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Abstract. A semiformal development method for obtaining a correct design of 
embedded control and real-time systems is presented. The design is obtained 
from a Colored Petri Net (CPN) model of a real-time system, which is 
subsequently transformed into a formal system specification using CSP+T 
process algebra. The method translates CPN modelling entities into abstract 
processes, which allow the expression of concurrency and real-time constraints. 
The correct design of a “key“ component (feed belt controller) of a 
paradigmatic manufacturing problem (the Production Cell) is discussed as to 
show the applicability of our method. 

1   Introduction 

We present here an approach for modeling and validating embedded control and real-
time systems (ECRTS) at the design stage of the software development cycle. Our 
aim is to perform the validation of timing constraints by formal tools based on a timed 
Process Algebra, instead of having to wait for the target system to be coded. 

Currently, the timing and dependability requirement analysis of ECRTS is carried 
out after completely developing a system prototype. The prototype is usually 
discarded, particularly first prototypes, and a revision of system specification and 
detailed design phases of the life cycle result, therefore the development cost 
increases and the delivery date of the final system becomes delayed.  

There is nowadays a significant research aimed at using Colored Petri Nets (CPN) 
[1] for modeling the behavior of discrete reactive systems, to which ECRTS belong. 
In this respect, it is worth mentioning, among many of the current proposals, the work 
presented in [2] to model the dynamic of message passing between software 
components in a distributed manufacturing system, or the one discussed in [3] to 
provide systematic guidelines for using Colored Timed Petri Nets (CTPN) as a 
modeling language for soft real-time systems. Another interesting proposal for using 
CPN segments to model the dynamic behavior of concurrent software architectures 
can be found in [4]. The application of CPN and CTPN has been mainly aimed at 
modeling dynamic, discrete event driven systems, possessing soft timing constraints. 
On the other part, there are many proposals to obtain a formal specification of ECRTS 
by using process algebras [5-7]. In regarding formal specification and probably 
correct development of reactive systems, some of the currently most significant work 
has been carried out by the authors of [8], who propose to generate a formal 
specification from an UML model of the system under development, complemented 
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with trace assertions in a CSP-like notation called CSPjassda[9]. Differently and yet 
complementing the above described methods, we propose a systematic development 
method aimed to set the stage for generation of first correct prototypes of ECRTS 
from an initial CPN model. By using a CPN model, a description of the system 
dynamic behavior can be obtained from an architectural point of view. The model is 
subsequently transformed into a detailed system design by using the CSP+T process 
algebra notation and coded using the Java programming language. CSP+T process 
terms are used here to model real-time processes including the specification of their 
timing requirements in order to carry out a further validation by deploying different 
industry oriented tools, e.g., 20-SIM [10]; THESIS [11], or FDR [12]. These tools 
may complementarily be used to check different sort of properties and to simulate the 
execution of the target system as well.  

The remainder of the paper is structured as follows. We first give some background 
on CPN modeling and CSP+T process algebra, which are necessary to understand the 
formal notations on which the system development technique is based. Then, the 
proposed method is applied to solve a design problem of an industry case study, the 
production cell‘s feed belt control component. The case study shows how the 
proposed method can be applied to derive a manufacturing industry system, which 
also contains real-time timing constraints. Finally, the conclusions and the ongoing 
lines of work are presented. 

2   Modelling Methods 

2.1   System Specification with CPN 

A CPN allows us to describe complex systems by compact and executable models; an 
example of a CPN model chart can be seen in figure 4. The states of the system are 
modeled by places, which are drawn as circles or ellipses. The actions of a CPN 
model are represented by means of transitions, which are drawn as rectangles. A 
marking is understood as a state of the model CPN and consists of a distribution of 
tokens on the places. There is a distinguished marking, called the initial marking, 
which is used to describe the initial state of the system. The initial marking of any 
place is written on the upper right or left corner of the place. Compared to Petri Nets 
(PN), the CPN formalism provides the possibility of having different types of tokens 
associated to the places of the net. Each one of the colored tokens can transport 
information whose type and purpose is interpreted depending on the transitions that 
occur at a given instant of the CPN model execution. The model execution consists of 
a series of occurrences of enabled transitions. The occurrence of the transition t 
removes tokens from the input places (which are given by the input function I(t)), and 
adds tokens to the output places (which are given by the input function O(t)), thereby 
changing the state (the marking) of the CNP model. The number of tokens of each 
type added or removed is given by the evaluation of arc expressions, which are 
Standard ML (SML) expressions. An assignment of data values to the free variables 
occurring in the arc expressions is called a binding. Transitions may occur in different 
modes depending on the possible bindings affecting the expressions associated to 
their surrounding arcs. There is also the possibility to attach a predicate, called a 

