A Formal Semanticsfor the Business Process Execution
L anguage for Web Services

Roozbeh Farahbod, Uwe &lser and Mona Vajihollahi

Software Technology Lab
School of Computing Science
Simon Fraser University
Burnaby, B.C., Canada

Abstract. We define an abstract operational semantics for the Business Process
Execution Language for Web Services (BPEL) based orabigtract state ma-
chine(ASM) formalism. This way, we model the dynamic properties of the key
language constructs through the construction REL abstract machinén

terms of a distributed real-time ASM. Specifically, we focus here orptbeess
execution modehnd the underlyingxecution lifecyclef BPEL activities. The

goal of our work is to provide a well defined semantic foundation for establish-
ing the key language attributes. The resulting abstract machine model provides a
comprehensive and robust formalization at three different levels of abstraction.

Keywords: Web Services Orchestration, BPELAWS, Abstract Operational Se-
mantics, Abstract State Machines, Requirements Specification

1 Introduction

In this paper, we present an abstract operational semantics of the XML based Business
Process Execution Language for Web Services (BPEL4WS) [1], a novel Web Services
orchestration language proposed by OASIS [2] as a future standard for the e-business
world. BPEL4AWS, or BPEL for short, provides distinctive expressive means for de-
scribing the process interfaces of Web based business protocols and builds on existing
standards and technologies for Web Services. It is defined on top of the service in-
teraction model of W3C'’s Web Services Description Language (WSDL) [3]. A BPEL
business process orchestrates the interaction between a collection of abstract WSDL
services exchanging messages over a communication network.

Based on thabstract state machinfASM) formalism [4], we define BPEL ab-
stract machine, calleBPEL 4 r¢, as a concise and robust semantic framework for mod-
eling the key language attributes in a precise and well defined form. That is, we for-
malize dynamic properties of the Web Services interaction model of a BPEL business
process in terms of finite or infinite abstract machines. Due to the concurrent and
reactive nature of Web Services and the need for dealing with time related aspects in
coordinating distributed activities, we combine an asynchronous execution model with
an abstract notion of real time. The resulting computational model is referred to as
a distributed real-time ASM. Our model captures the dynamic properties of the key

Farahbod R., Glasser U. and Vajihollahi M. (2005).

A Formal Semantics for the Business Process Execution Language for Web Services.

In Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information Systems, pages 144-156
DOI: 10.5220/0002576901440156

Copyright © SciTePress

145

language constructs defined in the language reference indjubenceforth called
the LRM, including concurrent control structures, dynawrieation and termination of
service instances, communication primitives, messageledion, event handling, and
fault and compensation handling.

The goal of our work is twofold. First and foremoBtEL 4 provides a firm se-
mantic foundation for checking the consistency and validitthe language definition
by conceptual means and by analytical means. Formalizetiorucial for identifying
and eliminating deficiencies that otherwise remain hiddehé informal language def-
inition of the LRM [2, Issue #42]: There is a need for formalism. It will allow us to not
only reason about the current specification and relatedassbut also uncover issues
that would otherwise go unnoticed. Empirical deductionas sufficient.

Second, we address pragmatic issues resulting from pieexperience with other
industrial standards, including the ITU-T language $D&] and the IEEE language
VHDL [7]. An important observation is that formalizationcteniques and supporting
tools for practical purposes such as standardization cak fgradual formalization of
abstract requirements with a degree of detail and precésareeded [8]. To avoid a gap
between the informal language definition and the formal seics the ability to model
the language definitioas iswithout making compromises is crucial. Consequently, we
adopt here the view and terminology of the LRM, effectivedyrhalizing the intuitive
understanding of BPEL as directly as possible in an objelstiverifiable form.

The result of our work is what is called @&BM ground modg#] of BPEL. Intu-
itively, ground models serve as ‘blueprints’ for estaliligifunctional software require-
ments, including their elicitation, clarification and dogentation. Constructing such a
ground model requires a major effort — especially, as a @dearitectural view, which
is central for dealing with complex semantic issues, is Widrissing in the BPEL
language definition.

