
An Efficient and Simple Way to Test the Security of
Java CardsTM ⋆

Serge Chaumette and Damien Sauveron⋆⋆,⋆ ⋆ ⋆

LaBRI, Laboratoire Bordelais de Recherche en Informatique
UMR 5800 – Universite Bordeaux 1

351 cours de la Liberation, 33405 TalenceCEDEX, FRANCE.

Abstract. Till recently it was impossible to have more than one single applica-
tion running on a smart card. Multiapplication cards, and especially Java Cards,
now make it possible to have several applications sharing the same physical piece
of plastic. Today, these cards accept to load code only after an authentication.
But in the future, the cards will be open an everybody should be authorized to
upload an application. This raises new security problems by creating additional
ways to attack Java Cards. These problems and the method to test them are the
topic of this paper. The attacks will be illustrated with code samples. The method
presented here can be applied right now by authorised people (e.g. Information
Technology Evaluation Facility – ITSEF) to test the security of Java Cards since
they have the authentication keys and tomorrow a hacker may also be able to use
this method to attack cards without needing the keys.

1 Introduction

Java Cards [1,2] are multiapplication smart cards proposed by Sun microsystems based
on the Java technology. The main feature of this standard makes it possible to gather on
a unique medium a set of services, calledapplets, that can cooperate with each other.

Even if it is not currently possible to freely load an applet on the actual Java Cards
without being authenticated, the next generation should allow it. Although these cards
will embed a verifier to protect them against malicious code loading, they raise new
security problems.

The aim of this paper is to describe a method to test the security of the actual Java
Cards and to present the new threats that arise when dealing with open Java Cards. First
we will present the common way to explore and attack classical Java Cards and then we
will precisely explain what is an open Java Card. In section 4 we will show the well-
known attacks against these new cards. Then in the context of the open Java Cards we

⋆ Java and all Java-based marks are trademarks or registered trademarks of Sun microsystems,
Inc. in the United States and other countries. The authors are independent of Sun microsys-
tems, Inc.

⋆⋆ LaBRI (Talence, FRANCE) and LMSI (Limoges, FRANCE).
⋆ ⋆ ⋆ This work was partly supported by a doctoral grant from the french ministry of research and

SERMA Technologies.

Chaumette S. and Sauveron D. (2005).
An Efficient and Simple Way to Test the Security of Java CardsTM.
In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 331-342
DOI: 10.5220/0002574803310342
Copyright c© SciTePress

will expose in section 5 a characterization method using glitches on I/Os and we will
investigate in section 6 how it is possible to use it in order to quickly and efficiently
achieve physical attacks on these cards. Finally we will present our experiments and we
will conclude.

2 Exploring and attacking closed Java Cards

A Java Card is able to embed several applets that do not run simultaneously because the
OS has a single thread. Its architecture (cf. Fig. 1) consists of:

– an embedded virtual and homogeneous Operating System that supports the loading
and the execution of several applets. The OS is a runtime environment (Java Card
Runtime Environment – JCRE) with a virtual machine (VM) thatprovides security
features (e.g. a firewall between applets and the system).

– the applets that are interpreted by the VM.

Hardware and native Operating System

JCRE

Applet A Applet B

Java Card APIs

Java Card Virtual Machine
(bytecodes interpreter)

Fig. 1.Architecture of a Java Card.

Even though the ways to explore a closed Jard Card (i.e.a Java Card that allows ap-
plets to be uploaded after it has been issued only if the authentification was successful)
before trying to attack it are reduced, there are at least twopossibilities that remain:

– Software approach. Since an end user cannot load code on a closed Java Card he
can only access its external interfaces. More precisely, the only external interface
visible on a card is the communication layer. One of the possibilities to set up an
attack at the level of the communication layer is to send all the possible APDU1

commands [3,4] to the Java Card in order to identify all the services that it makes
available to the outside.

– Hardware approach. Based on the results obtained by Kocher,the main path of at-
tack to explore a card without damaging it, is to observe sidechannels [5] such
as the physical emanations from the chip or the time consumptions [6]. The meth-
ods that use power analysis (PA) [7,8] or electromagnetic analysis (EMA) [9,10]
make it possible to identify patterns corresponding to the operations achieved by
the card. These attacks are carried out as a blind man, or a semi-blind man if the
specifications of the card operations are known.
Smart cards are also prone to many other invasive (microprobing, etc.) and non-
invasive (glitch on the different pads of the card, etc.) attacks [11,12,13,14] which
are out of the scope of this paper.

