
Towards a formalization of model conformance in
Model Driven Engineering

Thanh-Hà Pham1,2, Mariano Belaunde1, Jean Bézivin2

1 France Télécom R&D, 2 avenue Pierre Marzin, 22300 Lannion Cedex, France

2 ATLAS Group, INRIA&LINA, University of Nantes, France

Abstract. The principle of “everything is an object” basically supported by two
fundamental relationships inheritance and instantiation has helped much in
driving the object technology in the direction of simplicity, generality and
power of integration. Similarly in the Model Driven Engineering (MDE) today,
the basic principle that “everything is a model” has many interesting properties.
The two relations representation and conformance are suggested [2] to be the
two basic relations in the MDE. This paper tends to support this ideas by
investigating some concrete examples of the conformance relation concerning
three technological spaces (TS) [10]: Abstract/Concrete Syntax TS, XML TS
and Object-Oriented Modeling (OOM) TS. To go further in this direction we
try to formalize this relation in the OOM TS by using the category theory – a
very young and abstract but powerful branch of mathematics. The OCL
language is (partially) reused in this scheme to provide a potentially useful
environment supporting MDE in a very general way.

1 Introduction

Model Driven Engineering (MDE) today does not limit itself to the OOM
Technological Space (TS) but many other TSs such as AS TS, XML TS ... [10]. This
means explicitly that its principles must be very general and not only restricted to
OOM TS. Today, the principle « Everything is a model » as suggested by many
authors such as [3] becomes the main principle of the MDE similarly to the principle
« Everything is an object » in object technology. Conformance is one of the
fundamental relations supporting this principle in MDE. This paper investigates the
conformance relation in some well-known Technological Spaces such as
Abstract/Concrete Syntax, XML and OOM technological spaces.
The paper is organized as follow: section 1 presents the context of our work; section 2
presents some ideas about the notion of conformance in several well-known TSs;
section 3 presents a formalization of the conformance relation in the OOM TS using
category theory and the OCL language. The practical usage of this formalization will
be discussed in the section 4. Some related works are briefly introduced in the section
5. Some conclusions will be provided in the section 6.

Pham T., Belaunde M. and Bézivin J. (2005).
Towards a formalization of model conformance in Model Driven Engineering.
In Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information Systems, pages 107-116
DOI: 10.5220/0002570601070116
Copyright c© SciTePress

2 Conformance in some Technological Spaces

We begin our discussion with a simple example coming from Regular Expression. It
is not difficult to see that there is a mapping from a string S = acccd to a regular
expression E = a(b|c*)d? when the string S matches the expression E. This mapping is
illustrated in the Fig.1.

a (b | c*) d?

a c c c d

Fig. 1. A very simple form of conformance – a string matches a regular expression

The regular expression E defines characters that may appear in a string conforming to
E: {a,b,c,d} and how these characters are structured using several constructions:
– alternation with a vertical bar such as b | c specify the choice of b or c.
– quantification with a quantifier (+,?,*) that following a character specifies how

often that character is allowed to occur.
– grouping with brackets to define the scope and precedence of the other operators.
If the guiding principle of the MDE:

“Everything is a model” [P0]
is accepted, we have the following two models: the string S and its definition E (is
also a string) with their characters as model elements. It can be said that S is defined
by E or S conforms to E.
“A model conforms to its definition, this definition is also a model called meta-model
of the first one” [P1]
From our first observation, we propose the following principle:
“Every element of a model finds an unique definition in a meta-model that the model
conforms to” [P2]
We have also the following comments:
– The order of elements in S must respect to the order of elements defined in E. [C1]
– The group of elements in S must respect to the group definition in E. [C2]
– The number of occurrences of elements in S must respect to quantification

definitions in E. [C3]
Now we move to an illustrative example in the Abstract/Concrete Syntax TS. Let’s
consider a well-known HelloWorld program written in the Pascal programming
language. This program is considered to be a syntactically correct with respect to the
grammar of the Pascal programming language. In this example, the HelloWorld
program is a model and the grammar of the Pascal programming language is the
meta-model defining the former. The principle [P2] is applicable in this case and is
illustrated in the Fig.2. A part of the grammar is represented in the flowchart form
extracted from [9]. Every symbol of this program finds a unique definition in the
grammar. The three comments [C1, C2, C3] are also correct in this case.

