
Deriving Test Cases from B Machines Using
Class Vectors

W. L. Yeung1 and K. R. P. H. Leung2

1 Lingnan University, Hong Kong

2 Hong Kong Institute of Vocational Education, Hong Kong

Abstract. This paper proposes a specification-based testing method for use in
conjunction with the B method. The method aims to derive a set of legitimate
class vectors from a B machine specification and it takes into account the structure
and semantics of the latter. A procedure for test case generation is given. One
advantage of the method is its potential to be integrated with the B method via its
support tools.

1 Introduction

Formal methods play an important role in the verification and validation of enterprise
information systems. Formal methods emphasize the formulation of a precise formal
specification and the formal verification of a design against its specification. From the
point of view of software testing, a specification serves as a basis for functional (black-
box) testing on which test cases are systematically derived. Recently, there have been
much interests in methods and tools for generating test cases from formal specifications
(see, e.g. [2]). While some of these approaches aim to fully automate the testing process
(e.g. [5]), others attempt to bring the existing body of knowledge in software testing to
formal-specification-based testing (e.g. [4]).

This paper discusses a method based on earlier work on software testing using class
vectors [6] for generating test cases from formal specifications written in the B Abstract
Machine Notation (AMN) [1]. The class vectors method was developed to overcome
some shortcomings of the Classification Tree method [3]. It defines classes and classifi-
cations in a formal setting and defines conditions formally for generating test cases. It is
also a general testing method applicable to software with only informal specifications.
The main contribution of this paper is to adopt and adapt the class vectors method for
the B AMN formal specification language, which is notational basis of the B method.
The B method is a major formal method for the development of information systems.

The rest of this paper is organized as follows. The next section first describes a B
AMN specification for a small information system example. Section 3 defines the prob-
lem of generating a set of legitimate test cases based on the concept of classes. Section
4 and 5 define two necessary conditions for partitioning and filtering class vectors. Sec-
tion 6 presents the test case generation procedure and illustrate it with the example.
Section 7 discusses some possible extensions of the method and Section 8 gives a con-
clusion.

L. Yeung W. and R. P. H. Leung K. (2005).
Deriving Test Cases from B Machines Using Class Vectors.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 71-76
DOI: 10.5220/0002571500710076
Copyright c© SciTePress

MACHINE CreditCard(itype, iclass, ischeme)
SETSCARDCLASS= {platinum, gold, classic};

CARDTYPE= {visa, mastercard};
REWARDSCHEME= {airticket, gift};
AIRLINE= {cx, dg};
TICKETTYPE= {first, business, economy};
SUPPLIER= {reda, tdc};

PROPERTIES
itype∈ CARDTYPE∧ iclass∈ CARDCLASS∧ ischeme∈ REWARDSCHEME

VARIABLES type, class, scheme, balance
INVARIANT

type∈ CARDTYPE∧ class∈ CARDCLASS∧ scheme∈ REWARDSCHEME∧
(class= platinum⇒ balance∈ 0..8000) ∧
(class= gold ⇒ balance∈ 0..4000) ∧
(class= classic⇒ balance∈ 0..1000)

INITIALISATION
type:= itype‖ class:= iclass‖ scheme:= ischeme‖ balance:= 0

OPERATIONS
updatebalance(b) =̂

PRE (class= platinum⇒ b ∈ 0..8000) ∧ (class= gold ⇒ b ∈ 0..4000) ∧
(class= classic⇒ b ∈ 0..1000)

THEN balance:= b END;
redeemair(al, tt, . . .) =̂

PRE scheme= airticket∧ al ∈ AIRLINE∧
(al = cx⇒ tt ∈ TICKETTYPE) ∧ (al = dg⇒ tt ∈ {first, business}) . . .

THEN . . . END;
redeemgift(su, . . .) =̂

PRE scheme= gift ∧ su∈ SUPPLIER∧ . . .

THEN . . . END;
· · ·
END

Fig. 1.A formal specification of a credit card object in B AMN

2 An Example

We use a small information system example about credit card data processing adapted
from [6]. The ABC Bank issues both Visa and MasterCard creditcards in three different
classes, namely platinum, gold, and classic. Credit limitsfor these three different classes
are $8000, $4000, and $1000, respectively.

The ABC Bank operates two reward schemes for its credit card customers. Every
credit card holder of ABC Bank can join only one of these two schemes and earn reward
points for using the credit cards for purchases. For scheme A, reward points earned can
only be used to redeem free air tickets from airlines CX or DG.Redeemed air tickets
can be of first, business, or economy class with airline CX, and of first or business class
tickets with airline DG. For scheme B, reward points earned can be used to redeem free
gifts from suppliers RedA or TDC.