1 The APDU (Application Protocol Data Unit) is the communication unit between areader and
a card at the application level.

332

But, if the user owns the authentication keys, he will be ableto load his code and he
can apply the characterization method described in section5 to set up attacks as shown
in section 6. He can also use the internal attacks presented in section 4. We consider
that this method to test the security is mainly intended to beused by the ITSEF or by
card manufacturers.

3 The open Java Cards

Till now the Java Card technology has not completely been proven secure by formal
methods and consequently it is not safe to run uncertified applets that may be pro-
vided by a hacker to attack the assets of the platform and those of the other applets. To
prevent these problems, the Java Card issuers began to support standards such as Glob-
alPlatform [15] which specifies how to securely load, install and manage applets on a
card. Indeed this standard is used to easily set up and use cryptographic mechanisms
to authorize or prevent the loading of an applet on the card. For example the applet
can be digitally signed off-card by a trusted party (e.g. thecard issuer). Once loaded
the card can check the signature and accept or reject the applet. But the major draw-
back of this solution is its centralized model because of thetrusted third party required
to sign the applet; it thus decreases flexibility. Therefore, on-card verifiers have been
proposed [16,17,18,19,20,21,22] although Java Card designers first thought it was im-
possible to embed a verifier because of the resource constraints of smart cards. Among
the different solutions that have been proposed, three of them (i.e. the defensive VM,
the verifier based on code transformation and the stand-alone verifier) allow to with-
draw the signature step of the applet without jeopardizing the card security and thus
allow everybody to freely load his/her own applet –i.e. anyone can still load a rogue
applet but it will eventually be rejected by the verifier or blocked by the defensive VM.
Note that the verifier based on code transformation [18,19] requires an off-card pro-
gram to normalize the applet whereas the two others (i.e. the defensive VM [20] and
the stand-alone verifier [22]) are stand-alone. We only consider asopen Java Cards the
Java Cards based on one of these two stand-alone solutions. Both are equivalent [21]
but the defensive VM dynamically checks each executed bytecode whereas the stand-
alone verifier statically checks the applet once at load timeand it is associated with an
offensive VM that does not check the bytecode at execution time. Even if these open
Java Cards are not yet available on the market they most probably are the future of Java
Cards.

4 Internal attacks

Obviously one of the main problems of the open Java Cards is the possibility to create
internal attacks since it is possible to load a malicious applet. Such an applet may:

– identify services present on the card and then try to deduce the possible behavior
of an official2 applet (since it can only use services available on the card!). For

2 an applet installed by some trustworthy organization, e.g. a banking applet.

333

example an applet can try to use all the cryptographic services defined in the Java
Card specifications [2] in order to work out if they are present on the card or not.

– collect information on the card to elaborate hardware and software attacks. For
example, an applet can be loaded to gather information aboutthe applets already
installed on the card.

– attack the VM and the firewall. For example two attacks against the firewall mech-
anism (AID impersonation and illegal reference casting that provides access to all
interface methods of a class) are described in [23] and attacks against the VM based
on type confusion are shown in [24]. There also exist attackscoming from problems
in the specifications such as those presented in [25].

5 Characterization method

Once the available services have been identified, an interesting possibility consists in
observing their signature. The main physical signals that can be observed are issued
from the side channels such as the power consumption, the electromagnetic emissions
or the execution time consumption. For instance we can use a cryptographic service
and determine the characteristics of the physical signals emitted during the execution
of this service (e.g. duration, location of the best electromagnetic emissions, power
consumption, etc.). This characterization can be targetedto the use of a whole service
or to an elementary operation, e.g. the interpretation of a single bytecode or a sequence
of bytecodes.

In this section we present an efficient and simple way to to determine the signature
of services on open Java Cards using glitches on the I/O channel of the card. This
method consists in surrounding the pattern to observe with events that are visible for
an observer outside the smart card. Fig. 2 shows the trace of anormal execution of an
applet that includes a pattern to observe. Obviously it is difficult to isolate this pattern
from all those composing the trace.

