An Efficient and Simple Way to Test the Security of
Java Cards™~*

Serge Chaumette and Damien Sauvétrgr *

LaBRI, Laboratoire Bordelais de Recherche en Informatique
UMR 5800 — Universite Bordeaux 1
351 cours de la Liberation, 33405 TalermeDex, FRANCE.

Abstract. Till recently it was impossible to have more than one single applica-
tion running on a smart card. Multiapplication cards, and especially Java Cards,
now make it possible to have several applications sharing the same physical piece
of plastic. Today, these cards accept to load code only after an authentication.
But in the future, the cards will be open an everybody should be authorized to
upload an application. This raises new security problems by creating additional
ways to attack Java Cards. These problems and the method to test them are the
topic of this paper. The attacks will be illustrated with code samples. The method
presented here can be applied right now by authorised people (e.g. Information
Technology Evaluation Facility — ITSEF) to test the security of Java Cards since
they have the authentication keys and tomorrow a hacker may also be able to use
this method to attack cards without needing the keys.

1 Introduction

Java Cards [1,2] are multiapplication smart cards proposed by Sun microsystems based
on the Java technology. The main feature of this standard makes it possible to gather on
a unigue medium a set of services, calguplets, that can cooperate with each other.

Even if it is not currently possible to freely load an applet on the actual Java Cards
without being authenticated, the next generation should allow it. Although these cards
will embed a verifier to protect them against malicious code loading, they raise new
security problems.

The aim of this paper is to describe a method to test the security of the actual Java
Cards and to present the new threats that arise when dealing with open Java Cards. First
we will present the common way to explore and attack classical Java Cards and then we
will precisely explain what is an open Java Card. In section 4 we will show the well-
known attacks against these new cards. Then in the context of the open Java Cards we

* Java and all Java-based marks are trademarks or registered trademarks of Sun microsystems,
Inc. in the United States and other countries. The authors are independent of Sun microsys-
tems, Inc.

** LaBRI (Talence, FRANCE) and LMSI (Limoges, FRANCE).
*** This work was partly supported by a doctoral grant from the french ministry of research and
SERMA Technologies.

Chaumette S. and Sauveron D. (2005).

An Efficient and Simple Way to Test the Security of Java CardsTM.

In Proceedings of the 3rd International Workshop on Security in Information Systems, pages 331-342
DOI: 10.5220/0002574803310342

Copyright © SciTePress

332

will expose in section 5 a characterization method usinggiygis on 1/0s and we will
investigate in section 6 how it is possible to use it in oraequickly and efficiently
achieve physical attacks on these cards. Finally we wiB@meour experiments and we
will conclude.

2 Exploring and attacking closed Java Cards
A Java Card is able to embed several applets that do not rwritaimeously because the
OS has a single thread. Its architectwk Fig. 1) consists of:

— an embedded virtual and homogeneous Operating Systenughadiss the loading
and the execution of several applets. The OS is a runtimeamwvient (Java Card
Runtime Environment — JCRE) with a virtual machine (VM) thadvides security
features (e.g. a firewall between applets and the system).

— the applets that are interpreted by the VM.

‘ Applet B

Java Card APIs JCRE

Java Card Virtual Machine
(bytecodes interpreter)

‘ Hardware and native Operating Systerﬂ

Applet A

Fig. 1. Architecture of a Java Card.

Even though the ways to explore a closed Jard Gaeda(Java Card that allows ap-
plets to be uploaded after it has been issued only if the atiftoation was successful)
before trying to attack it are reduced, there are at leasptvasibilities that remain:

— Software approach. Since an end user cannot load code osedclava Card he
can only access its external interfaces. More precisedyptily external interface
visible on a card is the communication layer. One of the ilggés to set up an
attack at the level of the communication layer is to sendtadlgossible APDYU
commands [3,4] to the Java Card in order to identify all thwises that it makes

available to the outside.
— Hardware approach. Based on the results obtained by Kdtleemain path of at-

tack to explore a card without damaging it, is to observe shiEnnels [5] such
as the physical emanations from the chip or the time consong[6]. The meth-
ods that use power analysis (PA) [7,8] or electromagnetatyais (EMA) [9,10]
make it possible to identify patterns corresponding to therations achieved by
the card. These attacks are carried out as a blind man, orisbiachman if the
specifications of the card operations are known.