72

Figure 1 shows a (partial) formal specification of a credit card object in the B Ab-
stract Machine Notation. For readers who are not familiar with B AMN, a B specifi-
cation is structured as a number of B machines (which roughlycorrespond to objects),
each of which may have its own state and operations on its state. A B machine may
include or reference other B machines to become a more complex machine and that
is how complex specifications are structured. Each machine specification consists of a
number of optional clauses, each beginning with a keyword incapital. In Figure 1, the
MACHINE clause gives the B machine a name (CreditCard) and defines three parame-
ters of the machine. The SETS clause define some sets of valuesused in the machine.
The PROPERTIES clause define the types of the machine parameters. The state vari-
ables of the machine are defined in the VARIABLES clause and wecan provide invari-
ant properties for these variables in the INVARIANT clause.The INITIALISATION
clause defines operations for initializing the state variables, whereas the OPERATIONS
clause lists the operations available for updating and reading the state variables. An
operation may take input parameters and has a precondition (preceded by the keyword
PRE) on which the operation is guaranteed to keep the machinein a consistent state.

In order to generate (functional) test cases for theCreditCardB machine, we need
to first identify the input variables and their legitimate values. The three input variables
are on the first line (itype, iclass, ischeme) are actually parameters of the B machine;
they provide initial values to the state variables (type, class, scheme). Their legitimate
values are defined in thePROPERTIES section. Other input variables come from the
parameters of the operations and their legitimate values are defined by the precondi-
tions:

– variableb’s legitimate values depend on the class of the credit card
– variableal must be eithercx or dg; variablett depends onal
– variablesumust be eitherredaor tdc

3 The Problem

Let X be an input variable andτ(X) be the set of values thatX can take, i.e. the type
of X . Assume thatτ(X) can be partitioned into a finite numberk of disjoint sub-
sets,τ1(X), . . . , τ k(X) and we call them the classes ofX. Let classX be a function
that takes an input value ofX and returns the class that it belongs, i.e.classX(X) =
τ

k(X) if and only if X ∈ τ
k(X).

Given a vector ofn input values,(X1, . . . , Xn), denoted bȳX, the following function
is defined:

classes(X̄) = (classX1
(X1), . . . , classXn(Xn))

and we call this a class vector.
Given a B machine withn input variablesX1, . . . , Xn and for each input variableXi ,

mi different classesτ1(Xi), . . . , τ
mi (Xi), there arem1 × . . .×mn possible different class

vectors.
However, not all class vectors represent legitimate inputs. The predicates defined

in a B machine specification help us to constrain the set of class vectors to only those

73

that provide legitimate inputs. For instance, a credit cardobject initialized asclassic
cannot legitimately accept8000 as an input value of variableb of the operationupdate-
balance—the precondition ofupdatebalancerules out any classes of values except
0..1000 for b in the case ofclassic.

The problem is how to define such a set of legitimate class vectors based on the B
machine specification and then how to generate test cases from the set.

4 Independent Input Variables

To define the set of legitimate class vectors for a B machine specification, we first divide
the set of input variables into independent sets of input variables.

Definition 1 (Independence)Two input variables X1 and X2 are independent to each
other if and only if the B specification admits any combination of values of them as
input, i.e.

∀ x1 ∈ τ(X1), x2 ∈ τ(X2) • [T]I ∧
∧

i

[T](I ∧ Prei)

where T is the initialisation clause of the B machine, I is theinvariant, and Prei is the
precondition of the i operation.

Consider the input variablesitype, iclass, andb of theCreditCardmachine.itype is
clearly independent from the other two as it does not relate to the other two variables
(or any other variables) in the Invariant or any Preconditions. The other two variables,
iclassandb, relate to each other in the first precondition (via the initialisation clause)
and are therefore not independent.

For the seven input variables of theCreditCardmachine, we identify the following
independent sets of input variables:

{itype}, {iclass, b}, {ischeme, al, tt, su}

5 Coexisting Classes

After identifying the independent sets of input variables,we identify those classes of
values that can coexist in a legitimate input class vector.

Definition 2 (Coexitence) Given two input variables X1 and X2, and two respective
classes of their valuesτ i(X1) andτ

j(X2), these two classes are coexisting if and only if
the B specification admits any combination of values of them in the input, i.e.

∀ x1 ∈ τ
i(X1), x2 ∈ τ

j(X2) • [T]I ∧
∧

i

[T](I ∧ Prei)

where T is the initialisation clause of the B machine, I is theinvariant, and Prei is the
precondition of the i operation.