OS

Hardware

Application

the command APDU
Arrival of

Layers

Time
ISO7816 interface

Pattern to observe

the response APDU
Departure of

Fig. 2.Trace of a normal execution in the layers.

The only event visible to an external observer that the card can produce is the emis-
sion of bytes on the communication channel. If the executionis glitched using this
event, it is easier to find the pattern in the trace (cf. Fig. 3). The code inserted to trigger
the glitches causes an overhead and thus the pattern to observe does not appear at the
exact same instant in the first trace and in the second trace.

Another advantage of this approach is that the trace to save is shorter (because the
area to observe is smaller) and thus it is possible to get a better sampling of the signal,
still producing the same amount of data.

334

OS

Hardware

Application

Pattern to observe

Bytes of
synchronizationthe command APDU

Arrival of

Layers

Time
ISO7816 interface

the response APDU
Departure of

Fig. 3.Trace of a glitched execution in the layers.

5.1 Using the time extension request

The ISO 7816-3 standard [3] defines a special mechanism that allows a smart card to
request a time extension to the readeri.e. let it know that it should wait a bit more be-
fore receiving a result (to prevent a timeout). This mechanism depends on the transport
protocol (e.g. T=0 or T=1) and allows the reader to know that the smart card is not mute
and still works. For instance for the T=0 protocol this mechanism consists in sending
the NULL procedure byte (i.e. the byte 0x60) to the reader. In Java Card the method
invoked to use this mechanism isapdu.waitExtension(). Listing 1.1 shows an
example using thewaitExtension() glitches to surround an encryption.

Listing 1.1. Encryption surrounded bywaitExtension() glitches
apdu) { . . .

/ / Request a time extension that puts data on the I/O (glitch 1).
apdu . w a i t E x t e n s i o n () ;
cipherLength = cipher .doFinal (clearData , (short) 0 ,

clearData .length ,
cipherData , (short) 0) ;

/ / Request again a time extension (glitch 2).
apdu . w a i t E x t e n s i o n () ;

. . .
}

In recent implementations of many manufacturers thewaitExtension()method
is deactivated at user level. The necessary time extension requests are automatically
managed by the platform.

5.2 Using the standard card communication method

The second solution uses the standard card communication method. It is possible to use
it to generate an event used as a glitch by sending the card response in several pieces.
Normally the communication model from the smart card to the host consists in sending
all the data of the response at once. We propose to send a pseudo response in two
times, the first piece being sent before the pattern to observe and the second piece being
sent after. Listing 1.2 shows an example using response based glitches to surround an
encryption.

This method was successfully tested on many Java Cards and itshould work on
any card supporting ISO7816-3–4. People often think that itdoes not work because
they reason at APDU level and they think that the emissions (e.g.sendBytes(...))
are batched. But APDUs (i.e. ISO7816-4 [4]) are achieved by a sequence of TPDU3

3 The TPDU (Transmission Protocol Data Unit) is the communication unit between a reader and
a card at the transmission level

335

Listing 1.2. Encryption surrounded by data glitches
public void process (APDU apdu) {

byte [] buffer = apdu .getBuffer () ;
. . .

buffer [0] = (byte)0xFF ;
apdu .setOutgoing () ;
apdu .setOutgoingLength ((short) 2) ;
/ / Send the synchro ... means the beginning of the process (glitch 1)
apdu . sendBy tes ((s h o r t) 0 , (s h o r t) 1) ;
cipherLength = cipher .doFinal (clearData , (short) 0 ,

(short) clearData .length ,
cipherData , (short) 0) ;

/ / Send the synchro ... means the end of the process (glitch 2)
apdu . sendBy tes ((s h o r t) 0 , (s h o r t) 1) ;

. . .
}

exchanges (i.e. ISO7816-3). Besides this can be confused due toAPDU class in Java
Card is not really an APDU representation and is only an APDU emulation (e.g. with
T=0 cards the mandatory call togetBuffer() sends a TPDU response to the reader
in order to inform it can send the TPDU with the data field of theAPDU to the card).

5.3 Possible improvements

Using the above method, it is possible to target a big patternbut sometimes we wish
to enhance the precision of the target. Let us consider an example. The sequence of
bytecodes of listing 1.3 corresponds to the result of the compilation and conversion of
the three last lines of listing 1.2.