Smart cards are also prone to many other invasive (micrapgoletc.) and non-
invasive (glitch on the different pads of the card, etcaaks [11,12,13,14] which
are out of the scope of this paper.

1 The APDU (Application Protocol Data Unit) is the communication unit betweerader and
a card at the application level.

333

But, if the user owns the authentication keys, he will be &blead his code and he
can apply the characterization method described in sebttorset up attacks as shown
in section 6. He can also use the internal attacks presemteection 4. We consider
that this method to test the security is mainly intended toidged by the ITSEF or by
card manufacturers.

3 The open Java Cards

Till now the Java Card technology has not completely beemgmr®ecure by formal
methods and consequently it is not safe to run uncertifiedetpthat may be pro-
vided by a hacker to attack the assets of the platform ane tbibthe other applets. To
prevent these problems, the Java Card issuers began torssigmulards such as Glob-
alPlatform [15] which specifies how to securely load, instald manage applets on a
card. Indeed this standard is used to easily set up and upggrgphic mechanisms
to authorize or prevent the loading of an applet on the cand.eikample the applet
can be digitally signed off-card by a trusted party (e.g.dhed issuer). Once loaded
the card can check the signature and accept or reject thetagpit the major draw-
back of this solution is its centralized model because ofrihted third party required
to sign the applet; it thus decreases flexibility. Thereforecard verifiers have been
proposed [16,17,18,19,20,21,22] although Java Card mexsdirst thought it was im-
possible to embed a verifier because of the resource cartstcdismart cards. Among
the different solutions that have been proposed, threeashthe. the defensive VM,
the verifier based on code transformation and the standtalerifier) allow to with-
draw the signature step of the applet without jeopardizivgdard security and thus
allow everybody to freely load his/her own applete: anyone can still load a rogue
applet but it will eventually be rejected by the verifier oodted by the defensive VM.
Note that the verifier based on code transformation [18,&§liires an off-card pro-
gram to normalize the applet whereas the two othieesthe defensive VM [20] and
the stand-alone verifier [22]) are stand-alone. We only iclemssopen Java Cardsthe
Java Cards based on one of these two stand-alone solutiotisaB: equivalent [21]
but the defensive VM dynamically checks each executed bgeevhereas the stand-
alone verifier statically checks the applet once at load ameit is associated with an
offensive VM that does not check the bytecode at executioe.tEven if these open
Java Cards are not yet available on the market they most lpisoage the future of Java
Cards.

4 Internal attacks

Obviously one of the main problems of the open Java Cardipalsibility to create
internal attacks since it is possible to load a malicioudetpfuch an applet may:

— identify services present on the card and then try to deche@ossible behavior
of an officiaf applet (since it can only use services available on the kafFor

2 an applet installed by some trustworthy organization, e.g. a bankingtapple

334

example an applet can try to use all the cryptographic seswiefined in the Java
Card specifications [2] in order to work out if they are présemthe card or not.

— collect information on the card to elaborate hardware arftivace attacks. For
example, an applet can be loaded to gather information aheuapplets already
installed on the card.

— attack the VM and the firewall. For example two attacks adaesfirewall mech-
anism (AID impersonation and illegal reference casting ghavides access to all
interface methods of a class) are described in [23] andkattagainst the VM based
on type confusion are shown in [24]. There also exist attaoksing from problems
in the specifications such as those presented in [25].

5 Characterization method

Once the available services have been identified, an inieggsossibility consists in
observing their signature. The main physical signals that lse observed are issued
from the side channels such as the power consumption, thiz@ieagnetic emissions
or the execution time consumption. For instance we can usgmographic service
and determine the characteristics of the physical sigmaltted during the execution
of this service (e.g. duration, location of the best elaugignetic emissions, power
consumption, etc.). This characterization can be targietéide use of a whole service
or to an elementary operation, e.g. the interpretation afgles bytecode or a sequence
of bytecodes.