108

 program HelloWorld;

begin
 writeln('Hello World');
end.

program

PROGRAM identifier (identifier) ; block .

;

BEGIN ENDstatement

;

; block ;

PROCEDURE

FUNCTION identifier parameter list : type identifier

identifier parameter list

block

 program HelloWorld;

begin
 writeln('Hello World');
end.

Fig. 2. A Pascal program conforms to the grammar of the Pascal programming language

In the XML TS, we find the following definition [6]: « An XML document is valid if it
has an associated document type declaration and if the document complies with the
constraints expressed in it ». This means explicitly that a valid XML document must
conform to a DTD. DTDs specify two kinds of constraints as classified in [5]:
structural constraints given by element declaration rules and attribute constraints
given by attribute declaration rules. Also following [5], « the structural constraints of
DTD are abstracted as extended context free grammars, that is, context free
grammars where the right hand side of each production contains a regular
expression. An XML document is valid with respect to the structural constraints of a
DTD if its abstraction as a tree represents a derivation tree of the extended CFG
corresponding to that DTD ». Attribute constraints deal with the values of attribute
nodes while structural constraints deal with the labels of nodes in the XML tree.

<?xml version="1.0"?>
<!ELEMENT message (from,to,subject,body)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT body (#PCDATA)>

<?xml version="1.0"?>
<!DOCTYPE message SYSTEM "message.dtd">
<note>
 <from>Ha</from>
 <to>Mariano</to>
 <subject>Work completed</subject>
 <body>The work has been done</body>
</note>

Fig. 3. An XML document conforms to a DTD.

Let’s consider an example that illustrates the relation between an XML document and
a DTD. In this case, the model is the XML document and the meta-model defining
this model is the DTD. The XML document has (element and attribute) nodes as its
elements. The principle [P2] and the three comments [C1, C2, C3] are also applicable
in this case.
We have analyzed the conformance relation in the case of regular expression,
Abstract/Concrete syntax and XML. The principle [P2] is also applicable in Object-
Oriented modeling.
In the left of the Fig.4 is an UML diagram represented in a case tool such as Rose.
This model is an instance-of of the UML meta-model as simplified in Fig.4. Every
elements of this model finds its unique definition in the meta-model.

109

ModelE lem ent

P rim it iveDataType

Clas s ifie r

A t tribute

+ t ype

*

1

*

1

A s s oc iation

C las s

**
+ s uper

**

0.. 1

*

0.. 1 + att ribute

*

1

*

+ s ourc e
1

+ forward*+ revers e

+ des tina t ion
1

*

1

*

B a nk:C lass

B a nk_ C lien t:A ssoc ia tion

C lien t:C la ss

S trin g :C la ss

b nam e :A ttr ib u te
n am e = "na m e"

bad d ress:A ttr ibu te
nam e ="a dd ress"

cha dd re ss:A ttr ibu te
nam e ="h om ea ddre ss"

coadd ress :A ttr ibu te
na m e = "o fficeadd ress "

accou n tid :A ttr ibu te

A d dress:C la ss

stre e t:A ttr ibu te n um be r:A ttr ibu te in t:C lass

C lass ::a llP a ren ts (): S e t(C lass);
a llP a ren ts = se lf.su pe r->u n ion (se lf.supe r->co llec t(p | p .a llP a re n ts())

con te xt C lass
inv : no t se lf.a llP a re n ts ()-> inc lud es(se lf)

Fig. 4. An illustrative example: a model UML conforms to its meta-model

An UML model conforms to the UML meta-model must also satisfied all the well-
formedness rules defined with the meta-model. The multiplicity in the meta-model
can also be expressed as constraints associated to the meta-model [16]. Furthermore,
we have the following principle:
– Every link in the model finds a unique definition in the meta-model. [P3]
This principle is so important as the [P2] principle for a model UML and also for the
conformance relation between a model and a meta-model defining it in meta-
modeling. These two principles [P2, P3] are also applicable in the “strict meta-
modeling” approach in which the OMG’s MOF is an example: “Every element of an
Mn level model is an instance_of exactly one element of an Mn+1 level model” [1].

