A Multi-Resolution L earning Approach to Tracking
Concept Drift and Recurrent Concepts

Mihai M. Lazarescu

Faculty of Computer Science, Curtin University,
GPO Box U1987, Perth 6001, W.A.

Abstract. This paper presents a multiple-window algorithm that combines a
novel evidence based forgetting method with data prediction to handle different
types of concept drift and recurrent concepts. We describe the reasoning behind
the algorithm and we compare the performance with the FLORA algorithm on
three different problems: the STAGGER concepts problem, a recurrent concept
problem and a video surveillance problem.

1 Introduction

Incremental learning is used more and more often today across many domains. The
reason for the increased focus on incremental learning techniques is that the learning
is dynamic and hence it is more applicable to real world situations such as on-line
processing or mining large datasets. An important issue of incremental learning which
this work addresses is that of tracking and adapting to changes in the data, specifically
we refer to the problem of concept drift. A brief definition of the problem of concept
drift is as follows: “In many real-world domains, the context in which some concepts
of interest depend may change, resulting in more or less abrupt and radical changes
in the definition of the target concept. The change in the target concept is known as
concept drift” [8]. The main difficulty in tracking concept drift is that there is no prior
knowledge of the type, pace and timing of the change that is likely to occur. Hence
model based or time series based approaches are not suited for this problem.

A crucial aspect of the concept drift problem is forgetting. The algorithms developed
to handle concept drift generally use a time based mechanism to control the forgetting
process which generally leads to two problems: useful information is being discarded
and the system converges more slowly to the target concept. Furthermore, the systems
simply react to changes rather than attempt to predict and classify the changes in the
data.

This paper presents a multiple window approach to track different types of concept
drift. The algorithm attempts to interpret current data as well as detect, predict and
quickly adapt to future changes in the concept. The system is designed to work in an
on-line scenario where the data consists of a sequential stream of examples which are
used by the system to derive a concept description that is consistent with the information
observed.

The work presented makes three novel contributions. The first novel aspect of the
research is that the algorithm uses a usefulness based approach to control the forgetting

M. Lazarescu M. (2005).

A Multi-Resolution Learning Approach to Tracking Concept Drift and Recurrent Concepts.

In Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems, pages 52-62
DOI: 10.5220/0002568900520062

Copyright © SciTePress

53

mechanism used to discard data from the system’s memorigeR#tan using a time
based approach, the forgetting mechanism analyses thg obaérved data instance
to determine how well it fits with the rest of the instanceshia system’s memory and
the current concept definition. Based on the the rest of tie, dae mechanism also
determines if the new instance is a likely indicator of a ¢feaim the concept. Once the
usefulness of the instance has been estimated, the systeksdioth the usefulness and
age of the instance to determine whether or not the the iostarto be discarded. The
second contribution is that the algorithm predicts the oathange to give the system a
pro-active approach to the data and thus improve the agcofabe concept tracking.
The algorithm consistently checks the current rate of chaamgl estimates (based on
past history) what the future rate of change is likely to bleisTinformation is used to
improve the control over the size of the larger dynamic datadaw which acts as the
memory of the system and it allows for a faster adaptatiorhemges in the concept.
The third contribution is the representation used for thecepts tracked. Rather than
storing a simple generalization of the data observed, wesepnt the concept through a
combination of instance generalizations, data predietodshe rate of change observed
when concept was stable. Moreover, we use a knowledge tepot store old concept
descriptions to avoid having to “re-learn” recurrent cqutse

2 Redated Work

The issue of concept drift has been investigated for manysyaad several systems
have been developed to address the problem of conceptThdtaim of the research
in this area is to develop algorithms that will allow a systenadapt concepts quickly
to permanent change while avoiding any unncessary chahtiesdhange observed is
determined to be virtual (temporal) or noise.

The first system developed to deal with concept drift was SGER [7]. The learn-
ing method employed by STAGGER is based on a concept repegsenwhich uses
symbolic characterizations that have a sufficiency and &gsity weight associated
with them. As the system processes the data instanceshdr eitljusts the weights
associated with the characterizations or it creates new.one

The FLORA family of algorithms implements a moving windowpapach to deal
with concept drift [9, 2]. FLORAZ2 is a supervised increménéarning system that
uses a stream of positive and negative examples to trackeptmthat change over
time. FLORAZ has a heuristic routine to dynamically adjtstindow size and uses a
better generalization technique to integrate the knovdergracted from the examples
observed. FLORA2 has been improved first by adding new resitito better handle
noise (FLORA3) and to handle the issue of recurring conti@tORA4).