The paper is organized as follows. Section 2 briefly sumreatize formal semantic
framework. Section 3 introduces the core of our hierardlyickefinedBPEL 4, and
Section 4 then addresses important extensions R 4 . core. Section 5 discusses
related work, and Section 6 concludes the paper.

2 Distributed Real-time ASM

We briefly outline the formal semantic framework at an inteitlevel of understand-
ing using common notions and structures from discrete madlies and computing
science. For details, we refer to the existing literaturet@ntheory of abstract state
machines [9] and their applications [4].

We focus here on the asynchronous ASM model, called dis&tbabstract state
machine (DASM), as formal basis for modeling concurrent gattive system behav-
ior in terms of abstract machimens A DASM M is defined over a given vocabulary
V' by its programP,; and a non-empty s, of initial states.V' consists of symbols
denoting the various semantic objects and their relatinrtbe formal representation

1 Our ASM semantic model of SDL is part of the current SDL standaradefby the Interna-
tional Telecommunication Union [5].
2 See also the ASM Web site atvw.eecs.umich.edu/gasm.

146

of M, where we distinguisdomain symbolgunction symbolsndpredicate symbols
Symbols that have a fixed interpretation regardless of e sif A/ are calledstatic
those that may have different interpretations in diffestates of\/ are calleddynamic
A stateS of M yields a valid interpretation of all the symbols¥n

Concurrent control threads in an executionfgf; are modeled by a dynamic set
AGENT of autonomously operatinggents Agents of M interact with each other by
reading and writing shared locations of global machineestaivhere the underlying
semantic model regulates such interactions so that patemnflicts are resolved ac-
cording to the definition opartially ordered rung4].

P, consists of a statically defined collection of agent prograsach of which
defines the behavior of a certdiype of agent in terms of state transition rules. The
canonical rule consists of a basic update instruction ofdh@ f (¢, o, ..., t,) := to,
where f is an n-ary dynamic function symbol and thg (0 < ¢ < n) are terms.
Intuitively, one can conceive a dynamic function afuaction tablewhere each row
associates a sequence of argument values with a functioe.vah update instruction
specifies a pointwise function update, i.e., an operatiatréplaces an existing function
value by a new value to be associated with the given arguments

Finally, M models the embedding of a system into a given environment e— th
external world— through actions and events as observable at interfaceseXtiernal
world affects operations o/ through externally controlled anonitoredfunctions.
Such functions change their values dynamically over runk/oflthough they cannot
be updated by agents af. A typical example is the representation of time by means
of a nullary monitored functiomow taking values in a linearly ordered domaimmE.
Intuitively, now yields the time as measured by some external clock.

3 BPEL Abstract Machine

This section introduces the core component8BEL 4, architecture and the under-
lying abstraction principles starting with a brief chasttation of the key language
features as defined in [1]. We then present BPEL's processudge model and its
decomposition inteexecution lifecyclesf basic and structured activities. As a con-
crete example of a structured activity dealing with conency and real-time aspects,
we consider th@ick activity. The architectural view, the decomposition inkeeution
lifecycles, and the model giick are new and not contained in [10].

BPEL introduces a stateful model of Web Services intergdbiy exchanging se-
quences of messages between business partners. A BPEIsprte its partners are
defined as abstract WSDL services using abstract messagesireeddoy the WSDL
model for message interaction. The major parts of a BPELge®dlefinition consist
of (1) partnersof the business process (Web services that this procesadtaewith),
(2) a set ofvariablesthat keep the state of the process, and (33etivity defining the
logic behind the interactions between the process andiitsgra. Activities that can be
performed by a business process are categorizedagizactivities,structuredactivi-
ties andscope-relatedctivities. Basic activities perform simple operatiohelieceive
reply, invokeand others. Structured activities impose an executionrandl@ collection

147

of activities and can be nested. Scope-related activitieble defining logical units of
work and delineating the reversible behaviour of each unit.

