
Towards a Process for Web Services Security

Carlos Gutiérrez1, Eduardo Fernández-Medina2 and Mario Piattini2

(1) STL, Madrid (SPAIN)

(2) Alarcos Research Group. Universidad de Castilla-La Mancha.
Paseo de la Universidad 4, 13071, Ciudad Real. (SPAIN)

Abstract. Web Services (WS) security has been enormously developed by the
major organizations and consortiums of the industry during the last few years.
This has carried out the appearance of a huge number of WS security standards.
This fact has caused that organizations remain reticent about adopting
technologies based on this paradigm due to the learning curve necessary to
integrate security into their practical deployments. In this paper, we present
PWSSec (Process for Web Services Security) that enables the integration of a
set of specific security stages into the traditional phases of WS-based systems
development. PWSSec defines three stages, WSSecReq, WSSecArch and
WSSecTech that facilitate the definition of WS-specific security requirements,
the development of a WS-based security architecture and the identification of
the WS security standards that the security architecture must articulate to
implement the security services, respectively.

1 Introduction

The open Internet nature is promoting the development of Web Services (WS) as a
paradigm that enables complex business workflow integration scenarios and provides
the so-demanded and so-called hyper-connectivity inter- and intra-enterprises [1].

This standard-based quality-centered paradigm is evolving rapidly due to its ability
of handling and addressing the heterogeneous information systems integration
challenge. In fact, according to the most recent reports from IDC, over the next years,
the market for WS-based solutions will grow steadily reaching $11 billion in 2008
[2]. Due to this fact, an enormous quantity of WS standards is being produced. This
diversity, also found in the context of WS [3] security has made us consider its
application, from a global perspective, as a very complex and hard process to
understand with a very difficult learning curve. Following, some questions that are
hard to answer for someone who is new to WS-based systems are stated:
• Given a complete set of functional requirements, what WS security standards

should I choose?
• What are the WS security requirements that should be taken into account in my

WS-based system?
• What WS security standard from those addressing similar aspects should I

integrate in my WS-based system?

Farkas C. (2005).
Tree Automata for Schema-level Filtering of XML Associations.
In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 298-308
DOI: 10.5220/0002575502980308
Copyright c© SciTePress

At present, there is still a lack of a global approach that offers a methodical
development to construct security architectures for WS-based systems. For this
purpose, the main objective of this paper is to present the process PWSSec (Process
for Web Services Security). PWSSec has been created to facilitate and orientate the
development of security for WS-based systems in a way that in each one of the
traditional stages for the development of this kind of systems [4], a complementary
stage comprising security [5] can be integrated. Therefore, this process can be used
once the functional architecture of the system has been built or during the stages used
to elaborate this architecture. In both cases, the result will be a WS-based security
architecture formed by a set of coordinated security mechanisms that use the WS
security standards to fulfill the WS-based system security requirements.

In this paper we will provide a brief overview of the complete process and we will
present in a more detailed form the reference security architecture defined in the
WSSecArch stage.

The rest of the paper is organized as follows. In section 2, the PWSSec process is
introduced. In section 3, an in-depth study of the stage related to the specification of
the WS-based security architecture is presented and an example is shown. In section
4, related research works are stated, and, finally, in section 5 conclusions and points
that need to be developed in the future are enumerated.

2 PWSSec - Process for Web Services Security

In this section, we will provide an overview of the process PWSSec.
This process specifies how to define security requirements for WS-based systems,

describes a WS reference security architecture that guarantees and demonstrates its
development and provides us with facilities to obtain concrete security architectures
based on the current WS security standards. In general, the main features of the
process presented in this section are as follows:
• Iterative and incremental process: For each iteration that comprises the

development of all stages, a part (increase) of system security is analyzed,
characterized and developed.

• The two basic principles are process traceability and reusability and product
interoperability and reusability. Process reusability will allow us to apply it to
different domains in which it is necessary to develop a WS-based security
architecture whilst product reusability will guarantee shorter development cycles
based on proved solutions. Product interoperability, mainly applied in WSSecArch
and WSSecTech stages, will guarantee that WS-based security solutions agreed by
the most important industry consortiums will be taken so that systems developed
with PWSSec will present a high degree of integration and interoperability.

• Process managed by the elements and basic procedures defined for an Architecture
based on WS [6].: the basic actors are the services provider agents, the services
consumer agents and the discovery agents whilst the basic processes are
publishing, discovery, binding and invocation.