Listing 1.3. Generated bytecodes for the encryption invocation surrounded by glitches
a load_1
s c o n s t _ 0
s c o n s t _ 1
i n v o k e v i r t u a l 0x0 0 x6 / / g l i t c h 1 (r e a l g l i t c h)
getfield_a_this 0x0
getfield_a_this 0x1
sconst_0
getfield_a_this 0x1
arraylength
getfield_a_this 0x2
sconst_0
invokevirtual 0x0 0xa / / pattern to observe (real encryption)
sstore_2
a load_1
s c o n s t _ 0
s c o n s t _ 1
i n v o k e v i r t u a l 0x0 0 x6 / / g l i t c h 2 (r e a l g l i t c h)

It makes it clear that it is possible by working at the bytecode level to improve the
precision of the observation. The sequence of bytecodes presented in listing 1.3 can be
modified as shown listing 1.4 and still have the same global behavior but with a better
accuracy regarding the surrounding of the encryption by theglitches (cf. the Appendix).

This improvement is also possible when using thewaitExtension() method
when the platform makes it available.

One of the problems when working at the bytecode level is thata minor modifica-
tion in the CAP4 file implies to change many other parts. For instance changesin the

4 The standard binary file format of the Java Card platform.

336

Listing 1.4. Improved pattern surrounding
a load_1
s c o n s t _ 0
s c o n s t _ 1
getfield_a_this 0x0
getfield_a_this 0x1
sconst_0
getfield_a_this 0x1
arraylength
getfield_a_this 0x2
sconst_0
a load_1
s c o n s t _ 0
s c o n s t _ 1
i n v o k e v i r t u a l 0x0 0 x6 / / g l i t c h 1 (r e a l g l i t c h)
invokevirtual 0x0 0xa / / pattern to observe (real encryption)
sstore_2
i n v o k e v i r t u a l 0x0 0 x6 / / g l i t c h 2 (r e a l g l i t c h)

array of bytecodes of the Method component of the CAP file often implies to modify
the information related to the maximum size of the stack and the maximum number of
local variables of the frame of the modified method. The ReferenceLocation compo-
nent and its size should also often be modified. These modifications furthermore imply
modifications of the Directory component. To simplify theseoperations, we have devel-
oped a tool provided with the JCatools suite [26,27] to modify the Method component
of a CAP file. The JCatools suite was developed during theJava Card Securityproject
between the LaBRI and the ITSEF of SERMA Technologies. This suite of tools mainly
consists in a Java Card Emulator and additional facilities.More information is available
in the Appendix.

Note that if the manufacturers find countermeasures againstthis method, it will still
be possible to locate the pattern by surrounding it with something that induces high
power consumption (a cryptographic operation, etc.) to still produce an event visible
from the outside.

6 Quickly evaluating the feasibility of an attack

Based on the characterization method presented above it is possible to quickly evaluate
the feasibility of an attack against an official applet sincea hacker can possibly set up
physical attacks [12,13,14] on the pattern identified in herown applet. Indeed she is in
the best experimental position to easily and quickly attacka card implementation (e.g.
to try to bypass the access conditions or perturb a cryptographic algorithm) avoiding
to perform many useless tests and saving a lot of time. If her attacks succeed then she
can attack the official applet or the platform. For instance if she knows a way to attack
cryptographic algorithm that the official applet uses, she can try to set up the attack
against this algorithm by calling it from her own applet and surrounding it by glitches
to quickly test its implementation security. It is also possible to add a glitch just before
accessing data of another applet so as to synchronize a physical attack to bypass the
checks of the firewall thanks to the disturbance of the hardware component.

337

7 Experiments

The method presented in this paper and some improved versions are used by the ITSEF
of SERMA Technologies to test Java Card platforms, applets and their service for in-
stance for a Common Criteria evaluation [28]. Attacks described in the previous section
were already successfully used during real evaluations. The technical details of their
implementation and the results are confidential but the mainprinciples are published
in this paper. Most of the time they are used with the theoretical assumption that the
attacker could load her applet (the Java Cards that are evaluated are not yet open). Ob-
viously this assumption is taken into account in the quotation of the attacks to know if
they exceed the desired evaluation assurance level.