Dynamic Process Creation A BPEL process definition works as a template for
creating business process instances. Process creatioplisii and is done by defin-
ing astart activity, which is either areceiveor a pick activity that is annotated with
‘createlnstance = yes’'causing a new process instance to be created upon receiving
a matching message. That is, when a new instance of a bugiressss is created, it
starts its execution by receiving the message that triggesereation.

Correlation and Data Handling A Web service consists of a humber of business
process instances; thus, the messages arriving at a specifiust be delivered to the
correct process instance. BPEL introduces a generic mechdar dynamic binding
of messages to process instances, caltgcelation

L ong Running Business Transactions Business processes normally perform trans-
actions with non-negligible duration involving local ugegsat business partners. When
an error occurs, it may be required to reverse the effectsroér even all of the previ-
ous activities. This is known aompensationThe ability to compensate the effects of
previous activities in case of an exception enables sea&lbng-Running (Business)
Transactions (LRTSs).

3.1 Abstract Machine Architecture

Logically, BPEL 404 consists of three basic building blocks referred tacase, data
handling extensigrandfault and compensation extensigffigure 1). Thecorehandles
dynamic process creation/termination, communicatiomipiies, message correlation,
concurrent control structures, as well as the followingvéas: receive reply, invoke
wait, empty sequenceswitch while, pick andflow. The core does not consider data
handling, fault handling, and compensation behavior. &atihese aspects are treated
as extensions to the core (see Section 4). Together witbditethese extensions form
the completdBPEL 4 4.

The core of the
BPEL Abstract Machine

Fault/Compensation Data Handling
extension extension

Fig. 1. BPEL 4« Behavioural Decompositionam

The vertical organization of the machine architecture mie®f three layers, called
abstractmodel,intermediatenodel andexecutablenodel. The abstract model formally

148

sketches the behavior of the key BPEL constructs, while iterinediate model, ob-
tained as the result of the first refinement step, providesvgptaie formalization. Fi-
nally, the executable model provides an abstract exe@itdrhantics implemented in
AsmL [8]. A GUI facilitates experimental validation thromgimulation and animation
of abstract machine runs.

Figure 2 shows an abstract view of the underlying Web Ses\itteraction model.
A BPEL document abstractly defines a Web service consistirgcollection of busi-
ness process instances. Each such instance interactsheitxternal world through
two interface components, call@thox manageandoutbox managefThe inbox man-
ager handles all the messages that arrive at the Web selfivecenessage matches a
request from a local process instance waiting for that ngessais forwarded to this
process instance. Additionally, the inbox manager alstsdeith new process instance
creation. The outbox manager, on the other hand, forwarttsoand messages from
process instances to the network.

Inbox manager, outbox manager, and process instances dedaddy three differ-
ent types of DASM agents: thabox manager agenthe outbox manager agenand
one uniquely identifieghrocess agerfor each of the process instances.

BPEL
process
definition

Inbox
Manager

-

‘Web Service

a collection of
business process
instances

—

Outbox
Manager

Fig. 2. High-level Structure 0BPEL 4 a

3.2 Activity Execution Lifecycle

Intuitively, the execution of a process instance is decamgdanto a collection of ex-
ecution lifecycles for the individual BPEL activities. Whetrefore introducectivity
agents created dynamically by process agents for executingtstrent activities. Each
activity agent dynamically creates additional activitgats for executing nested, struc-
tured activities. Similarly, it creates auxiliary activéigents for dealing with concurrent
control threads (like iflow andpick®). For instance, to concurrently execute a set of ac-
tivities, a flow agent assigns each enclosed activity to arseégflow thread agenf10].

At any time during the execution of a process instance, th8Aagents running under
control of this process agent form a tree structure wherl eathe sub-agents mon-
itors the execution of its child agents (if any) and notifissgarent agent in case of

% One may argue thatick is not a concurrent control construct, but as we will see in Section
3.3, it can naturally be viewed as such.

