may

for anyp < 0.5. for instancep,, = 0.499 results in ~ P€ obtained in fuzzy systems via the knowledge of

the following LMI conditions: the membersh|p functlon's, even when no feasible
TP pAr < quadratic Lyapunov function can t_)e found to prove

! ! global stability. The found sphere is part of a larger

Figure 2: The Basin of attraction af = 0 provable by
quadratic stability (Example 1).

AsTP+PA; < 0 ellipsoidal guaranteed basin of attraction.
P 0 In this way, if the linearised system around the
1/pn > 0 equilibrium is stable, a precise characterisation of the
( 0 1/pn 1 ) local stability region stated in Lyapunov 1st theorem
P > 0 is achieved.

The approach based on relaxed LMI conditions
from membership bounds yields more conservative
results but it is simpler, without the need of changing
the Takagi-Sugeno consequents.

A > P
which are feasible for the above value©f and, the
matrix P obtained for the minimum defines an ellip-
soidal basin of atractio® = {z\z” Pz < 1} with

3.8274 0
P:[ 0 4.016]
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