A different approach to dealing with concept drift was usethie AQ-PM [5] and
SPLICE [1] batch learning systems. AQ-PM is a partial menmgystem, [5, 6, 4]. The
system analyzes the training instances and selects“ertseme examplestivhich it
deems to lie at the extremities of concept descriptions.ISBI[1] is an off-line meta-
learning system that uses contextual clustering to deal edhcept drift that occurs as
a result of hidden changes in contexts. The learning progessmes that some con-

54

sistency exists in the data and the system groups togetheesees of instances into
intervals if the instances appear to belong to the same ptnce

3 Motivation for new approach

Algorithms developed to deal with drift implement some tyfenoving window that
acts as the system’s memory. The instances in the memonrgaggatrack and update
a target concept. As the window moves over data observedinstances are added to
the memory while the oldest instances are discarded. lossaonce forgotten cannot be
recalled. The aim is for the algorithms to adapt quickly te thanges observed in the
data while still being robust to noise or virtual drift [9].d true change is detected in the
data, the system should remove all old and irrelevant inédion from the memory and
update the concept description to keep it consistent wilil&tia observed. If the change
detected is just noise or virtual drift then the system sthawdt make any changes to
the concept description and should remove all the mislgadaia instances from the
memory. Hence tracking concept drift accurately dependb®@capacity of the system
to make the correct decision when discarding informatiomfthe system’s memory.
If the system either discards instances which are stillvate or keeps instances that
are no longer useful then its tracking will be severely g#édc

To deal with this problem most algorithms use a time-basegktting mechanism
where an instance ages over time as more new instances amwexhsThere are three
problems with this approach. The first is the assumption thatoldest instances in
the window are less relevant and hence should be the first terbeved from the
window. The second problem is that all data instances siargge window have equal
importance in the processing involved on the target conddgetse two assumptions are
not correct especially in applications where the data ¢gost@ndom noise or involves
some virtual change in the concept. For example, considecése where the data
instances observed have been consistent for a period obiimnibe last few instances
have been affected by random noise. Using a simple time Hasgelting approach,
older but noise free instances would be discarded from thmangewhile the newer
but noise affected instances would be kept which would bernect. Furthermore, as
all instances would be considered to be of equal importahee,the most recent noise
affected instances would affect the target concept defimiis changes would be made
to keep the definition consistent with the data observed.

Another major problem with most existing algorithms thatclc drift is that they
lack a mechanism for predicting and estimating future datmges. Prediction is very
important for two reasons. First, it can be used to cont@kilze of the system’s mem-
ory. Different types of change have different requirementserms of forgetting. If
the change involved is abrupt, then the size of the memorgseebe reduced by a
large margin to allow the system to adapt faster to the clardawever, if no change
is detected, then the size of the memory can be increasedote far a more accu-
rate description of the target concept. If the system hasoa gstimate of the rate of
change, then it can reduce/increase the memory size angty.dSecond, prediction
can be used as a cross-validation tool on past decisions¢ardi data and modify the
memory size. This is particularly important for the apptodescribed in this paper as

55

the instances are not removed from all windows at the same (tine larger window
keeps data instances for a longer time interval). If the ghan predicted correctly,
then subsequent data instances will provide confirmatigherform of more accurate
tracking and possibly fewer changes made to the memory Bieefollowing section
covers a number of basic definitions that are used throughethainder of the paper
and describes in detail the forgetting and prediction meisinas developed to address
the problems outlined above. The section also includes diseription of the overall
tracking algorithm. Finally, current algorithms store ywjeneralizations of the data
observed in the window and generally lack the capacity tallearecurrent concepts.
This is a signficant drawback as the system has to “re-leattirrent concept defini-
tions (but were forgotten when the concepts changed) argithtracking accuracy is
badly affected.

4 Multiple Window Approach with Relevance Based For getting
and Prediction Analysis

4.1 Preliminaries

The different types of concept drift can be defined in termtwvof factors:consistency
andpersistenceConsistencyefers to the change that occurs between consecutive in-
stances of the target concept.

