
Verification of Smart Homes Specifications which are
based on ECA Rules

Juan C. Augusto

School of Computing and Mathematics,
University of Ulster at Jordanstown, UK

Abstract. Smart homes implementations are usually based on Active Databases
(ADBs). A core concept of ADBs is the concept of Event-Condition-Action (ECA)
rules allowing the system to react to specific events occurring in contexts of in-
terest and advising on an the actions that should be taken in those situations.
Although research in ADBs has been conducted for quite a few years, still no
standard verification framework has emerged yet from the area. In this paper we
consider some options to verify specifications of Smart Homes based on ADB-
related concepts.

1 Introduction

Smart homes implementations are usually based on Active Databases (ADBs) [7]. A
core concept of ADBs is the concept of Event-Condition-Action (ECA) rules allowing
the system to react to specific events occurring in contexts of interest and advising on an
the actions that should be taken in those situations. Although research in ADBs has been
conducted for quite a few years, still no standard verification framework has emerged
yet from the area. In this paper we consider some options to verify specifications of
Smart Homes based on ADB-related concepts.

ECA rules have the following general format:ONeventIFcondition DOaction.
The ECA rule specification language we consider (see [1] for BNF definition) has been
formally defined [5] and its interpreter has been implemented and tested (see [6]). Gal-
ton’s proposal considers a set of operators that is mainly focused on events, states and
their interaction. We use this as the basis for the specification of ON and IF clauses.
Primitive/complex events and calendar-related functions can be used to refer to time
constraints within the ECA rules.

The information generated from the sensors within the house and the interfaces
embedded into common domestic appliances can be processed by the ADB manager to
provide assistance to the person in a number of different ways; prevention of dangerous
situations (e.g., leaving food over the cooker for a long time), comfort (e.g., regulation
of temperature according to seasons), security (e.g., detecting intruders in the vicinity)
and health (e.g., contacting medical personnel after using a self monitoring device).

2 ECA Rules Verification

Our system deals with a wide range of situations of interest including safety and health
related issues. That is an extra motivation to ensure correctness of the ECA rules as

C. Augusto J. (2005).
Verification of Smart Homes Specifications which are based on ECA Rules.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
118-120
DOI: 10.5220/0002574701180120
Copyright c© SciTePress



a whole. There have been some reports on similar attempts in the literature, see for
example [4], by using planning systems. While we address someof the properties con-
sidered in [4], here we offer an alternative solution to the problem that is closer to our
framework and the methods and tools used in Software Engineering for verification and
validation of software [2].

We are mainly focused on checking semantic correctness of the set of ECA rules as
a whole. We consider here a list of properties whose verification can be automised in
our framework and are important to obtain a more reliable setof ECA rules: a)Consis-
tency:the actions triggered at each step should not be inconsistent. A separate check is
performed to consider consistency of the incoming actions compared with the existing
DB (but this second consistency check is undertaken at run time) (see [1]). b)Trigger-
ability: this checks if each ON clause specification is such that it is always/sometimes
potentially triggerable. c)Joint applicability:this checks if triggerability is possible for
any subset. Due to the computational complexity of this goalN-Joint applicability can
be explored meaning that only possible combinations of up toN rules are explored for
joint applicability. d)Rule coverage:this checks if there are pairs (R1, R2) of rules such
that the triggering conditions of R1 is a subset of the triggering conditions of R2. e)Rule
cascading:this checks if there are any forced sequences of rule activations imposed by
design. f)Postcondition satisfaction:this checks if a given postcondition is achieved
after activation of a rule. An example illustrating this situations can be seen in section
6.2 of [1].

We use an interpreter of the language proposed in [3] where a fragment of MTL,
calledMTL-programsis mapped to a constraint logic programming framework which
admits efficient satisfiability checking of the constraintsgenerated. Complexity is in the
worse case linear in the number of variables involved. On theother hand, MTL offers a
language which is expressive enough for us to map the language of our ECA rules into
and to write the queries that allow us to check the propertiesdescribed previously. We
further restrict the expressiveness ofMTL-programsby discarding the past fragment.

Due to space restrictions we do not provide full details of this theoretical frame-
work. Here we instantiate the general framework offered in [3] to a specific case study
and temporal domain so formulas given below will refer to meaningful predicates used
in the ECA rules and metrics will be referred to calendar dates. Although the initial
framework considers an unbounded temporal structure we have natural initial and final
times given by the time where the system started and the present, respectively. Also,
before starting the verification process, the ECA rules havebeen translated and la-
belled so that a ruleON E IF C DO Awill produce anMTL-program-F-based clause
do(RuleID, A)← E ∧ C. So that the rule will be identified by a unique RuleID.
Actions inconsistency, returns the IDs of rules which are conflicting in any sense that
can be specified by using a predicateconflictingActions:

2(checkInconsistency(RuleID1, RuleID2)←
do(RuleID1, A1) ∧ do(RuleID2, A2) ∧ conflictingActions(A1, A2))

Further details on how to deal with the other properties can be seen in section 6.3 of
[1].

119



3 Conclusions

The notions of ADBs and ECA rules mixed with Temporal Reasoning can provide a
very useful framework to implement monitoring software forSmart Homes. There are
many potential applications of the concept of Smart Homes which are beneficial to
society. We based our presentation in one which is focused onhealth issues but the
concept of smart buildings, or smart environments, can be applied with advantages in
many ways (e.g., schools, train stations, etc.).

Despite the importance of the possible applications of Smart Homes and of the con-
cept of ADBs, there is no standard methodology and tools which can be easily applied
to verify the correctness of a set of ECA rules. Although someprevious work has been
conducted we think there is still much to do in order to provide the development teams
an environment where to develop software for this kind of applications in a more sys-
tematic and safe manner.

References

1. Juan Carlos Augusto and Chris Nugent. The use of temporal reason-
ing and management of complex events in smart homes. Technical re-
port, School of Computing and Mathematics, University of Ulster, UK, 2004.
(http://www.infj.ulst.ac.uk/˜jcaug/TR-AugustoNugent2 004a.pdf ).

2. B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen, and
P. McKenzie. Systems and Software Verification (Model Checking Techniques and Tools).
Springer Verlag, 1999.

3. Christoph Brzoska. Temporal logic programming with metric and pastoperators. InExe-
cutable and Temporal Logics, IJCAI’93 Satellite Workshop, pages 21–39. Springer Verlag,
1993.

4. P. Fraternali, E. Teniente, and T. Urpi. Validating Active Rules by Planning. InProceedings of
the 3rd International Workshop on Rules in Database Systems, volume 1312, pages 181–196.
Springer, 1997.

5. A. Galton. Eventualities. In Vila, van Beek, Boddy, Fisher, Gabbay, Galton, and Morris,
editors,The Handbook of Time and Temporal Reasoning in Artificial Intelligence. MIT Press,
2004. (to be published).

6. Rodolfo Ǵomez, Juan Carlos Augusto, and Antony Galton. Testing an Event Specification
Language. InProceedings of the 13th. Int. Conf. of Software Engineering and Knowledge
Engineering (SEKE 2001), pages 341–346, Bs.As., Argentina, 2001.

7. N.W. Paton and O. Diaz. Active Database Systems.ACM Computing Surveys, 31(1):63–103,
1999.

120