3 A formalization of the conformance relation in the OOM TS

In a very general way, a model can be viewed as containing:
– A set of model elements (character in a string or regular expression, symbols and

terminals in a grammar, element or attribute nodes in XML, model elements in
modeling)

– Some of those elements are associated to some sorts of literal (integer, real,
string....)

– A set of links that associates elements (link is directed). Those links forms a
navigation network among model elements.

– To make sense, each model must be associated with a meta-model defining it.
– Every model element finds its unique definition in the meta-model.
– Every model link finds its unique definition in the meta-model.
The fact that there is a mapping from a model (the defined artifact) and its meta-
model (the defining artifact) is one of the necessary conditions for the model to
conform to its meta-model. This mapping includes model elements mapping and
model links mapping and is then a structural mapping. Together with this structural
mapping the model must satisfy constraints associated to the meta-model. Those

110

constraints can be evaluated based on structural mapping and literal values associated
to model elements.
Before taking into details of the formalization, we put some words about the category
theory. Category theory originally arose in mathematics out of the need of formalism
to describe the passage from one type of mathematical structure to another [7].
Category theory has been used in diverse branches of software engineering and
computer science as pointed out by Goguen [8], in object-oriented software evolution
[11] and recently the formalization of UML [14] and MOF [4] etc. In category theory
there are structures called categories that contain objects and morphisms. Those
morphisms can be composed and the composition of morphisms is associative.
Functor is a structure-preserving mapping between two categories. Definitions of
category, functor and other notion of category theory can be found at [15], [7]. A
computational aspect of category theory can be found in [12].
The next topic is the proposed formalization of the conformance relation between a
model and its meta-model in the OOM TS. The OOM TS bases on OMG’s
technology (MOF, UML, QVT...), which is originally based on object models.
Adapted from [13], an object model is a tuple

µ=(CLASS,ATT
c
,OP

c
,ASSOC,associates,roles,multiplicities,<,

 PRIMITIVETYPE)

such that
i. CLASS is a set of classes.
ii. ATTc is a set of operation signatures for functions mapping an object of

class c to an associated attribute value.
iii. OPc is a set of signatures for user-defined operations of a class c.
iv. ASSOC is a set of association names.

a. associates is a function mapping each association name to a list
of participating classes.

b. roles is a function assigning each end of an association a role
name.

c. multiplicities is a function assigning each end of an
association a multiplicity specification.

v. < is a partial order on CLASS reflecting the generalization hierarchy of
classes.

vi. PRIMITIVETYPE is a set of primitive data types used in the object
model = {STRING, INTEGER, REAL }.

In our formalization, model navigation plays an important role. We proposed the
concept of navigation morphism which is represented by a tuple

nav = (e
s
, L, E

t
)

such that
i. e is the model element that is the source of the navigation morphism s

ii. L is a sequence of navigation label
iii. Et is a sequence of elements that is orderly located in the navigation

from the source element es to the target element. The last element of
this sequence is the target of the navigation morphism.