In this section we present an efficient and simple way to terdene the signature
of services on open Java Cards using glitches on the 1/O eharrthe card. This
method consists in surrounding the pattern to observe withts that are visible for
an observer outside the smart card. Fig. 2 shows the tracaafaal execution of an
applet that includes a pattern to observe. Obviously itfficdit to isolate this pattern
from all those composing the trace.

Layers Pattern to observe

= [\r
ISO:‘:;:ware \/ \I

Time

Arrival of Departure of
the command APDU the response APDU

Fig. 2. Trace of a normal execution in the layers.

The only event visible to an external observer that the candpcoduce is the emis-
sion of bytes on the communication channel. If the execuigoglitched using this
event, it is easier to find the pattern in the trackeKig. 3). The code inserted to trigger
the glitches causes an overhead and thus the pattern toselikms not appear at the
exact same instant in the first trace and in the second trace.

Another advantage of this approach is that the trace to sesfedrter (because the
area to observe is smaller) and thus it is possible to gettarlstmpling of the signal,
still producing the same amount of data.

335

Layers Pattern to observe

\r
\

os ‘\/

Hardware
1507816

Time

~7

Arrival of Bytes of Departure of
the command APDU synchronization the response APDL

Fig. 3. Trace of a glitched execution in the layers.

5.1 Using the time extension request

The 1ISO 7816-3 standard [3] defines a special mechanism ltbatsaa smart card to
reguest a time extension to the readerlet it know that it should wait a bit more be-
fore receiving a result (to prevent a timeout). This mecsmnilepends on the transport
protocol (e.g. T=0 or T=1) and allows the reader to know thatsmart card is not mute
and still works. For instance for the T=0 protocol this metdka consists in sending
the NULL procedure bytei.e. the byte 0x60) to the reader. In Java Card the method
invoked to use this mechanismapdu. wai t Ext ensi on() . Listing 1.1 shows an
example using theai t Ext ensi on() glitches to surround an encryption.

Listing 1.1. Encryption surrounded byai t Ext ensi on() glitches

apdu) { ...
/1 Request a time extension that puts data on the 1/O (glich 1

ci pherLength = cipher .doFi nal (cl earData, (short) O,
clearData.l ength,
ci pherData, (short) 0);
/1 Request again a time extension (glitch 2).
apdu.waitExtension ();

In recent implementations of many manufacturersiiiet Ext ensi on() method
is deactivated at user level. The necessary time extensmuests are automatically
managed by the platform.

5.2 Using the standard card communication method

The second solution uses the standard card communicatithochet is possible to use
it to generate an event used as a glitch by sending the cgrdnss in several pieces.
Normally the communication model from the smart card to thet lsonsists in sending
all the data of the response at once. We propose to send agsesgbnse in two
times, the first piece being sent before the pattern to obsard the second piece being
sent after. Listing 1.2 shows an example using responsel lgdisehes to surround an
encryption.

This method was successfully tested on many Java Cards ahdutd work on
any card supporting ISO7816-3-4. People often think thdbés not work because
they reason at APDU level and they think that the emissiogsgendByt es(...))
are batched. But APDUS.¢é. 1ISO7816-4 [4]) are achieved by a sequence of TPDU

% The TPDU (Transmission Protocol Data Unit) is the communication unit leteeeader and
a card at the transmission level

336

Listing 1.2. Encryption surrounded by data glitches

public void process(APDU apdu) {
byte[] buffer = apdu.getBuffer ();

buffer [0] = (byte)OxFF;

apdu.set Qut goi ng ();

apdu.set Qut goi ngLengt h((short) 2);

/1 Send the synchro ... means the beginning of the procetsh(g)

cipherLength = cipher .doFi nal (cl earData, (short) 0,
(short) clearData.length,
cipherData, (short) 0);
11 Send the synchro ... means the end of the process (glitch 2)
apdu.sendBytes ((short) 0, (short) 1);

exchangesife. ISO7816-3). Besides this can be confused duARBU class in Java
Card is not really an APDU representation and is only an APDidlation (e.g. with
T=0 cards the mandatory call gt Buf f er () sends a TPDU response to the reader
in order to inform it can send the TPDU with the data field of #R#DU to the card).