Let 6, be the concept at timewheret is 0, 1, 2, 3, ..., rand lete;=6;-0;_, be the
change in the target concept from titag to t. A concept is considered to loensistent
if and only if ¢,<e., wheree, is termed theconsistency threshald.et the size of the
window which represents the system’s memoryXoeA concept is considered to be
persistentf and only if e;_,, €;—py1, ..., & < €. andp > X wherep represents the
persistence of the changihe interval length of consecutive observations over Wwitie
change is consistent). If the change observed in the tangeept is botltonsistenand
persistenthen the drift is considered to lpermanentlf the change iconsistenbut
not persistenthen the drift is considered to hértual. Finally, if the change observed
is neither consistent or persistettiten the drift is considered to bwise

4.2 TheEvidence Based Forgetting Module

To address the problems associated with the time basedtfaggapproach outlined in
section 3, a new evidence based forgetting method has beeloded. The idea behind
the approach is that an instance needs to be stored in thewiicind only if there
is evidence that justifies its presence. The evidence carm ¢ortwo forms. First, an
instance is relevant to the target concept and the rest afateobserved. Second, an
instance is a likely indicator of a change in the concept.dédhan instance has no
evidence justifying its inclusion in the system’s memosgardless of its “age”, then
it should be discarded. Each instance stored in the movimglaw is assigned three
values:an evidence value, an age value and a change indicator valli¢hree values
are updated each time a new instance is added to the windaadgehvalue ¢ge) is
derived by checking its position in the system’s memory. dlder the instance the

56

higher the age of the instance. Theidence valueef) of the instance is determined
by how well the instance matches the current target concegatrightion and the other
instances stored in the system’s memory. The better thehntlaéchigher the evidence
value. Thechange indicator value4) depends on the evidence value. In some cases
a newly observed instance may not match either the targetepbror the rest of the
instances in the system’s memory. In this case the instanflagged as a potential
indicator that a change is about to occur in the target cdreeg hence its removal
from the window will be delayed. The delay is user defined.

This type of forgetting offers several advantages. Firs,ibstances are discarded
from the memory based on how useful they are to the targeteptremd the data
observed rather than based only on their age. Second, i tiedpsystem to identify
quickly the forgetting point in the data (the instance which indicates the start of per-
manent drift in the target concept). As all instances hagkaage indicator valugthe
system only needs to find the instance that has the highast t@alfind the forgetting
point. Furthermore, the evidence values can be used to keédpndine the type of drift
in the concept. This is because the drift is reflected in the wavhich the evidence
value varies over time. Consider the following example.d.dte the concept tracked at
time ¢ and data instances stored in the memory at tilbe denoted by, I, Is,....[,,.
Also let the new instance to be added to the memory be dengtégih.

If the instanced,, ; is the start opermanent drifin the concept, then the evidence
value ev assigned to the instance will be low as the instance does atathnwell ;.
Similarly the age valuege will also be low as the instance has just been added to the
window. However, the change indicator valdewill be high making/,,., a potential
candidate for the forgetting point in the data. Because efpirsistent change in the
concept, as more data is observed, the newly observed @estavill match/,, 1, thus
incrementing both itsv and A values while the older instances seen befpre; have
their ev values decremented. Also as more new instances that miatghare added
to the window and old ones are discarded, the concept defirgtianges and becomes
a better match fof,, ., thus further incrementing itsv value. If the instancé,, ;1 is
the start ofvirtual drift in the concept or is justoise then both thewv andage values
assigned to the instance will be low (the instance is new basdot match weld;)
while the A value will be high makind,, ;1 a potential candidate for the forgetting point
in the data. However, as more data is processedcittend A values have a different
behaviour when compared to the reinforcement seen wheimdedth permanent drift
Virtual drift does haveonsistencyut lackspersistenceHence the:w and A values for
instancel,,,; are incremented only for a short interval of time. As soonhesdata
reverts back , the instandg_; will not longer match the most recently observed data.
Therefore itsev and A values will be decremented and the instance will quickly be
discarded from the window. If instandg_; is only noisethen it is unlikely to match
any of the subsequent instances since noise has neitmsistencynor persistence
Hence, both itgv and A values will be decremented as more data is processed and the
instance will be forgotten as soon as the user predefineg drfares.

57

4.3 ThePrediction AnalysisModule

To improve the tracking performance of the algorithm, a fmtih component was
added. The original competing windows algorithm (CWA) [3] which this work is
based, used an estimate of the change in the concept to Ithiitlile the target concept
0;. This approach has been modified to allow the system to prédhicfuture rate of
change;.