40



guard, which is written within square brackets in the chart, to each transition, so that 
only bindings that evaluate the guard to true are accepted when the transition occurs.       

It can be proved that a CPN model with color domains of finite cardinality has the 
same descriptive power for modeling information systems as the PN formalism, since 
it is always possible to build an equivalent PN model of a given CPN by using the 
“unfolding algorithm”. Nevertheless, PN models are usually (except for systems with 
very few states) huge and difficult to understand and simulate compared with the CPN 
ones. The improved compactness and readability of CPN w.r.t. PN is not the only 
amendment, but they also have the capability of parameterization of the constructed 
models that results quite convenient in the design and analysis stages of software 
systems development.  

 

Fig. 1. Production Cell context diagram 

2.2   Drawbacks of CPN as a Specification Notation for Real-time Systems 

CPN and CTPN lack of specific constructs to fully describe the behavior of hard real-
time systems. Our approach is, by adapting some of its undoubtedly useful modeling 
elements, to use these standard notations mainly to specify the behavioral parts of the 
system and, by using another compatible format notation, to provide additional 
specification of real-time properties that might not be directly addressed by the CPN 
model. In this respect, it can be shown that CSP+T process algebra formalizes the 
semantics of a substantial subset of CPN by using a set of rules similar to the one 
defined in [6]. 

2.3   Real-Time System Specification with CSP+T 

The group of CSP derivatives to describe time intervals includes Timed CSP [7] and 
CSP+T [5], the latter being a simpler approach. Providing less descriptive power, 
although still powerful enough to formally describe a set of primitive processes with 
time constrained behavior, CSP+T is an adequate formal specification language for 
the majority of real-time systems. 

The syntax of CSP+T, adapted to our method, which is detailed in [6]: 
Every process P defines its own set of communication symbols, named 

communication alphabet α(P).  
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The communication interface comm_act(P) of a given process P contains all the 
CSP-like communications ({?, !}) in which P can engage and the alphabet α(P). 

An operator,  (star) denotes process instantiation. Given P', the timed version of 
P, which is instantiated at time 1, the specification of P' becomes 

P'= 1. →s.a→STOP, where s∈[1,∞)  
An event operator >< to be used jointly with a variable to record the time instant at 

which the event occurs, ev>< v means that the time at which ev is observed is in v. 
P= 1. →a>< var→STOP  

for each process execution, the time at which a occurred will always be var ≥ 1. 
Each event is associated with a time interval, called the event-enabling interval.  

P= 0. →[1,2] a >< v→ STOP  

The value of the marker variable v will satisfy the inequality 1≤ v ≤ 2.  
If the preceding event occurs at time t0 , then rel(x, v)= [x+v-t0, v-t0 ], since the 

times for events are absolute and for intervals are relative to the preceding event.  
P = ... E.P’ .    E = {s  | s = rel(x, v)}  

2.4   Generation of a System Specification from CPN 

To derive a detailed system specification in CSP+T from a CPN one, we will adopt a 
bottom-up process that consists of the following steps: 
1. Identify the main actions that cause a change in the control state of the system, then 

define what are the multistates in which the system enters during its execution, as 
well as their synchronization restrictions and time constraints.  