149
There is nothing to
b ted
Completed © oxeen® Started
There is more to
Execution is be executed / Initialization
completed W‘

Activity .
Running
Completed Executing
activity

\/

Execution of the
enclosed activity
is completed

Fig. 3. Activity Execution Lifecycle:BPEL 4 core

normal completion or fault. This structure provides a gah#amework for execution
of BPEL activities. The DASM agents that model BPEL procegcation are jointly
calledkernel agentsThey include process agents and subprocess agents. torége
however, subprocess agents are identical to activity agent

Figure 3 illustrates the normal activity execution lifeleyof kernel agents in the
BPEL 41 core. When created, a kernel agent is inStt@tedmode. After initialization,
the kernel agent starts executing its assigned task by lnidts mode toRunning
Upon completion, the agent switches its modAdctivity-Complete@nd decides (based
on the nature of the assigned task) to either return toRfaieningmode or finalize
the execution and becon@mpletedActivity agents that may execute more than one
activity (like sequenceor execute one activity more than once (likbile) can switch
back and forth between the two mod&stivity-CompletedndRunning

3.3 Pick activity

A pick activity identifies a set of events and associates with e&¢hese events a
certain activity. Intuitively, it waits on one of the evertts occur and then performs
the respective activity; thereafter, tpék activity no longer accepts any other event.
4 There are basically two different types of everdaMessagesvents ancbnAlarm
events. An onMessage event occurs as soon as a related messacgeived, whereas
an onAlarm event is triggered by a timer mechanism waitiag a certain period of
time or‘until’ a certain deadline is reached.

In BPEL 40, €achpick activity is modeled by a separate activity agent, caflitt
agent A pick agent is assisted by two auxiliary agentqiek message agetibat is
waiting for a message to arrive, angik alarm agenthat is watching a timer. We
formalize the semantics of thgck activity in several steps, each of which addresses

4 Regarding the case that several events occur at a time, the LRM is $@mlewse declaring
that the choice “is dependent on both timing and implementation.” [1]

150

a particular property, and then compose the resulting DASdg@am, calledPickPro-
gram in which self refers to a pick agent executing the program.

. Pick Agent
PickProgram =

case execModéself) of
Started — PickAgentStarted
Running — PickAgentRunning
ActivityCompleted— FinalizePickAgent
Completed— stop self

When created, the pick agent is in tBéartedmode and initializes its execution
by creating a pick alarm agent and a pick message agentnltstuiiches its mode to
Runningand waits for an event to occur — either a message arrivediorea expired.

. . Pick Agent
PickAgentRunning =

if normalExecutiofself) then
onsignal s : AGENT_.COMPLETED
execModéself) := ActivityCompleted
otherwise
if chosenAdself) = undefthen
choose dsce occurredEventself) with MinTime(dsc)
chosenAdself) := onEventAdtedscEver{tdsc))
/I onEventActs the activity associated with an event
else
ExecuteActivity(chosenAdself)))

Depending on the event type, either the pick message agém pick alarm agent
notifies the pick agent by adding &vent descriptoto the occuredEventset of the
pick agent. An event descriptor contains information ondhent such as the time of
its occurrence. When an event occurs, the pick agent updaesiictionchosenAct
(with initial value undej with the activity associated with the event. Once the #gtiv
is chosen ¢hosenAct(self}¢ undej, the pick agent performs the chosen activity and
remainsRunninguntil the execution of the chosen activity is completed akcated
by a predicatechosenActCompletedt then switches its execution mode Aativity-
Completed

Finalizing a running pick agent includes informing its paragent that the exe-
cution is completed and changing the execution modédmpleted As illustrated in
Figure 3, theCompletednode leads to the agent’s termination.

Due to the space limitations, we do not show here the defirstiof PickAgent-
Started, FinalizePickAgent, as well as the programs of the pick message and the pick
alarm agents, but refer to [11, 12] for a complete descHiptio

4 Extensionstothe BPEL 41 Core

For a clear separation of concerns and also for robustnelse @drmal semantic model,
the aspects of data handling, fault handling and compemsaghavior are carefully

151

separated from the core of the language. To this end, theofBEEL 4, provides a
basic, yet comprehensive, model &dystract processeaa which data handling focuses
on protocol relevant data in the form of correlations whitg/lpad data values are left
unspecified [1].