Now, from every object model µ, there is a derived category Cµ :

111

Cµ = (ObC
,Mor

C
,dom,cod,id,composition)

such that
i. Obc = CLASS ∪ PRIMITIVETYPE
ii. PRIMITIVETYPE is the set of primitive types used in the object

model
iii. MorC = Mor ∪ Mor C1 C2

iv. MorC1 is the set of all navigation morphisms
(es , [role name],[et])
representing a navigation from es to et (es ,et ∈ CLASS) through the
“role name” role. MorC1 can be calculated from CLASS, ASSOC,
associates and roles.

v. MorC2 is the set of all navigation morphisms
(es , [attribute name],[et])
representing a navigation from es (es ∈ CLASS) to et (es ∈
PRIMIVITES) through the “attribute name” attribute. MorC1

can be calculated from CLASS, ATTc, PRIMITIVETYPE.
vi. dom: MorC → Obc is a function that takes a navigation morphism as

argument and gives the source of that navigation morphism as result.
This function can be calculated from CLASS, ATTc, ASSOC,
associates, roles and <.

vii. cod: MorC → Obc is a function that takes a navigation morphism as
argument and gives the target of that navigation morphism as result.
This function can be calculated from CLASS, ATTc, ASSOC,
associates, roles and <.

viii. id is an identity function that takes a model element e as its argument
and give a navigation morphism (e,[],[e]) as result. i.e this
function returns a navigation morphism from the element e to itself
(there is no navigation label)

ix. composition is a function that takes two navigation morphisms
nmor1 = (es1,L1 ,Et1) and nmor2 = (es2,L2 ,Et2) as its
arguments and give a composite navigation morphism
nmor=(es1,L1 concat L2,Et1 concat Et1)
when cod(nmor1)=dom(nmor2)

Once the model µ is promoted as a meta-model (M2 level), any model of this meta-
model can be represented by a category :

C
model

 = (Ob
C
,Mor

C
,dom,cod,id,composition)

such that
i. Obc = OBJECT ∪ LITERAL
ii. OBJECT is the set of objects in the selected model
iii. LITERAL is the set of objects associated to a primitive value used in

the selected model
iv. MorC = MorC1 ∪ MorC2
v. MorC1 is the set of all navigation morphisms

(es , [role name],[et])
representing a navigation from es to et (es ,et ∈ OBJECT) through the
“role name” role. MorC1 can be calculated from the selected model.

112

vi. MorC2 is the set of all navigation morphisms
(es , [attribute name],[et])
representing a navigation from es (es ∈ OBJECT) to et (es ∈
LITERAL) through the “attribute name” attribute. MorC1 can be
calculated from the selected model.

vii. dom: MorC → Obc is a function that takes a navigation morphism as
argument and gives the source of that navigation morphism as result.
This function can be calculated from the selected model.

viii. cod: MorC → Obc is a function that takes a navigation morphism as
argument and gives the target of that navigation morphism as result.
This function can be calculated from the selected model.

ix. id is an identity function that takes a model element e as its argument
and give a navigation morphism (e,[],[e]) as result. i.e this
function returns a navigation morphism from the element e to itself
(there is no navigation label)

x. composition is a function that takes two navigation morphisms
nmor1 = (es1,L1 ,Et1) and nmor2 = (es2,L2 ,Et2) as its
arguments and give a composite navigation morphism
nmor=(es1,L1 concat L2,Et1 concat Et1)
when cod(nmor1)=dom(nmor2)

An example: BankClient model conforms to SimpleUML model

The simplified meta-model UML and the Bank_Client model (Fig.4) are illustrated
partially in the categorical form in the Fig. 5. Model elements and model links of
these two models is provided in the Table.1.

Class Association
source

destination

reverse

forward

Bank

Client

Bank_Client

source

forward

reverse

destination

Fig. 5. A partial view of mapping from BankClient (model) to SimpleUML (meta-model)

The mapping from Bank_Client model to SimpleUML model illustrated in the
Table.2 can be expressed by a functor F: CBank_Client → CSimpleUML that contains:
– A model element mapping

Felement = Bank → Class ; Client → Class ; Bank_Client → Association
– A model link mapping Fnavigation =

(Bank,[forward],[Bank_Client]) → {(Class,[forward],[Association]) ;
(Client,[reverse],[Bank_Client]) → (Class,[reverse],[Association]) ;
(Bank_Client,[source],[Bank]) → (Association,[source],[Class]) ;
(Bank_Client,[destination],[Client]) → (Association,[destination],[Class])