The rate of change prediction involves the analysis of the short term histdrhe
change observed in the target concept. If the history inelicthat the rate of change has
been consistent then the predicted rate of change is thagevef the past,. However,
if the rate of change has not been consistent, then the firedis derived based on the
short term trend of past and the difference between the predicigdnd the actuad;.
Hence, if the trend shows an increasing rate of change anttubeate is still larger
than the predicted rate, then future predicted values areased. The analysis afis
used to control the size of the system’s memory. If the actui significantly larger
than the predicted,, then the size of the current window is too large, and it néeds
reduced. This in turn is used to remove more instances witteladence value in the
window. However, if the predicted is larger, then the window size can be increased
and it may not be necessary to forget any of the instancesrtlyrin the memory.

4.4 Algorithm Description (MRL)

Overall the algorithm attempts to detect and track chang#sei target concept using a
multi-resolution approach. The algorithm uses two windawgch compete to produce
the best interpretation of the data. The reason for usindipheiwindows is that in
order to deal with all types of drift, more than one interptietn of the data is needed.
Furthermore, the use of two windows allows a more gradugkfiting as data discarded
from the smaller of the two windows is not discarded from taeyér window. The
concept tracked, as mentioned in the introduction, is spred by a combination of
instance generalizations, data predictors and the rateasfge observed when concept
was stable. Both the instance generalization and the datiigpors are in essence partial
instances that describe the common characteristics ofataeatbserved in the window.

The main body of the algorithm is shown in Figure 4.4 while toegetting and
prediction components are shown in Figures 4.4 and 4.4 cégely. The notations
used are as followd is the concept tracked at tingl°(w) is the length of the window
w, e.(w) is the rate of change in window, ¥ is the forget set.

The processing done by the algorithm is outlined belowidlyt after the average
of the data vectors in the window has been computed, the nuofilodservations over
which the change is consistent is set to 1. Then for each qubse data sample ob-
served, the system attempts to determine the rate of ch@ogle.this, the concept def-
inition for each of the two windows is updated at each s$teging the formula; (w) =
1/|w|2yﬂ0_1 x+—;. This newly derived concept definition is then used to comle
change in the window. The change is obtained by subtradiegdoncept value in the
window at timet-1 from the concept value in the window at timeélhe current change
is then compared with the consistency threshold. If thesturchange in the window is
smaller than or equal to the consistency threshgldhen the persistence value for the

58

Do-Forgetting;
) For each windoww € {S, M}:
Begin * Determine the instance relevance *|
For each timet: For each instanckin currentw
For each windoww € {S, M}: Incrementage
Increasgw|++ if not already at maximum size For each instancéin currentw
Compute the change (w) If Match(l,J)
/* Update the persistence value for the window */ Incrementev and A of |
If |e¢ (w)] > €. then Else
Reset the persistence for the windpgw) = 1 Decrementv and A of |
Update consistent change(w) = €;(w) /* Reset the forgetting point /
Else If A of | is largest observed
/* Increment persistence value for the windowy / o=I
p(w)++ /* If instance has low relevance or
Call Do-Forgetting; instance has high age
Call Do-Prediction; then add it to the forget set */
/* Resetting smaller window */ If ev andA < 0 ORage < max-age
If reset-flag = true Add | tow
Remove all instances befogein w

Store concepf, (w™) in repository
Empty ¥ for small window

/* Resetting larger window */ Fig. 2. The Forgetting Module
If p(w) = 2|w| then o
Set the next larger window size #w| Do-Prediction;
Else If reset-flag = true For each windoww € {5, M}:
Remove all instances befogein w I* Do rate of change prediction */
Store concept; (w™) in repository Check fw)++
Empty ¥ for medium window If €; consistent
[* Compute estimated concept */ predictede; = €;
If w is reset then /* If the rate of change is inconsistent
Recomputer; (w) ande; (w) compute a new estimate and
Set concepb; (w) = Z+(w) check repository for recurrent
Else concepts*/
Set conceply (w) = 0;—1 (w) + ec(w) Else
/* Return the concept from best window */ Rate-Difference Fpredictede; - ¢ |
Best windoww™ = arg max,, (w) Checke, Trend
Returnf (w™) Check-Repository
End Fori=0to %
Compute predicted,
reset-flag = true;

Fig. 1. The main algorithm.
Fig. 3. The Prediction Module

window p, is incremented by one. Else the persistence value for thdom is reset to
1.