5.3 Possible improvements

Using the above method, it is possible to target a big pattetrsometimes we wish
to enhance the precision of the target. Let us consider amghea The sequence of
bytecodes of listing 1.3 corresponds to the result of thepilation and conversion of
the three last lines of listing 1.2.

Listing 1.3. Generated bytecodes for the encryption invocation surrounded byegitch

getfield_a_this 0x0

getfield_a_this Ox1

sconst _0

getfield_a_this Ox1

arrayl ength

getfield_a_this 0x2

sconst _0

i nvokevi rtual 0x0 Oxa // pattern to observe (real encryption)
sstore_2

aload_1

sconst_0

sconst_1

invokevirtual 0x0 0x6 // glitch 2 (real glitch)

It makes it clear that it is possible by working at the bytextelel to improve the
precision of the observation. The sequence of bytecodsgpied in listing 1.3 can be
modified as shown listing 1.4 and still have the same globlahwier but with a better
accuracy regarding the surrounding of the encryption bgtitehes €f. the Appendix).

This improvement is also possible when using Wee t Ext ensi on() method
when the platform makes it available.

One of the problems when working at the bytecode level isahatnor modifica-
tion in the CAP file implies to change many other parts. For instance chaingtee

4 The standard binary file format of the Java Card platform.

337

Listing 1.4. Improved pattern surrounding

aload_1

sconst_0

sconst_1
getfield_a_this 0x0
getfield_a_this Ox1
sconst _0
getfield_a_this Ox1
arrayl ength
getfield_a_this 0x2
sconst _0

i nvokevi rtual 0x0 Oxa // pattern to observe (real encryption)
sstore_2
invokevirtual 0x0 0x6 // glitch 2 (real glitch)

array of bytecodes of the Method component of the CAP filendifteplies to modify
the information related to the maximum size of the stack &aedtiaximum number of
local variables of the frame of the modified method. The RefeeLocation compo-
nent and its size should also often be modified. These maiilifitsafurthermore imply
moadifications of the Directory component. To simplify thegerations, we have devel-
oped a tool provided with the JCatools suite [26,27] to motlie Method component
of a CAP file. The JCatools suite was developed duringléhe Card Securitproject
between the LaBRI and the ITSEF of SERMA Technologies. Thite ®f tools mainly
consists in a Java Card Emulator and additional facilifae information is available
in the Appendix.

Note that if the manufacturers find countermeasures agaisgnethod, it will still
be possible to locate the pattern by surrounding it with gbing that induces high
power consumption (a cryptographic operation, etc.) tb mtbduce an event visible
from the outside.

6 Quickly evaluating the feasibility of an attack

Based on the characterization method presented abovedisssigpe to quickly evaluate
the feasibility of an attack against an official applet sindeacker can possibly set up
physical attacks [12,13,14] on the pattern identified indven applet. Indeed she is in
the best experimental position to easily and quickly at&aclard implementation (e.g.
to try to bypass the access conditions or perturb a cryppbigeaalgorithm) avoiding
to perform many useless tests and saving a lot of time. If tiaclks succeed then she
can attack the official applet or the platform. For instarichée knows a way to attack
cryptographic algorithm that the official applet uses, sae ty to set up the attack
against this algorithm by calling it from her own applet andreunding it by glitches
to quickly test its implementation security. It is also pbsto add a glitch just before
accessing data of another applet so as to synchronize acphgsiack to bypass the
checks of the firewall thanks to the disturbance of the hardwamponent.

338
7 Experiments

The method presented in this paper and some improved veraierused by the ITSEF
of SERMA Technologies to test Java Card platforms, appledstaeir service for in-

stance for a Common Criteria evaluation [28]. Attacks dbsctin the previous section
were already successfully used during real evaluations.t€bhnical details of their
implementation and the results are confidential but the mairciples are published
in this paper. Most of the time they are used with the thecabissumption that the
attacker could load her applet (the Java Cards that areatedlare not yet open). Ob-
viously this assumption is taken into account in the quotatif the attacks to know if
they exceed the desired evaluation assurance level.

