
How to Synthesize Relational Database Transactions
From EB3 Attribute Definitions?

F. Gervais1,2, M. Frappier2 and R. Laleau3

1 Laboratoire CEDRIC, Institut d’Informatique d’Entreprise
18 Allée Jean Rostand, 91025Évry Cedex, France

2 GRIL, Département d’informatique, Université de Sherbrooke
Sherbrooke, Qúebec, Canada J1K 2R1

3 Laboratoire LACL, Universit́e de Paris 12
IUT Fontainebleau, D́epartement informatique

Route Forestìere Hurtault, 77300 Fontainebleau, France

Abstract. EB3 is a trace-based formal language created for the specification of
information systems (IS). Attributes, linked to entities and associations of an IS,
are computed inEB3 by recursive functions on the valid traces of the system. In
this paper, we show how to synthesize relational database transactions that cor-
respond toEB3 attribute definitions. Thus, eachEB3 action is translated into a
transaction.EB3 attribute definitions are analysed to determine the key values af-
fected by each action. To avoid problems with the sequencing of SQL statements
in the transactions, temporary variables and/or tables are introduced for these key
values.

1 Introduction

We are mainly interested in the formal specification of information systems (IS). In our
viewpoint, an IS is a system that helps an organization to collect and to manipulate all its
relevant data. The use of formal notation and techniques is justified for some systems
when the data and/or their manipulation are considered as critic. TheEB3 [6] formal
language has been specially created for that aim.

Example. The example used in this paper is a library management system. The system
has to manage book loans to members. In particular, a member can transfer his loan to
another member. A book can be lent by only one member at once. Figure 1 shows the
user requirements class diagram of the example.

An Overview of EB3. EB3 is a trace-based formal specification language that can de-
scribe the input-output behaviour of an IS. The inputs are the events received by the
system, like actionLend in the example. The outputs are computations on attribute
values in answer to an input event,e.g., a function that returns the number of loans of

Gervais F., Frappier M. and Laleau R. (2005).
How to Synthesize Relational Database Transactions From EB3 Attribute Definitions?.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 83-88
DOI: 10.5220/0002573600830088
Copyright c© SciTePress



Register

Unregister

member

loan

Lend

Return

Transfer

* 0 .. 1

borrower

Acquire

Discard

book

Modify

nbLoans :title : T

bookKey  : bk_Set memberKey  : mk_Set

Fig. 1.User requirements class diagram of the library

a member. AnEB3 specification consists of the following elements: i) a user require-
ments class diagram which includes entities, associations, and their respective actions
and attributes; ii) a process expression, denoted bymain, which defines the valid input
event traces; iii) recursive functions, defined on the traces ofmain, that assign values
to entity and association attributes; iv) input-output rules, which assign an output to
each valid input event trace. Indeed, the denotational semantics of anEB3 specification
is given by a relationR defined onT (main) × O, whereT (main) denotes the traces
accepted bymain andO is the set of output events. Lettrace denote the system
trace, which is the sequence of the valid input events accepted so far in the execution of
the system, lettrace::σ denote the right append of elementσ to tracetrace, and
let [] denote the empty trace. Then, we have:

trace := [];
forever do

receive input eventσ;
if main can accepttrace::σ then

trace := trace::σ;
send output evento such that(trace, o) ∈ R;

else
send error message;

The EB3 notation for process expressions is similar to Hoare’s CSP [9]. The com-
plete syntax and semantics ofEB3 can be found in [6] and the process expression for
the example in [8].EB3 expressions are close to the user view and complex constraints
inside and between entities are easy to specify inEB3 [4]. The input-output rules of the
example are described in [7].

Outline. The APIS project [5] aims at generating IS fromEB3 specifications. There
already exists an interpreter, called EB3PAI [3], forEB3 process expressions. It allows
one to generate IS from correctEB3 specifications. Nevertheless, the computation of at-
tribute values in EB3PAI is not taken into account yet, and transactions are considered

84



as black boxes. In this paper, we focus on the synthesis of relational database transac-
tions that correspond toEB3 attribute definitions. Thus, we will be able to efficiently
interpreteEB3 specifications for the purpose of software prototyping and requirements
validation. The synthesized imperative programs are of thesame algorithmic complex-
ity as those manually generated by a programmer. Hence, theycould also be used in
concrete implementations ofEB3 specifications.EB3 attribute definitions are presented
in Sect. 2. In Sect. 3, we show how to generate SQL statements that correspond to
EB3 attribute definitions. Finally, Sect. 4 concludes the paperwith some comments and
perspectives.