• Based on the concept and techniques developed within the scope of Security
Requirement Engineering and Risk analysis and management [7-9].

299

• Developed from the concept and techniques that allow us to implement security
into software architecture [10-12].

•
Figure 1 shows us the stages in which PWSSec process is structured.

Fig. 1. PWSSec process layout.

Each one of the stages defined by PWSSec describes its inputs, outputs,
activities, actors and sometimes, guides, good practices, tools and techniques that
complement, improve and facilitate the set of activities developed within these stages.

The PWSSec stages depicted in Figure 1 are briefly described as follows:
• WSSecReq (Web Services Security Requirements): The main purpose of this stage

is to produce a specification (or a part of it) of the security requirements of the
target WS-based system. Its input is composed by a specification of the scope that
we want to comprise during iteration (e.g.: if we have a definition of the Use Cases
available, we can select those that we want to cover and use them as an input for
iteration), the business and security goals defined for the system as well as the part
of the organizational security policy that we estimate that can impact on the system
design. The output is basically formed by the set of attack scenarios, defined
according to [13, 14] and represented according to the UML profile [9], by the set
of use cases of security according to Donald G. Firesmith [15] and by a formal
specification of the security requirement for the scope of the system based on
SIREN [16]. This stage is supported by a repository that contains attack scenarios
patterns that are grouped into attack profiles and security use cases, by a set of
reusable security requirements templates and by a basic guide for the definition of
scenarios and security requirements within systems based on WS.

• WSSecArch (Web Services Security Architecture) has as its main objective to
allocate and integrate the security requirements specified in WSSecReq stage
through the identification of the appropriate WS-based security architectural
patterns and its integration in a WS-based security architecture. We skip a brief
description of this stage because a detailed revision is developed in section 3.

• WSSecTech (Web Services Security Technologies): The main purpose of this stage
is to identify a set of WS security standards that will implement the security

300

services identified in the previous stage. Output will be a description of the set of
standards identified for each security service together with the reasoning
framework that made us select it and a concrete security architecture design. The
activities carried out in this stage are the following: i) WS Security Standards
Identification; ii) Security Policies Specification to define the Security Policy of
the Abstract Security Service Instance that implements certain standard.

 3 WSSecArch – Web Services Security Architecture

WSSecArch comprises the security-related Architecture Design providing a clear
distribution of the security requirements into WS-based security mechanisms. These
WS-based security mechanisms help to mitigate those risks identified for every
business Web Service in the WSSecReq stage and complete the WS-based security
architecture.
 The two principles that characterize this stage are the same than in WSSecReq:
products reusability and traceability. Architecture security solutions are taken from
architectural patterns [17] that have been successfully proved in other projects and
belonging to the most diverse domains. Thus, it has been created a repository of WS
security architectural patterns related to each one of the security factors, including the
reasoning framework that relates and justifies them [18, 19]. Nowadays, there are
different WS-based security solutions for the different security requirements that we
can identify. Up to this point we have focused our work in federation environments
including authentication, Single Sign-On and domain trust federation topics.
 The considered inputs in this stage are as follows: i)Business goals of the current
iteration; ii) Organizational goals and security policies taken into account during the
current iteration; iii) The set of attack and security scenarios developed in WSSecReq;
iv) The set of security requirements specifications defined in WSSecReq stage; v) The
WS Security Architectural & Design Repository which contains a set of WS-based
architectural security patterns that will promote product reusability.
 The main output of this stage is the Security Architecture Specification (SASSec in
Figure 1) that accomplishes: i) The set of security requirements solved by the
architecture; iii) The set of security architectural patterns that implement them
documented as in Attribute-Based Architectural Styles [19]; ii) The catalog of
security policies associated with the business WS and security WS; iii) A series of
views [17, 20] whose type depends on the stakeholders that will read the SASSec.
These views will demonstrate how the security architecture integrates with the
functional architecture and how the attack scenarios are addressed. Between the
security requirements, the identified security patterns and the WSSecKern (Web
Services Security Kernel) components (we will get on to this concept later), a forward
and backward navigable traceability relationship, justified by the set of design
decisions or applied reasoning, will exist.
 The main actors in this stage are the Requirements Engineering Team, the
Architecture Design Team and the Security Team. The last two participate in the
Security Architectural Patterns Identification and Security Architectural Patterns
Integration stages. In the Security Architecture Validation stage the three actors
participate.