74

Consider the input variablesat and tt. Variableat has the following classes{cx}
and {dg}. We can divide the values oftt into the following classes{first, business}
and{economy} and call themC1 andC2. Referring to the precondition of the second
operation of theCreditCardmachine, it is clear that class{cx} is coexisting with both
C1 andC2 whereas class{dg} is only coexisting withC1.

6 Test Case Generation

Based on the concepts described in the above sections, the generation of test cases from
a B specification based on class vectors encompasses the following steps:

1. Identification of classes
2. Identification of independent sets of input variables
3. For each independent set of input variables, enumerate all class vectors containing

only coexisting classes
4. Derive the Cartesian product of the independent sets of coexisting class vectors
5. For each class vector of the Cartesian product, select a vector of representative

values as a single test case

For the Credit Card example, we have already identified the independent sets of
input variables in section 4. The coexisting class vectors for these sets are as follows:

{itype} : (visa), (mastercard)

{iclass, b} : (platinum, 0..1000), (platinum, 1001..4000),

(platinum, 4001..8000), (gold, 0..1000),

(gold, 1001..4000), (class, 0..1000)

{ischeme, al, tt, su} : (airticket, cx, {first, business}), (airticket, cx, {economy}),

(airticket, dg, {first, business}), (gift, SUPPLIER)

Taking the Cartesian product of the above sets yields2 × 6 × 4 = 48 different class
vectors, from which we can derive 48 legitimate test cases.

7 Discussion

The concept of a class (of input values) goes back to the classification tree method for
black box testing. In the test case generation method presented in this paper, we define
classes as disjoint sets of input values of single variablesand do away with the concept
of classification as our starting point is already a formal specification with well defined
input variables, rather than an informal specification. As aresult, the concept of a class
vector is slightly simplified as compared to the one defined in[6].

On the other hand, the derivation of legitimate class vectors still relies on the inde-
pendence and coexistence conditions which are now more rigorously defined in terms
of the B Abstract Machine Notation (AMN) semantics. Note that for the lack of space
and the sake of clarity the definitions cover only the invariant part and operation pre-
conditions of the B specification and they can be extended to cover other specification
clauses such as CONSTRAINTS and ASSERTIONS.

75

For similar reasons, the applicability of the proposed method for large specifications
involving tens or hundreds of B machines has not been illustrated in this paper. This
would actually be taken care of by the semantics of the modular constructs of B AMN.
For instance, in a composite B machine withM1 including M2 andM3, the invariant
and operation preconditions ofM1 has to take into account those ofM2 andM3 for
any M1 operations that affect the states ofM2 andM3. It suffice to say that for large
specifications with complex inter-relationships among many B machines, the use of
support tools to help keep track of all the relationships is essential. In fact, the test case
generation method presented in this paper should ideally beintegrated in support tools
such as the B-toolkit for the B method. The independence and coexistence conditions
would be generated in a similar way as proof obligations thatcan be verified with the
help of proof assistance and proof checker.

8 Conclusion

We adopted and adapted a previous black-box testing method based on class vectors for
use in the formal setting of the B AMN specification language.The formal definition of
class vectors and the conditions for deriving legitimate test cases from B machines are
defined. We also outline the procedure for test case generation and illustrate it with an
example in this paper. The main advantage of this approach isthat it takes into account
the structure and semantics of the B AMN specification language and can be readily
integrated with the B method via its support tools. This is also the aim of our further
work.

References

1. J. R. Abrial.The B-Book. Cambridge University Press, 1996.
2. M. C. Gaudel. Testing can be formal too. InTAPSOFT’95, pages 82–96. Springer, 1995.
3. M. Grochtmann and K. Grimm. Classification Trees for Partition Testing.Software Testing,

Verification and Reliability, 3:63–82, 1993.
4. Robert M. Hierons, Mark Harman, and Harbhajan Singh. Automatically Generating Informa-

tion from a Z Specification to Support the Classification Tree Method. InZB 2003, volume
2651, pages 388–407. Springer, 2003.

5. Bruno Legeard, Fabien Peureux, and Mark Utting. A Comparison ofthe BTT and TTF Test-
Generation Methods. InZB 2002, volume 2272, pages 309–329. Springer, 2002.

6. Karl R. P. H. Leung and Wai Wong. Deriving Test Cases Using Class Vectors. InProc. 7th
Asia-Pacific Software Engineering Conference, pages 146–153. IEEE, 2000.

76