Compensation and fault handling behavior is a fairly com@eue in the definition
of BPEL. An in-depth analysis in fact shows that the semargfdault and compensa-
tion handling, even when ignoring all the syntactical issug related to more than 40
individual requirements spread out all over the LRM. Thesgirements (some of them
comprise up to 10 sub-items) address a variety of sepasatesselated to the core se-
mantics, general constraints, and various special case44}. A thorough treatment
of the extensions is beyond the space limitations of thisepaphus, we present an
overview of the fault handling behavior in the following seas and refer to [11] for a
comprehensive description.

4.1 Scope activity

The scopeactivity is the core construct of data handling, fault hamglland compen-
sation handling in BPEL. Acopeactivity is a wrapper around a logical unit of work (a
block of BPEL code) that provides local variables, a faulidiar, and a compensation
handler. The fault handler of a scope is a setatichclauses defining how the scope
should respond to different types of faults. A compensatimmdler is a wrapper around
a BPEL activity that compensates the effects of the executidhe scope. Each scope
has a primary activity which defines the normal behavior ef shope. This activity
can be any basic or structured activity. BPEL allows scopdxetnested arbitrarily. In
BPEL 41¢, we model scopes by defining a new type of activity agentseadacope
agents

Fault handling in BPEL can be thought of as a mode switch frloenntormal exe-
cution of the process [1]. When a fault occurs in the executiioain activity, the fault
is thrown up to the innermost enclosing scope. If the scopellea the fault success-
fully, it sends arexitedsignal to its parent scope and ends gracefully, but if thé fau
re-thrown from the fault handler, or a new fault has occudedng the fault handling
procedure, the scope sendéaalted signal along with the thrown fault to its parent
scope. The fault is thrown up from scopes to parent scopésastope handles it suc-
cessfully. A successful fault handling switches the exeoutode back to normal. If a
fault reaches the global scope, the process executionrtates [1].

The normal execution lifecycle of the process executioneh@eigure 3) needs to
be extended to comprise the fault handling mode of BPEL fmse® The occurrence
of a fault causes the kernel agent (be it an activity agernt@mntain process) to leave
its normal execution lifecycle and enter a fault handlirigdycle. Figure 4 illustrates
the extended execution lifecycle of BPEL activities.

In BPEL 40, Whenever a sub-process agent encounters a fault, the legees
its normal execution mode and enters Ewecution-Faultmode. If this agent is not a
scope agent, it informs its parent agent of the fault andssiiaythe Execution-Fault
mode until it receives a notification for termination. On thteer hand, if the faulted
agent is a scope agent, it terminates its enclosing actoriates a fault handler, assigns
the fault to that handler, and switches to fault-Handlingmode. If the fault handler

152

A fault occurs

Ji

It is a scope agent /

Start fault handler
Fault agent. Execution
Handling Fault

Fault handler It is not
completed a scope agent /
successfully Notify parent

Fault handler agent
throws a fault

Fig. 4. Activity Execution Lifecycle: Fault Handling

finishes successfully, the scope agent enter&stieed mode indicating that this agent
exited its execution with a successful fault handling psscd he difference between

a scopewhich has finished its execution in ti@mpletednode and ascopethat has
finished in theExitedmode is reflected by the way scopes are compensated, which we
do not further address in this paper.