8 Conclusion and future work

This paper describes a way to quickly test the security of thenext generation of Java
Cards. The majority of the problems and attacks presented inthis paper (i.e. sections 5
and 6) were unpublished till now and we hope that sharing our experience with others
interested in the area will help to secure the future open Java Cards. Even if the problems
raised may seem obvious, we have already used them successfully during a real product
evaluation to quickly set up attacks.

Appendix: Methodology to modify a CAP file

In this appendix we show in details the method used to set up trace based identification
of operations by working at the bytecode level.

– First, write a code that uses the pattern to observe or a dummyJava code that will
be replaced by the pattern to observe. In this last case the dummy sequence should
generate a large enough sequence of bytecodes so that it can be replaced by the
pattern to observe. For instance to observe the bytecodesxor, write the Java code
of listing 1.5.

Listing 1.5. Dummy code
. . .

apdu .setOutgoing () ;
apdu .setOutgoingLength ((short) 2) ;

apdu . sendBy tes ((s h o r t) 0 , (s h o r t) 1) ; / / g l i t c h 1
/ / Here introduce the interesting pattern to observe
short s = (short) 0 ; / / Dummy
s ^ = (short) 1 ; / / Dummy
apdu . sendBy tes ((s h o r t) 0 , (s h o r t) 1) ; / / g l i t c h 2

. . .

– Compile and convert it to produce a CAP formated file. Then usethe parseCom-
ponenttool of the JCatools suite to get the methods of the CAP file in ahuman
readable format. The interesting part including the dummy code of the file obtained
by parseComponentis detailed listing 1.6.

338

Listing 1.6. Bytecodes generated from the dummy code
. . .
a load_1
s c o n s t _ 0
s c o n s t _ 1
i n v o k e v i r t u a l 0x0 0 xc / / g l i t c h 1
sconst_0 / /
sstore_3 / / The
sload_3 / / generated
sconst_1 / / dummy
sxor / / bytecodes
sstore_3 / /
a load_1
s c o n s t _ 0
s c o n s t _ 1
i n v o k e v i r t u a l 0x0 0 xc / / g l i t c h 2
. . .

– Modify the generated bytecode sequence so as to improve the position of the glitches
or to replace the dummy sequence by the proper bytecodes. Listing 1.7 shows how
we update the listing 1.6 to set thesxor pattern surrounded by glitches with the
best accuracy.

– Modify the maximum size of the stack and the maximum number oflocal variables.
– Use themethodRewritertool available in the JCatools suite to rewrite the Method

component of the CAP file. It also modifies the ReferenceLocation component and
if needed the Directory component.

Listing 1.7. Pattern to observe surrounded by glitches
. . .
nop / / Thenop bytecodes do nothing
nop / / and we use them to reach the same
nop / / size for the bytecodes array as
nop / / previously to simplify the modification process.
a load_1
s c o n s t _ 0
sconst_0 / / TIP: the result of the sxor
sconst_1 / / will be the third argument
a load_1
s c o n s t _ 0
s c o n s t _ 1
i n v o k e v i r t u a l 0x0 0 xc / / g l i t c h 1
sxor / / pattern to observe
i n v o k e v i r t u a l 0x0 0 xc / / g l i t c h 2
. . .

The resulting CAP file is still valid for the verifier and the defensive VM and can be
uploaded to a Java Card.

Listing 1.7 shows that in some cases it is possible to isolatea single bytecode. It
uses a tip to avoid the addition of a bytecode (e.g.pop, sstore, etc.) just aftersxor
that would remove theshort value resulting of thesxor operation from the stack.

References

1. Chen, Z.: Java Card
TM

Technology for Smart Cards: Architecture and Programmer’s Guide.
Addison-Wesley (2000)

2. Sun microsystems: Java Card
TM

2.2.1 Specifications. Sun microsystems (2003)
3. International Organization for Standardization: Information technology – Identification cards

– Integrated circuit(s) cards with contacts – Part 3: Electronic signals andtransmission pro-
tocols. (ISO)

339

4. International Organization for Standardization: Information technology – Identification cards
– Integrated circuit(s) cards with contacts – Part 4: Interindustry comands for interchange.
(ISO)

5. Muir, J.A.: Techniques of Side Channel Cryptanalysis. Master’s thesis, University of Water-
loo, Ontario, Canada (2001) Master of Mathematics in Combinatorics and Optimization.