113

Table 1. Model elements and model links of Bank_Client and SimpleUML model

 CBank_Client CSimpleUML

elements {Bank,Client,Bank_Client} {Class, Association}
links/ basic
navigations

{(Bank,[forward],[Bank_Client]),
 (Client,[reverse],[Bank_Client]),
(Bank_Client,[source],[Bank]),
(Bank_Client,[destination],[Client])}

{(Class,[forward],[Association]),
(Class,[reverse],[Association]),
(Association,[source],[Class]),
(Association,[destination],[Class])}

Table 2. Navigation mapping and mapping of a composition

From Bank_Client To SimpleUML
(Bank,[forward],[Bank_Client]) (Class,[forward],[Association])
(Bank_Client,[destination],[Client]) (Association,[destination],[Class])
(Bank,[forward],[Bank_Client]) °
(Bank_Client,[destination],[Client])=
(Bank,[forward,destination],[Bank_Client,Client])

(Class,[forward],[Association]) °
(Association,[destination],[Class])=
(Class,[forward,destination],[Association,Class])

Remarks. The mapping of the composition of two navigations is the composition of
the mappings of the two navigations. This is an important property of the structural
mapping and is called structure-preserving mapping in the category theory.

4 Exploiting the formalization

In order to demonstrate the benefits of the proposed formalization, we have developed
a prototype of an MDE environment in which different kind of data such as models,
meta-models, mapping specifications, conformance relationships and more generally,
any structure-preserving relationship can be represented in a unified manner (using
categories and functors).
The developed prototype having architecture depicted in Fig.6 contains an OCL
evaluator that exploits categorical representations of models and conformance
mapping to navigate through model elements. The implementation of this evaluator is
well facilitated since model navigation – an important part of the language is made
explicit in the categorical representation of (meta-)models.

Module Model/
Category

Module OCL (parser and evaluator)

Module Set

Module Transformation EngineModuleTracking/
Impact Analyse

Model Query/
Model Checker

(formal) Subset of QVTTracking/Impact analyse…

Module Model/
Category

Module OCL (parser and evaluator)

Module Set

Module Transformation EngineModuleTracking/
Impact Analyse

Model Query/
Model Checker

(formal) Subset of QVTTracking/Impact analyse…

Fig. 6. The MDE environment prototype

The developed prototype has allowed us to point out several potential usages of the
formalization presented in the previous sections. Some of these usages are provided
below:
– Verifying for model conformance: the input and output model of a transformation

can be respectively verified if each model conforms to its meta-model due to the
OCL evaluator.

– Model query: models can be queried with the OCL language.

114

– Model transformation execution: a set of model transformations (structure
preserving transformation) can be executed due to the transformation engine.

– Systematic traceability: the traceability information is stored as categorical
functors and is produced as explicit result of transformation together with output
model.

– Tracking for multi-step transformations: since traceability information is stored in
the form of functors, those functors can be composed in the case of successive
transformation.

– Help to the analysis of impacts: since the structural relation between input and
output model is captured by a functor (this functor is also the traceability
information), it is possible to ask some kind of questions about transformation
executed such as: if a model element (or model link) in the input model is removed
then which parts of the output model will change? Or in the inverse direction: if I
want to make some change in the output model, which parts of the input model
need to be changed? These kind of questions can be answered without making real
change and re-execute transformations and is very useful in an interactive
environment where model transformation is an interactive computer aided tool to
the development or may be in the specification phase of model transformation
when debugging facility is a requirement.

– Analysis for (structural) completeness of model transformations: with the
traceability information we can easily verify which parts of the input model do not
take part in the generation of any model element in the output model, this may be
the case in that the specification of model transformation is not complete.

5 Related works

Category theory has been used to formalize UML [14] and recently MOF [4]. These
formalizations based on Slang, a language supporting category theory of the Kestrel
Institute [14]. Our formalization uses directly the graph representation (interpreted as
categories) of models, functors to describe conformance mapping and OCL to
describe constraints. In our work, functor is also used to represent relation between
models at different levels of abstraction of the same system.