4.2 Pick activity: extended

The structured activities of theore (activity agents) are also refined to capture the fault
handling behavior of BPEL. The well-defined activity exegcntlifecycle of BPEL 44
(Figures 3 and 4) along with the fact that the fault handliagdwvior of BPEL is mostly
centered in thecopeactivity, enable us to generally extend the behavior ofcstmed
activities by defining two new rulestandleExceptionsinRunningMode andWaitForTer-
mination. As an example, the pick agent program of Section 3.3 is réfisfollows:

. Pick Activity Extended
PickProgram =

PickProgram_,..

case execModéself) of
Running— HandleExceptionsinRunningMode
ExecutionFault— WaitForTermination
Faulted— stop self

Activity agents react to a fault by informing their pareneagof the fault and stay in
the Execution-Faulmode until they receive a notification for termination. Iétharent
agent is not a scope agent, the parent agent reacts in thexsgnaad the fault is passed
upwards until it reaches a scope agent. The scope agentelsahdl fault as described
in Section 4.1, and sends a termination notification to iiklcdmgent. Upon receiving
the notification, a sub-process agent that is waiting forreitgation notification in

153

turn passes it to its child agents (if any) and entersRhealted mode, where it then
terminates. If a sub-process agent receives a terminatitircation while in its normal
execution mode, it first enters tli&xecution-Faulilmode and then reacts as if it were
waiting for the notification.

The normal execution of activity agents in tReinningmode is extended by the
following rule:

. . Structured Activity Extended
HandleExceptionsinRunningMode =

if faultExtensionSignéself) then
onsignal s : AGENT_EXITED
execModéself) := ActivityCompleted
otherwise
onsignal s : AGENT_FAULTED
TransitionToExecutionFault(fault(s))
otherwise
onsignal s : FORCEDTERMINATION
faultThrowr(self) := fault(s)
PassForcedTerminationToChildren(fault(s))
execModéself) := emExecution Fault

In the Execution-Faulimode, if a termination notification is received, the picktge
terminates its enclosing activity and goes toffaeltedmode. Analogously to thEom-
pletedmode, sub-process agents terminate their execution iRathikedmode. For the
complete extended pick agent program see [12].

5 Redated work

There are various research activities to formally defina)yere, and verify Web Ser-
vices orchestration languages. A group at Humboldt Unityers working on formal-
izations of BPEL for analysis, graphics and semantics [$pgcifically, they use Petri-
nets and ASMs to formalize the semantics of BPEL. Howeverptittern-based Petri-
Net semantics of BPEL [14] does not capture fault handligngensation handling,
and timing aspects; overall, the feasibility of verifyin@ra complex business processes
is not clear and still subject to future work. The ASM semantiodel in [15] closely
follows what we had presented in [16] with minor technicdfatences in handling
basic activities and variables.

Formal verification of Web Services is addressed in seveyzrs. The SPIN model-
checker is used for verification [17] by translating Web $ms Flow Language (WSFL)
descriptions into Promela. [18] uses a process algebrarigedestructural operational
semantics of BPEL as a formal basis for verifying propertiethe specification. In
[19], BPEL processes are translated to Finite State Pr¢E&s3) models and compiled
into a Labeled Transition System (LTS) which is used as asfasiverification. [20]
presents a model-theoric semantics (based on situationlasa) for the DAML-S lan-
guage which facilitates simulation, composition, testigd verifying compositions of
Web Services.

154

6 Conclusions

We formally define a BPEL abstract machine in terms of a disted real-time ASM
providing a precise and well defined semantic foundatioreftablishing the key se-
mantic concepts of BPEL. Transforming informal requiretseinto precise specifi-
cations facilitates reasoning about critical languagebaittes, exploration of different
design choices and experimental validation. As a resuluofformalization, we have
discovered a number of weak points in the LRM [12].

The dynamic nature of standardization calls for flexibikitgd robustness of the
formalization approach. To this end, we feel that the ASMrfalism and abstraction
principles offer a good compromise between practical ezlee and mathematical ele-
gance — already proven useful in other contexts [6]. Our rhoale serve as a starting
point for formal verification (considering formal specifiicen as a prerequisite for for-
mal verification). Beyond inspection by analytical meansalso support experimental
validation by making our abstract machine model executadiley the executable ASM
languageAsmL[21].

References

1. Andrews, T., et al.: Business process execution language fbr seevices version
1.1 (2003) Last visited Feb. 2008t t p: / / ww 106. i bm coni devel oper wor ks/
webservices/ |ibrary/ws-bpel.