2 EB3 Attribute Definitions

The definition of an attribute inEB3 is a recursive function on the valid traces of the
system, that is, the traces accepted by process expressionmain. The function is total
and is given in a pattern-matching-like style, as in CAML [1]. It outputs the attribute
values that are valid for the state in which the system is, after having executed the
input events in the trace. A key definition outputs a set of keyvalues, while a non-
key attribute definition outputs the attribute value for a key value given as an input
parameter. For instance, the key of entity typebook is defined by functionbookKey

in Fig. 2.bookKey has a unique input parameters ∈ T (main), i.e., a valid trace of the
system, and it returns the set of key values of entity typebook. Let us note that type
F(bk Set) denotes the set of finite subsets ofbk Set. Non-key attributetitle is defined
in Fig. 2.

bookKey(s : T (main)) : F(bk Set)
∆

=
match last(s) with
⊥ : ∅,
Acquire(bId, ) : bookKey(front(s)) ∪ {bId},
Discard(mId) : bookKey(front(s)) − {bId},

: bookKey(front(s));

title(s : T (main), bId : bk Set) : T
∆

=
match last(s) with
⊥ : ⊥, (I1)
Acquire(bId, ttl) : ttl, (I2)
Discard(bId) : ⊥, (I3)
Modify(bId, ttl) : ttl, (I4)

: title(front(s), bId); (I5)

Fig. 2.Examples ofEB3 attribute definitions

Expressions of the forminput : expr, like Acquire(bId, ttl) : ttl in title, are
calledinput clauses. When an attribute definition is executed, then all the input clauses
of the attribute definition are analysed, and the first pattern matching that holds is the
one executed. Hence, the ordering of the input clauses is important. The pattern match-
ing analysis always involves the last input event of traces. If one of the expressions
input matches withlast(s), then the corresponding expressionexpr is computed; oth-
erwise, the function is recursively called with the first elements ofs except the last one,
denoted byfront(s). This case corresponds to the last input clause with symbol ‘’.
EB3 attribute definitions always include⊥, that matches with the empty trace, to repre-
sent undefinedness; hence,EB3 recursive functions are always total. Any reference to a

85



keyeKey or to an attributeb in an input clause is always of the formeKey(front(s))
or b(front(s), ...). For instance, we have the following values for attributetitle:

title([ ], b1)
(I1)
= ⊥

title([Register(m1)], b1)
(I5)
= title([ ], b1)

(I1)
= ⊥

title([Acquire(b1, t1)], b1)
(I2)
= t1

title([Acquire(b1, t1), Register(m1), Modify(b1, t2)], b1)
(I3)
= t2

In the first example, the value is obtained from input clause (I1), sincelast([ ]) = ⊥.
In the second example, we first applied the wild card clause (I5), since no input clause
matchesRegister, and then (I1). In the last examples, the value is obtained directly
from (I2) and (I3), respectively.

Expressionexpr in an input clause of the forminput : expr is a term composed of
constants, variables and attribute recursive calls.if then else endexpressions are also
used when the pattern matching condition is not sufficient todetermine the key values
affected by an action. For instance, the input clause forTransfer in attributenbLoans
is:

Transfer(bId, mId
′) : if mId = mId′ then nbLoans(front(s), mId) + 1

else ifmId = borrower(front(s), bId) then
nbLoans(front(s), mId) − 1 end end,

The key ofnbLoans is mId, and theif predicates determine two key values formId:
mId′ andborrower(front(s), bId).

3 Synthesizing Relational Database Transactions

In the EB3 semantics, when a new event of actiona is accepted by process expression
main, then all the attributes affected bya must be updated. To generate a RDBMS
transaction for eachEB3 actiona, we must analyse the input clauses ofEB3 attribute
definitions to determine which attributes are affected by the execution of actiona and
what are the effects ofa on these attributes. The general algorithm is the following:

for each actiona of theEB3 specification
analyse the input clauses ofEB3 attribute definitions
determine the tablesT (a) affected bya
for eacht in T (a)

determine the key values to delete
determine the key values to insert and/or to update

define the transaction fora

In the remainder of this paper, the SQL 92 norm [10] is used forSQL queries, while a
procedural pseudo-language is used for transactions.

Definition of Temporary Variables and Temporary Tables. The analysis of the input
clauses is summed up in this paper; the algorithms are presented in [7]. When a pattern
matching condition evaluates to true, an assignment of a value for each free variable in
the input clause has been determined. When expressionexpr in an input clause of the

86



form input : expr containsif then elseexpressions, then we must analyse the different
conditions in theif predicates to determine the values of the key attributes that are not
bounded by the pattern matching. We use a binary trees calleddecision trees to analyse
the if predicates; their construction and analysis are detailed in [8].