8 Conclusion and future work

This paper describes a way to quickly test the security oniad generation of Java
Cards. The majority of the problems and attacks presentddsipaper i(e. sections 5
and 6) were unpublished till now and we hope that sharing gperence with others
interested in the area will help to secure the future opea Gavds. Even if the problems
raised may seem obvious, we have already used them sudbedsfing a real product
evaluation to quickly set up attacks.

Appendix: Methodology to modify a CAP file

In this appendix we show in details the method used to setage trased identification
of operations by working at the bytecode level.

— First, write a code that uses the pattern to observe or a dudawegy code that will
be replaced by the pattern to observe. In this last case thengusequence should
generate a large enough sequence of bytecodes so that ieaaplaced by the
pattern to observe. For instance to observe the bytesrde, write the Java code
of listing 1.5.

Listing 1.5. Dummy code

N .apdu‘set Qut goi ng();
apdu.set Qut goi ngLengt h((short) 2);

/1 Here introduce the interesting pattern to observe

short s = (short) O; /1 Dummy

s ~= (short) 1; /1 Dummy

apdu.sendBytes ((short) 0, (short) 1); // glitch 2

— Compile and convert it to produce a CAP formated file. ThenthegarseCom-
ponenttool of the JCatools suite to get the methods of the CAP file huaan
readable format. The interesting part including the dumodeoof the file obtained
by parseComponers detailed listing 1.6.

339

Listing 1.6. Bytecodes generated from the dummy code

sconst _0 11
sstore_3 11 The

sl oad_3 11 generated
sconst _1 11 dummy
sxor 11 bytecodes
sstore_3 11

aload_1

sconst_0

sconst_1

invokevirtual 0x0 Oxc // glitch 2

— Modify the generated bytecode sequence so as to improvesiten of the glitches
or to replace the dummy sequence by the proper bytecodemd.is7 shows how
we update the listing 1.6 to set thexor pattern surrounded by glitches with the
best accuracy.

— Modify the maximum size of the stack and the maximum numbévazfl variables.

— Use themethodRewritetool available in the JCatools suite to rewrite the Method
component of the CAP file. It also modifies the Referencelionatomponent and
if needed the Directory component.

Listing 1.7. Pattern to observe surrounded by glitches

nop /1 Thenop bytecodes do nothing

nop /1 and we use them to reach the same

nop 11 size for the bytecodes array as

nop 11 previously to simplify the modification process.
aload_1

sconst_0

sconst _0 11 TIP: the result of the sxor

sconst _1 /1 will be the third argument

sxor /1 pattern to observe

invokevirtual 0x0 Oxc // glitch 2

The resulting CAP file is still valid for the verifier and thefersive VM and can be
uploaded to a Java Card.

Listing 1.7 shows that in some cases it is possible to is@agagle bytecode. It
uses a tip to avoid the addition of a bytecode (pap, sst or e, etc.) just aftesxor
that would remove thehor t value resulting of thexor operation from the stack.

References

1. Chen, Z.: Java card Technology for Smart Cards: Architecture and Programmer’s Guide
Addison-Wesley (2000)

2. Sun microsystems: Java car@.2.1 Specifications. Sun microsystems (2003)

3. International Organization for Standardization: Information techmoladentification cards
— Integrated circuit(s) cards with contacts — Part 3: Electronic signalsransimission pro-
tocols. (1ISO)

340

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

International Organization for Standardization: Information techgyolddentification cards
— Integrated circuit(s) cards with contacts — Part 4: Interindustry cdméor interchange.
(ISO)

. Muir, J.A.: Techniques of Side Channel Cryptanalysis. Masteg'sish University of Water-

loo, Ontario, Canada (2001) Master of Mathematics in Combinatorics atich2ation.

. Kocher, P.: Timing attacks on implementations of diffie-hellman, s, &hd other systems.