2. Organization for the Advancement of Structured Information Stalsd®ASIS): WS BPEL
issues list. (2004t t p: / / ww. oasi s- open. or g.

3. W3C: Web Services Description Language (WSDL) Version 1.2 RartCore
Language. (2003) Last visited May 2004qhttp://ww. w3. or g/ TR/ 2003/
WD- wsdl 12- 20030303.

4. Borger, E., Sirk, R.: Abstract State Machines: A Method for High-Level Systemiddes
and Analysis. Springer-Verlag (2003)

5. ITU-T Recommendation Z.100 Annex F (11/00): SDL Formal SerosiDefinition. Inter-
national Telecommunication Union. (2001)

6. Glasser, U., Gotzhein, R., Prinz, A.: The formal semantics of sdd28@tus and perspec-
tives. Comput. Network42 (2003) 343—-358

7. Borger, E., Ghsser, U., Miller, W.: Formal Definition of an Abstract VHDL'93 Simulator
by EA-Machines. In Delgado Kloos, C., Breuer, P.T., eds.: Fb/®@mantics for VHDL.
Kluwer Academic Publishers (1995) 107-139

8. Glasser, U., Gurevich, Y., Veanes, M.: An abstract communicaticmitecture for modeling
distributed systems. |IEEE Trans. on Soft. EB@(2004) 458—-472

9. Gurevich, Y.: Sequential Abstract State Machines Capture Sequalg@ithms. ACM
Transactions on Computational Lodi¢2000) 77-111

10. Farahbod, R., @kser, U., Vajihollahi, M.: Specification and Validation of the Business
Process Execution Language for Web Services. In: Proc. of theldttkhWorkshop on
Abstract State Machines, Springer-Verlag (2004)

11. Farahbod, R.: Extending and refining an abstract operatiomargis of the web services
architecture for the business process execution language. Masési's, tBimon Fraser Uni-
versity, Burnaby, Canada (2004)

12. Farahbod, R., @kser, U., Vajihollahi, M.: Abstract Operational Semantics of the Basine
Process Execution Language for Web Services. Technical ReBOACMPT-TR-2005-04,
Simon Fraser University (2005) Revised version of SFU-CMPT-DB4203, April 2004.

13.

14.

15.

16.

17.

18.

19.

20.

21.

155

Martens, A.: Analysis and re-engineering of web services. Peapin 6th International
Conference on Enterprise Information Systems (ICEIS’04) (2004)

Schmidt, K., Stahl, C.. A petri net semantic for BPEL4AWS - validatiod application.
In Kindler, E., ed.: Proceedings of 11th Workshop on Algorithms amalsTfor Petri Nets.
(2004)

Fahland, D.: Ein Ansatz einer formalen Semantik der Businese&s&xecution Language
for Web Services mit Abstract State Machines. Technical report, tdldtuniversitt zu
Berlin (2004)

Farahbod, R., @kser, U., Vajihollahi, M.: Specification and Validation of the Business
Process Execution Language for Web Services. Technical RepOACBPT-TR-2003-06,
Simon Fraser University (2003)

Nakajima, S.: Model-checking verification for reliable web servioe. OOPSLA 2002:
Workshop on Object-Oriented Web Services. (2002)

Koshkina, M., van Breugel, F.: Verification of Business Proegésr Web Services. Tech-
nical Report CS-2003-11, York University (2003)

Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility vatific for web service
choreography. In: Proceedings of the IEEE International Conéereon Web Services
(ICWS’'04), IEEE Computer Society (2004) 738-741

Narayanan, S., Mcllraith, S.A.: Simulation, verification and autecthaomposition of web
services. In: Proceedings of the eleventh international conferendédd Wide Web, ACM
Press (2002) 77-88

Farahbod, R., Gervasi, V., &lser, U.: CoreASM: An extensible ASM execution engine. In:
Proc. of the 12th Int'l Workshop on Abstract State Machines. (2005)