6 Conclusions

The work presented in this paper bases on a categorical abstraction of model and OCL
to formalize the conformance relation of a model to its meta-model in the Object-
Oriented Modeling TS. This relation can be expressed by a conformance mapping
from the model to its meta-model and a set of constraints associated to the meta-
model. These constraints must be satisfied when being evaluated over the model, the
meta-model and the conformance mapping between them. We believe that the same
kind of formalization can be used to other TSs due to the conformance mapping from
a model to its definition (meta-model) in OOM TS or from a XML document to its
DTD (or XML Schema), etc. The main advantage of this formalization is that it is

115

very abstract and can be applied to any kind of (meta-)models. This formalization is
also a first step in defining a model transformation formalism in which traceability
and analysis of impacts is fully supported.

References

1. Colin Atkinson. Meta-Modeling for Distributed Object Environments. In The First
International Enterprise Distributed Object Computing Conference (EDOC '97) , pages 90-
103, Brisbane, Australia, October 1997. IEEE Computer Society Press.

2. Jean Bézivin. On the Basic Principles of Model Driven Engineering. In MDE for Embedded
System Summer School, Brest, France, September 2004. ENSIETA.

3. Jean Bézivin. On the unification power of models. SoSym, 2005.
[http://www.sciences.univ-nantes.fr/lina/atl
/www/papers/OnTheUnificationPowerOfModels.pdf]

4. Kenneth Baclawski, Mieczyslaw Kokar, and Jeffrey Smith. Metamodeling facilities. [
http://www1.coe.neu.edu/%7Ejsmith/Publications/mof.pdf]

5. Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet, and Marcelo
Arenas. Efficient Incremental Validation of XML Documents. In ICDE, 2004. [
http://www.cs.toronto.edu/~marenas/publications/icde04.pdf]

6. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible Markup Language (XML) 1.0 (Third Edition). W3C, February 2004. [
http://www.w3.org/TR/2004/REC-xml-20040204/]

7. Michael Barr and Charles Wells. Category Theory - Lecture Notes for ESSLLI. Lecture
Notes, 1999. [http://www.folli.uva.nl/CD/1999/library/pdf/barrwells.pdf]

8. Joseph A. Goguen. A Categorical Manifesto. Mathematical Structures in Computer
Science, 1(1):49-67, 1991.
[http://citeseer.ist.psu.edu/goguen91categorical.html]

9. Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer-Verlag,
1976.

10. I. Kurtev, J. Bézivin, and M. Aksit. Technical spaces: An initial appraisal. In CoopIS, DOA
2002 Federated Conferences, Irvine, 2002.
[http://www.sciences.univ-nantes.fr/lina/atl/www/papers/PositionPaperKurtev.pdf]

11 Tom Mens. A Formal Foundation For Object-Oriented Software Evolution. PhD thesis,
Vrije Universiteit Brussel, August 1999.

12. David E. Rydeheard and Rod M. Burstall. Computational Category Theory. Series in
Computer Science. Prentice Hall International, 1988.
[http://www.cs.man.ac.uk/~david/categories/book/book.pdf]

13. Mark Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD
thesis, Universität Bremen, 2002.
[http://www.db.informatik.uni-bremen.de/teaching/courses/ss2002_oose/m.pdf]

14. Jeffrey E. Smith. UML Formalisation and Transformation. PhD thesis, Northeastern
University, Boston, Massachusetts, December 1999.

15. Jaap van Oosten. Basic Category Theory. In Basic Research in Computer Science, BRICS
Lecture Series. University of Aarhus, January 1995.
[http://www.brics.dk/LS/95/1/BRICS-LS-95-1/BRICS-LS-95-1.html]

16. Jos Warmer and Anneke Keleppe. The Object Constraint Language, Precise Modeling
With UML. Object Technology Series. Addison-Wesley, 1999.

116