In: Proceedings of the 16th Annual International Cryptology Comfegeon Advances in
Cryptology, Springer-Verlag (1996) 104-113

. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis: Rroceedings of the 19th

Annual International Cryptology Conference on Advances in Cryggl&pringer-Verlag
(1999) 388-397

. Coron, J.S., Kocher, P., Naccache, D.: Statistics and Secaéabe. In: Proceedings of

Financial Cryptography (FC2000). Volume 1962 of Lecture Notes imf@der Science.,
Springer-Verlag (2001) 157-173

. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMAp3vess and Countermea-

sures for Smart Cards. In: Proceedings of E-smart 2001. VoRi48 of Lecture Notes in
Computer Science., Springer-Verlag (2001) 200-210

Gandol, K., Mourtel, C., Olivier, F.: ElectroMagnetic Analysis: Cate Results. In: Pro-
ceedings of CHES'2001. Volume 2162 of Lecture Notes in Computem8eie Springer-
Verlag (2001) 251-261

Kdédmmerling, O., Kuhn, M.G.: Design Principles for Tamper-RasisSmartcard Proces-
sors. In: Proceedings of the USENIX Workshop on Smartcard Tdoby (Smartcard '99),
Chicago, lllinois, USA (1999) 9-20

Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan,The Sorcerer’s Apprentice
Guide to Fault Attacks. In: Proceedings of Workshop on Fault DetectidnTalerance in
Cryptography, Italy (2004)

Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Redoegs of CARDIS'04,
Smart Card Research and Advanced Applications VI, Toulousec€ratiuwer academic
publisher (2004) 159-176

Skorobogatov, S., Anderson, R.: Optical Fault Induction AttatrksProceedings of Work-
shop on Cryptographic Hardware and Embedded Systmes (CHE$, 3202Francisco Bay
(Redwood City), USA (2002)

GlobalPlatform: GlobalPlatform. (http://www.globalplatform.org/)

Rose, E., Rose, K.: Lightweight bytecode verification. In: In §bop on Fundamental
Underpinnings of Java, OOPSLA '98 Workshop., Vancouver, Qar{a998)

Casset, L., Burdy, L., Requet, A.: Formal Development ofrabexided verifier for Java Card
Byte Code. In: Proceedings of the IEEE International Conferend@ependable Systems
& Networks, Washington, D.C., USA (2002)

Leroy, X.: On-Card Bytecode Verification for Java Card. Irudeedings of the International
Conference on Research in Smart Cards, E-Smart 2001, Spkiagag (2001) 150-164
Leroy, X.: Bytecode verification on Java smart cards. Softiasetice & Experienc82
(2002) 319-340

Cohen, R.M.: Defensive Java Virtual Machine Version 0.5 al(#207)

Barthe, G., Dufay, G., Jakubiec, L., Melo de Sousa, S.: A Bb@orrespondence between
Offensive and Defensive JavaCard Virtual Machines. In: Prdiogs of VMCAI'02. Volume
2294 of Lecture Notes in Computer Science., Venice, Italy, Springeialy (2002) 32—45
Deville, D., Grimaud, G.: Building an “impossible” verifier on a Jawad In: 29 USENIX
Workshop on Industrial Experiences with Systems Software, Bost8A, (2002)
Montgomery, M., Krishna, K.: Secure Object Sharing in JavalCdn: Proceedings of
the USENIX Workshop on Smartcard Technology (Smartcard '99icagjo, lllinois, USA
(1999)

24,
25.

26.

27.

28.

341

Witteman, M.: Java card security. Information Security Bull8t{2003) 291-298

Betarte, G., Giménez, E., Chetali, B., Loiseaux, C.. FORMAVI&nfal Modelling and

Verification of Java Card 2.1.1 Security Architecture. In: ProceedimigE-Smart 2002,

Nice, France (2002) 215-229

Chaumette, S., Hatchondo, |., Sauveron, D.: JCAT: An enwisari for attack and test on
Java Card. In: Proceedings of CCCT'03 and 9th ISAS’03. Volum®tlando, FL, USA

(2003) 270-275

Hatchondo, l., Sauveron, D.: The JCatools website.
(http://sourceforge.net/projects/jcatools/)
CCIMB: International Common Criteria home page.

(http://www.commoncriteriaportal.org/)