When key values are determined from predicates involving computations and/or
recursive calls of attributes, then a temporary variable ora temporary table must be
defined in the host language, in order to manipulate it in the transaction of the action.
Moreover, such definitions allow us to define transactions independently of the state-
ments ordering. A temporary variable is defined when a uniquekey value is determined,
while a temporary table is used to characterize several key values. For instance, if we
need the collection of books lent by membermId, then the following table is defined:

CREATE TABLE TAB (bookKeyINT PRIMARY KEY );
INSERT INTO TAB

SELECT bookKey
FROM book
WHERE borrower= #mId;

We do not use views, because we want to consider the values of the data before any
modification. Thus, the content of the temporary tables is evaluated only once, at the
beginning of the transaction. The generation ofSELECT statements that correspond
to the key values satisfying theif predicates depends on the form of the predicate. We
have identified the most typical patterns of predicates and their correspondingSELECT
statements [7].

Definition of Transactions. For defining transactions, all the SQL statements are
grouped by table. Thanks to the analysis of the input clauses, the key values to delete
are distinguished from the other key values. TheDELETE statements are grouped at
the beginning of each table’s list of instructions. For instance, the transaction generated
for actionDiscard is:

TRANSACTION Discard(mId : BOOKID)
DELETE FROM book /* delete statement */
WHERE bookKey= #bId;
COMMIT ;

Let us note that this transaction should be executed only when Discard is a valid input
event of the system. When the action involves updates and/or insertions, then the trans-
action becomes more complex. Indeed, tests must be defined todetermine whether the
key values already exist in the tables, in order to distinguish updates from insertions.
For instance, the trasaction generated forAcquire is:

TRANSACTION Acquire(bId : BOOKID,bTitle : T)
VAR R : ResultSet /* define a temporary variable for the test */

SELECT bookKeyINTO R /* extract bId from book */
FROM book
WHERE bookKey= #bId;

IF R is not empty /* test to determine whether bId is in book */
THEN UPDATE bookSET title = #ttl /* update statement */

WHERE bookKey= #bId;

87



ELSE INSERT INTO book(bookKey,title) /* insert statement */
VALUES (#bId,#ttl);

END;
COMMIT ;

Such a transaction could be simplified by the analysis ofEB3 process expressions.

4 Conclusion

In this paper, we have presented an overview of an algorithm that synthesizes rela-
tional database transactions fromEB3 attribute definitions. Synthesized programs can
be used in concrete implementations ofEB3 specifications; their algorithmic complexity
is similar to those of manually written programs. Our programs introduce some over-
head, because they systematically store the current valuesof attributes before updating
the database, in order to ensure correctness. We plan to optimize these programs by
analysing dependencies between update statements and avoid, when possible, these in-
termediate steps. By focusing on the translation of attribute definitions, the resulting
transactions do not take the behaviour specified by theEB3 process expression into ac-
count. This work must now be coupled with the analysis and/orthe interpretation ofEB3

process expressions. Several papers deal with the synthesis of relational implementa-
tions. Most of the time, refinement techniques are used, likein [2] for Z and [11] for B
specifications, which are orthogonal in specification styleto EB3 [4].

References

1. Cousineau, G., Mauny, M.: The Functional Approach to Programming. Cambridge Univer-
sity Press, Cambridge (1998)

2. Edmond, D.: Refining Database Systems. In Proc. ZUM’95, Limerick, Ireland, 7-9 Septem-
ber 1995. LNCS, Vol. 967, Springer-Verlag (1995) 25-44

3. Fraikin, B., Frappier, M.: EB3PAI: an Interpreter for theEB3 Specification Language. In
Proc. 15th Intern. Conf. on Software and Systems Engineering and their Applications, Paris,
France, 3-5 December 2002. CMSL, Paris (2002)

4. Fraikin, B., Frappier, M., Laleau, R.: State-Based versus Event-Based Specifications for In-
formation Systems: a Comparison of B andEB3. Software and System Modeling, to appear

5. Frappier, M., Fraikin, B., Laleau, R., Richard, M.: APIS - Automatic Production of Informa-
tion Systems. In Proc. AAAI Spring Symposium, Stanford, USA, 25-27March 2002. Techn.
Rep. SS-02-05, AAAI Press (2002) 17-24

6. Frappier, M., St-Denis, R.:EB3: an Entity-Based Black-Box Specification Method for Infor-
mation Systems. Software and System Modeling,2(2) (2003) 134-149

7. Gervais, F., Frappier, M., Laleau, R.:EB3 Attribute Definitions: Formal Language and Ap-
plication. Technical Report 700, CEDRIC, Paris, France (2005)

8. Gervais, F., Frappier, M., Laleau, R.: Synthesizing B Substitutions for EB3 Attribute Defini-
tions. Technical Report 683, CEDRIC, Paris, France (2004)

9. Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall (1985)
10. ISO: Database Language SQL. International Standard ISO/IEC JTC1/SC21, doc. 9075

N5739 (1992)
11. Mammar, A.: Un environnement formel pour le développement d’applications base de

donńees. Ph.D. thesis, CNAM, Paris (2002)

88