The algorithm then proceeds to analyse the data samplesistothe window to
determine their usefulness as well as to identify possiblgfting points). Each
instance in the window is matched first against the currentept definition and then
against the other instances in the window. For each matandfatne evidence value
ev of the instance is incremented. Furthermore, if the ingasdikely to be a change
indicator, for each match tha value is also incremented. However, if a mismatch is
found then theev and A values are decremented. The instance that has the lafigest
value is considered to be the new forget pgintWhen all instances in the window have
been processed, the algorithm selects those with veryloand A values as well as
high age values and adds them to the forgetsit (

The algorithm also checks the predicted rate of change.elfréite of change is
consistenthen the predicted rate for the nexttime steps is set to the mean of the rate

59

of change observed in the past. However, if the rate of ch@&get consistent, then
the difference between the predicted and actual rate ofggh@ncomputed. Next, the
algorithm checks the repository for old concept descrgithat may match the newly
seen data. If a match is found, then the concept is reset wdhaefinition. The trend
of the change observed is analysed and used to compute a hefypsedicted values
for the nexts time steps. The reset flag is also set to indicate the sizeeofvthdow
should be reduced if the true rate of change is greater tleaprédicted rate.

Next, the algorithm deletes the instance¥iand makes changes to the window size
if required. If the reset flag is set to true then all instanaleserved before the forget
point are discarded from the window and the size of the wintboreduced. However,
the size of the larger window can also be reset as a resuleatdghsistency observed
in the smaller window. If the change in the small window isgi&ent for more than
2Sobservations, then enough consistency has been found smth window and the
medium window is reset. When the medium window is reset, #s & reduced from
M to 2S At any time instance, a concept has a description in eacheo? twindows,
and a degree of persistence for the concept in that windoavbElst concept definition
is given by the description of the largest sized window tlet longest consistency.

The algorithms requires that two parameters be set by theTise first parameter
defines the length of the history to be used when analysindrémel of the change
in the concept. The algorithm uses as default a valug d¢ér the processing which
experiments done have indicated to be sufficient to gengoate estimates. The second
parameter defines the delay used to prevent the removal @ihtes that have low
usefulness but are likely indicators of change in the condde default value for the
delay was set af but in noisy domains a shorter delay may be more effective.

5 Reaults

The algorithm was applied to two problems that involve cgnakift. The first was
the STAGGER concepts problem which is the standard bend¢husad to test concept
drift tracking algorithms. The second problem involvedititerpretation of an average
frame extracted from video surveillance.

5.1 STAGGER Scenario

The STAGGER concepts scenario is described in detail in ifid] iavolves a dataset
of 120 instances divided into 3 stages. The target conceguigeds at an interval of
40 instances. The aim is to track the concept with the highessible accuracy while
adapting to the changes observed in the data. The experimgntun 100 times and
the average accuracy of the system is shown in Figures 4e(freie data) and 5 (data
contained 20% noise). The results from using FLORA on theesdata are also shown
for comparison purposes. The reason for selecting FLORA&Gswbse it uses the most
popular form of tracking drift with a single dynamic windowdit implements heuris-
tics routines to adjust the window size based on the changfested in the data. The
results show that the algorithm presented in this papekdréite concept with high

60

accuracy and adapts very quickly to the changes in the datap@rformance of the al-
gorithm decreases as more noise is added to the data botimim détracking accuracy
and speed with which it converges to the target concept. Mexeshen compared with
FLORA, the new algorithm’s performance is better in all thoases and in particular it
adapts faster to the changes in the data.

5.2 Recurrent Concept Scenario

The second experiment used to test the algorithm invohakiing a recurrent concept.
The scenario involved a modified version of the STAGGER cphpeoblem. In this
case we added a fourth stage of 40 instances. The conceptHeofirst 40 instances
was repeated in the third stage of the experiment. The cofficep the second stage
was repeated in the fourth stage of the experiment. The ssieeas measured by how
well the system handled the repeated concept. The expdrimanrun 100 times and
the average accuracy of the system is shown in Figures 6g(ffreie data) and 7 (data
contained 20% noise). The results show that the systemediagnificantly faster to
the target concept when the concept was repeated. FLOR#dshle to recognise past
concepts but its accuracy is slightly lower due to its rel@on instance based concept
generalizations.