301

3.1 Activities

Security Architectural Patterns Identification

For each security requirement of each business WS belonging to the current iteration,
we must identify the WS security architectural pattern(s) that solves it. This
architectural pattern defines a set of abstract services types (since they do not define
how they must be implemented in terms of algorithms or concrete data types) as well
as a set of interactions that formally specify the security properties offered by the
pattern. The WS architectural pattern, defining it as a set of coordinated design [17],
adds a set of additional security services to which we must add a description of their
interaction (interaction between security services and between security services and
business services) in the functional services architecture. Therefore, these new
services will offer us new security functionalities that must be reevaluated, analyzed
and refined from the WSSecReq process.

As a complementary source for this stage, the WS Security Architectural & Design
Repository (see Figure 1) should be used. New identified architectural patterns will be
introduced within the repository allowing its future reuse.

Definition of Security Policy associated with every Security Architectural
Pattern

Furthermore, such architectural pattern defines, in an abstract way, the security policy
possible parameters that can govern the identified security mechanisms capabilities
and interactions.

The security policies allow Abstract Security Services and business WS to define
their preferences, requirements and capabilities [21, 22]. Each Abstract Security
Service, derived from one or more security requirements through the application of a
certain architectural pattern(s), must indicate in its security policy the possible
parameters for instancing it and the set of security requirements types it addresses
(e.g.: authentication, availability, etc.).

Integration of Security Architectural Patterns

With the purpose of obtaining a systematic method to be able to define the WS-based
architecture security, we have elaborated a WS-based security reference architecture
that shows the direct traceability of security requirements with their corresponding
implementing software components. In our work, we have developed a WS security
reference architecture which is shown in Figure 2.

302

Fig. 2. WS Abstract Security Reference Architecture

Architecture Components

The basic elements used in the WS security reference architecture are:

• WS Security Kernel (WSSecKern). This is the core of our WS-based reference
security architecture. This component will manage a set of Abstract Security
Services, derived from the application of a certain set of security architectural
patterns, with the aim of supporting the security requirements of a potential set of
business Web Services. Each WSSecKern will support one or more Abstract
Security Services implemented through one or more concrete security mechanisms
in form of WS security standards (identified in the stage WSSecTech). Thus, each
WSSecKern will cover a set of security requirements by means of providing a set
of WS-based security services to certain business WS.

• Abstract Security Service that comprises certain set of security requirements types
(e.g.: security requirements related to authorization) and that can have several
instances according to the number of implementations based on the WS security
standards that will be identified in stage WSSecTech.

• Security Policy of an Abstract Security: it includes the possible parameters or
attributes with which we can define the security policies of the Abstract Security
Service potential instances as well as a description of the set of security
requirements types that the Abstract Security Service handles.

• WS Security Standard that supports a certain Abstract Security Service Instance
(indeed, this will not be defined until WSSecTech stage).

• Security Policy of an Abstract Security Service Instance in which the capabilities
supported by the used specification or standard are defined.

• Business Service Security Policy: defined by each business WS. The business WS
security policy will be registered in the WSSecKern when the business WS desires
to use the security services provided by that WSSecKern. This way, the
WSSecKern will know what security services, and how to use them, are demanded
by certain WS. The business WS defines what set of security requirements it needs

303

and what mechanisms and how they will be used (e.g.: “I would like a simple
message authentication based on X.509v3” certificates).

• Protocol of Intercommunication between WSSecKern: It allows the coordination
and interaction of the different Security Services.

Basic Interactions

• Registration/cancellation of the business WS in WSSecKern. A business WS must
register itself in a WSSecKern including the definition of its Business Service
Security Policy. This way the WSSecKern will know what business WS should
protect, what security services will have to apply and how.

• Execution of an operation of a Security Service Instance. When a request arrives at
a business WS, depending on the way the system is configured, this could be
intercepted by a certain WSSecKern or it could be forwarded by the business
service to a WSSecKern in a way that the security service is effectively applied.

Security Architecture Validation

Mainly, this activity consists of verifying that the attack and security scenarios for the
current iteration are covered. Besides, scenarios that have been identified so far must
be reevaluated with the purpose of checking that a conflict situation has not started.