6. Kocher, P.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems.
In: Proceedings of the 16th Annual International Cryptology Conference on Advances in
Cryptology, Springer-Verlag (1996) 104–113

7. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Proceedings of the 19th
Annual International Cryptology Conference on Advances in Cryptology, Springer-Verlag
(1999) 388–397

8. Coron, J.S., Kocher, P., Naccache, D.: Statistics and Secret Leakage. In: Proceedings of
Financial Cryptography (FC2000). Volume 1962 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 157–173

9. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Countermea-
sures for Smart Cards. In: Proceedings of E-smart 2001. Volume2140 of Lecture Notes in
Computer Science., Springer-Verlag (2001) 200–210

10. Gandol, K., Mourtel, C., Olivier, F.: ElectroMagnetic Analysis: Concrete Results. In: Pro-
ceedings of CHES’2001. Volume 2162 of Lecture Notes in Computer Science., Springer-
Verlag (2001) 251–261

11. Kömmerling, O., Kuhn, M.G.: Design Principles for Tamper-Resistant Smartcard Proces-
sors. In: Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard ’99),
Chicago, Illinois, USA (1999) 9–20

12. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprentice
Guide to Fault Attacks. In: Proceedings of Workshop on Fault Detection and Tolerance in
Cryptography, Italy (2004)

13. Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Proceedings of CARDIS’04,
Smart Card Research and Advanced Applications VI, Toulouse, France, Kluwer academic
publisher (2004) 159–176

14. Skorobogatov, S., Anderson, R.: Optical Fault Induction Attacks. In: Proceedings of Work-
shop on Cryptographic Hardware and Embedded Systmes (CHES 2002), San Francisco Bay
(Redwood City), USA (2002)

15. GlobalPlatform: GlobalPlatform. (http://www.globalplatform.org/)
16. Rose, E., Rose, K.: Lightweight bytecode verification. In: In Workshop on Fundamental

Underpinnings of Java, OOPSLA ’98 Workshop., Vancouver, Canada (1998)
17. Casset, L., Burdy, L., Requet, A.: Formal Development of an embedded verifier for Java Card

Byte Code. In: Proceedings of the IEEE International Conference onDependable Systems
& Networks, Washington, D.C., USA (2002)

18. Leroy, X.: On-Card Bytecode Verification for Java Card. In: Proceedings of the International
Conference on Research in Smart Cards, E-Smart 2001, Springer-Verlag (2001) 150–164

19. Leroy, X.: Bytecode verification on Java smart cards. Software-Practice & Experience32
(2002) 319–340

20. Cohen, R.M.: Defensive Java Virtual Machine Version 0.5 alpha. (1997)
21. Barthe, G., Dufay, G., Jakubiec, L., Melo de Sousa, S.: A Formal Correspondence between

Offensive and Defensive JavaCard Virtual Machines. In: Proceedings of VMCAI’02. Volume
2294 of Lecture Notes in Computer Science., Venice, Italy, Springer-Verlag (2002) 32–45

22. Deville, D., Grimaud, G.: Building an “impossible” verifier on a Java Card. In: 2nd USENIX
Workshop on Industrial Experiences with Systems Software, Boston, USA (2002)

23. Montgomery, M., Krishna, K.: Secure Object Sharing in Java Card. In: Proceedings of
the USENIX Workshop on Smartcard Technology (Smartcard ’99), Chicago, Illinois, USA
(1999)

340

24. Witteman, M.: Java card security. Information Security Bulletin8 (2003) 291–298
25. Betarte, G., Giménez, E., Chetali, B., Loiseaux, C.: FORMAVIE: Formal Modelling and

Verification of Java Card 2.1.1 Security Architecture. In: Proceedings of E-Smart 2002,
Nice, France (2002) 215–229

26. Chaumette, S., Hatchondo, I., Sauveron, D.: JCAT: An environment for attack and test on
Java Card. In: Proceedings of CCCT’03 and 9th ISAS’03. Volume 1., Orlando, FL, USA
(2003) 270–275

27. Hatchondo, I., Sauveron, D.: The JCatools website.
(http://sourceforge.net/projects/jcatools/)

28. CCIMB: International Common Criteria home page.
(http://www.commoncriteriaportal.org/)

341

342