5.3 Background Frame Problem

The third experiment involved tracking changes in the ayerf@aame computed from
video surveillance. A simple way to detect motion in sutegite is to analyse the
differences between a preset video frame and the framegett&rom the live sur-
veillance. The problem is that in many cases, gradual clsimgthe background due
to changes in the environment conditions (such as faulthifigsneon-lights) are in-
terpreted as actual motion which results in a large numbé&leé alarms. The dataset
used for this problem contained 300 video frames from amstaty camera as shown in
Figure 8. The lighting conditions change four times over3B8 frames. The aim for
this problem was to track the changes in the average framecasadely as possible.
The results are shown in Figure 9. The plot shows the trueegin@lue over the 300
instances as well the concept value derived by the drifkingcalgorithm. Overall, the
accuracy of the algorithm is very good and there is littleagidbefore the concept is
adapted to the changes in the data.

6 Conclusions

This paper describes a multiple window algorithm that carabievidence based for-
getting and prediction analysis to track concept drift. Wark presented makes two
novel contributions: it introduces a new mechanism for éttigg and it uses a pre-
diction method to control the size of the windows and thuevalh more pro-active
interpretation of the data. The algorithm was tested usirgdatasets: the STAGGER
concepts problem and a background frame tracking probléerdsults obtained show
that the algorithm adapts very quickly to changes in the dathtracks drift with very
good accuracy.

61

120 T T T TeMRL"
"MRL" —— MRL" ——
"FLORA" FLORA"
100 =
£ 8o : +
8
£
§ 60 g 4
g
%
g a0 B
5
20 - 20
o 1y L I | | |
o 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160

Training Instances Processed Training Instances Processed

Fig.4. Classification results of data withouFig.6. Classification results of data without

EE
20 j j WRLY —— "R ——
"FLORA" “FLORA"

100 4 100F
7 3
o 3 2 I L - -
£ 8o . 4 £ 8
8 . g
< . <
< : <
S 60 - 1 S 60
g a0 T g
o o

201 4 2

o 0 L L I . |
o 20 40 60 80 100 120 0 2 60 8 | 10 2 10 160

Training Instances Processed Training Instances Processed

Fig.5. Classification results of data with 20%ig. 7. Classification results of data with 20%
noise. noise.
~ - ‘\“E‘ﬁ-.mln
.

T v
“True_Concept Value*——
"MRL_Concept Value"

Luminance Intensity Concept Value

L L L L L
0 50 100 150 200 250
Video Frame Number

Fig. 9. Classification results for background

Fig. 8. Surveillance Image. frame problem.

References

1. M. Harries and K. Horn. Learning stable concepts in a changing wdrégtture Notes in
Computer Science 359:106-122, 1998.

2. M. Kubatand G. Widmer. Adapting to drift in continuous domalrecture Notes in Computer
Science912:307-312, 1995.

3. Mihai Lazarescu, Svetha Venkatesh, and Hai Hung Bui. Using multipldows to track
concept drift.Intelligent Data Analysis8(1), 2004.

4. M. Maloof and R. Michalski. Selecting examples for partial memoryniegr. Machine
Learning 41:27-52, 2000.

5. M.A. Maloof. Progressive partial memory learninghD thesis, School of Information Tech-
nology and Engineering, George Mason University, Fairfax, VA,6199

6. M.A. Maloof and R.S. Michalski. AQ-PM: A system for partial memdegrning. InPro-
ceedings of the Eighth Workshop on Intelligent Information Systpages 70-79, Warsaw,
Poland, 1999. Polish Academy of Sciences.

62

7. J. Schlimmer and R. Granger. Beyond incremental processiagkifig concept drift. In
Proceedings of AAAI'8@ages 502-507. AAAI Press, 1986.

8. Gerhard Widmer. Combining robustness and flexibility in learning driftimgcepts. IfEu-
ropean Conference on Artificial Intelligengeages 468—472, 1994.

9. Gerhard Widmer and Miroslav Kubat. Effective learning in dynamidrenments by ex-
plicit context tracking. InMachine Learning: ECML-93, European Conference on Machine
Learning, Proceedingsolume 667, pages 227-243. Springer-Verlag, 1993.