Security Architecture Specification

This activity states, in writing, a Security Architecture Specification document
(SASSec in Figure 1) through the use of views [17, 20] that show us how the security
scenarios display, through the architecture components interactions (WSSecKern and
its Abstract Security Services, Agents WS Consumers and Agents WS Providers), as
a countermeasure to the attack scenarios shown in the current iteration. Moreover, the
specification must show the distribution of the security requirements given as input in
a way that each WSSecKern must perform one or more security requirements.

Case Study: XML Perimeter Security

As an example, the following figure shows us a concrete security architecture
covering the authentication requirements and the perimeter security [23]:

304

Fig. 3. Concrete WS security Architecture

In Figure 3, we can see how the security requirement “Perimeter security” defined
from the business WS analysis, can be specified in a Filtering Service whose aim is to
filter messages according to some simple syntactic rules of them defined in their
policy, and that are directed to that business service. The business service, with
respect to this R1 requirement, will indicate, in its security policy, the following
points: i) It requires Perimeter Security; ii) it requires Message Filtering; iii) it has R1
requirement associated; iv) filtering must be syntactic-based, applied to the message
payload and based on a certain XML schema, defined in the business service policy.

In this example, the WSSecKern has been implemented as an Enterprise Security
Service Bus [1] specialized in security (Security Enterprise Service Bus). The
ESBSec must implement the defined semantics for a WSSecKern and has a
WSFiltSrv Abstract Security Service associated derived from the Message Filtering
security requirement discovered when applying WSSecReq to the given business
service. WSFiltSrv defines as parameters of its policy, the definition of the formats in
which the syntactic rules can be expressed (e.g.: XML Schema, DTD, RelaxNG,
etc...). Instances of this Abstract Security Service must define what formats they
support.

Given that there is not any standard or specification being prepared to be a
standard; WSFiltSrv is implemented with priority defining in its Security Policy of
the Abstract Security Service Instance, its capability to define the syntactic rules
through the XML Schema. When the business WS is registered in ESBSec, it will
indicate that it requires Perimeter Security of Filtering Message type and it will
provide the syntactic rules in XMLSchema format as well. When ESBSec carries out
the compatibility verification task, it will note that it has an Abstract Security Service
that implements Message Filtering requirements type and that, also, and after having
analyzed the Instances security policies (only one, in this particular case), there is at
least one instance that accepts the XML Schema format for filtering syntactic rules.
As verification is correct, R1 requirement, of Perimeter Security, Message Filtering”
associated with such business service will be implemented by WSSecKern in the
shape of ESBSec. We must note how it is possible to know at the time of execution

305

what component or (sets of software components) implements a certain security
requirement. This fact will provide us with a total requirement traceability from the
security requirement to the architectural component that addresses it.

4 Related Work

At present, undoubtedly, the biggest effort is being carried out in the area of WS
security standards definition. This effort has caused the existence of a vast number of
drafts and standards that make it difficult to handle and to know them by the
organizations that would like to use them. The lack of a global vision has caused that
many organizations have been very reticent to use this method since they have
thought it was full of acronyms. Our process allows us to face this problem in an
orderly way enabling organizations to apply this method without having to know
previously what draft or standard must be put to work.

With regard to the research area, EFSOC [24] is a event-driven framework for WS-
based systems development that defines a security model that can be easily applied to
systems in which the modifiability degree is high and therefore, they require a review
and update of the authorization policies. In [25], a methodical and formal analysis
based on “formal analysis of security-critical service-based software systems” is
presented. None of these approximations puts forward a method such as PWSSec that,
from the business and system security goals, can obtain a system based on secure WS
to the standards level. Moreover, none of these methods offers us facilities for the
reusability of the generated products in a way that their practical applicability is
guaranteed.

5 Conclusion and future research

This paper has presented the process PWSSec, which allows us to provide a WS
system with security through an own process. As far as authors know, there is not in
the field of WS system research, a definition of a complete process comprising and
taking into account all the stages of its life cycle.

Nowadays, we are applying PWSSec to two case studies carried out by two state-
owned organizations. We hope that, as a result of this practical application, we could
refine the stages of the process and enrich the products generated in it.

Some of the main aspects to be developed are the following: To complete the
repository defined in WSSecReq stage with security requirements templates and
specific attack patterns that comprise more security aspects; WS security
requirements modeling and formal validation; to develop evaluation areas and
cost/benefit analysis of WSSecArch; to complete the catalog of WSSecArch standards
and specifications (nowadays, completed for authentication and perimeter security
requirements); in the process of verification of policies compatibilities executed by
WSSecKern, we still have to define if two policies are semantically equivalent.

306

Acknowledgments

This research is part of the following projects: MESSENGER (PCC-03-003-1)
financed by the “Consejería de Ciencia y Tecnología de la Junta de Comunidades de
Castilla-La Mancha” (Spain), CALIPO (TIC2003-07804-C05-03) and RETISTIC
(TIC2002-12487-E) granted by the “Dirección General de Investigación del
Ministerio de Ciencia y Tecnología” (Spain).

References

1. Nott, C., Patterns: Using Business Service Choreography In Conjuction With An Enterprise
Service Bus. IBM Redbooks Paper. 2004. 32.

2. IDC, Cautious Web Services Software Adoption Continues; IDC Expects Spending to
Reach $11 Billion by 2008. 2004.

3. Gutiérrez, C., E. Fernández-Medina, and M. Piattini, Web Services Security: is the problem
solved? Information Systems Security, 2004. 13(3): p. 22-31.

4. Endrei, M., et al., 4. Service-oriented architecture approach, in Patterns: Service-Oriented
Architecture and Web Services. 2004. p. 345.

5. Endrei, M., et al., Patterns: Services Oriented Architectures and Web Services. IBM
Redbook, ed. IBM. 2004.

6. Papazoglou, M.P. and D. Georgakopoulo, Service-Oriented Computing. Communications
of the ACM, 2003. 46(10): p. 25-28.

7. Alberts, C.J., et al., Operationally Critical Threat, Asset, and Vulnerability Evaluation
(OCTAVE) Framework, Version 1.0, in Networked Systems Survivability Program. 1999,
Carnegie Mellon. Software Engineering Institute. p. 84.

8. Smith, D.G., Common Concepts Underlying Safety, Security, and Survivability
Engineering. 2003, SEI.

9. OMG, UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms. 2004.

10. Bass, L. and R. Kazman, Architecture Based Development, in Product Line Systems. April
1999, Carnegie Mellon. Software Engineering Institute. p. 36.

11. Jürjens, J., Secure Systems Development with UML. 2005: Springer. 309.
12. Yu, H., et al. Integrating Security Administration into Software Architecture Design. in

International Conference on Software Engineering and Knowledge Engineering 2004.
2004. Banff, Canada.

13. Sindre, G. and A.L. Opdahl. Eliciting Security Requirements with Misuse Cases. in 37th
International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS-37'00). 2000. Sydney, Australia.

14. Alexander, I., Misuse Cases: Use Cases with Hostile Intent. IEEE Computer Software,
2003. 20(1): p. 58-66.

15. Firesmith, D.G., Security Use Cases. Journal of Object Technology, 2003. 2(3): p. 53-64.
16. Toval, A., et al., Requirements Reuse for Improving Information Systems Security: A

Practitioner's Approach. Requirements Engineering Journal, 2001. 6(4): p. 205-219.
17. Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice. 2nd, ed. 2003:

Addison-Wesley. 560.
18. Ellison, R.J., et al., Security and Survivability Reasoning Frameworks and Architectural

Design Tactics. 2004, SEI.
19. Klein, M. and R. Kazman, Attribute-Based Architectural Styles, in Product Line Practice.

1999, Software Engineering Institute. p. 90.

307

20. Krutchen, P., The 4+1 View Model of Software Architecture. IEEE Software, 1995: p. 42-
50.

21. VeriSign, et al., Web Services Policy Framework (WS-Policy). 2004.
22. Anderson, A., S. Proctor, and S. Godik, OASIS XACML profile for Web-services. 2004.
23. Cremonini, M., et al. A XML-based Approach to Combine Firewalls and Web Services

Security Specifications. in ACM Workshop on XML Security. 2003. Fairfaz VA, USA.
24. Leune, K. and M. Papazaglou. Specification and Querying of Security Constraints in the

EFSOC Framework. in International Conference on Service Oriented Computing. Willem-
Jan van den Heuvel. New York City, USA.

25. Deubler, M., et al. Sound Development of Secure Service-based Systems. in ICSOC'04.
2004. New York, USA: ACM.

308