2. Start by representing the reactive behavior of the lower level subsystems of the 
system under development as CPN models. Lower level actions, which are related 
between them and modify the state of the controller and/or its environment, must 
be grouped within transition instances, according to the CPN formal notation. For 
instance, several atomic actions the controller performs can be defined as edges 
outing the same transition towards distinct places or the same places but carrying 
tokens of different color. Modifications of relevant condition values to the state of 
the controller can be modeled by assigning predicates to transitions or by modeling 
elaborate data types associated to the color domain of places and transitions in the 
CPN.  

3. Add simulated blocks to represent external devices or continuous components. 
4. Break down each CPN previously built into CSP+T syntactic terms. Each 

transition on the CPN can provide several atomic actions and/or communications 
when it is translated into process terms. As a general rule, safe subnets of a CPN 
should be represented as a single CSP+T process, being their places translated into 
named terms according to the CSP+T syntax rules. The subprocesses should be 
compounded by the parallel CSP operator. The change of value of predicates, the 
modifications of the number or type of tokens situated in a given place are modeled 
by CSP communications.  

5. Once a CSP+T model has been obtained for every CPN model in which the target 
system specification was initially structured, a unique CSP+T process will be 
defined to model the complete system. If an scheme has to be included into one of 
a higher level, then logically connected subprocess terms must be gathered into 
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more abstract ones by using the hiding and parallel operators, thus progressively 
integrating the CSP+T model of the system in an ascending way. 

6. The iterative process finishes when a unique process whose communication 
interface satisfies the initial abstract specification, e.g., which was usually 
described at the requirements specification stage by the user, and informally 
defined by a System Context Diagram or an English specification document. 

 

Fig. 2. Development levels 

To carry out an execution of a complete specification in CSP+T of the target system 
by a simulation tool, additional blocks must be added to the final model. These blocks 
represent the external entities of the system and must be modeled according to the 
specific physical devices (actuator or sensor) that supply signals (data or event) 
to/from the system.  

3   Production Cell Feed Belt Control Subsystem: a Case Study 

The production cell is a well-known realistic manufacturing industry oriented 
problem [13], where safety requirements regarding the fulfillment of timing-
constraints by the different concurrent movements of the cell components (robot 
arms, conveyor belts, press, etc.) are of paramount importance in order to have a 
useful design of the target system. The proposed configuration of the production cell 
is a closed loop feedback control system composed of three robot arms, two conveyor 
belts and a press (figure 3 (a)); the blanks are circularly conveyed through both belts 
by following a continuous loop, so that the system can indefinitely function without 
intervention of the operator. The step-by-step system functioning is as follows: after a 
metal blank is placed on the feed belt, it is moved towards the other end of the belt, 
the first robot arm takes the blank when it reaches the end and places it on the press, 
the press forges the metal blank (actually, the press simulates this action) and opens 
again, forged metal plates are taken out of the press and put on a deposit belt by a 
second robot arm, and, finally, a third robot arm picks the blank up and puts it again 
on the feed belt to close the circular path that the blanks follow. A physical simulation 
of the proposed system was performed using a scaled-down industry model built from 
“construction kits” of Fischertechnik© (figure 3 (b)). This allows us to have a fully 
functional model that mimics the operations of the system.  

In this paper only a description of the detailed specification, design and 
implementation of the subsystem feed belt control of the production cell is presented, 
since the design of the entire system is too big to be discussed in a comprehensible 
way within the pages of a paper. To carry out the movement of objects from one place 
of the industrial plant that holds the production cell to another one, the feed belt 
device contains two sensors and one actuator. The actuator is a DC motor that moves 
the conveyor belt towards a pre-selected direction, i.e., to the right if the deposit belt 
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moves, or to the left if the feed belt does so. The two sensors are lightbarriers or 
photosensors placed at the beginning (L1) and at the end (L2) of the conveyor belt. 
The actuator and sensors of the feed belt device are driven by an embedded 
microcontroller, which sends the states of the sensors and receives software 
commands from the main system through a serial communication line. 

 

Robot 1

Robot 2

Robot 3

Deposit Belt

Feed Belt

Press

 
 

 

Fig. 3. The Production Cell: (a) proposed configuration, (b) view of the physic model 

3.1   System Specification as a CPN Model 

To formally specify the Feed Belt Control (FBC), a CPN model according to our 
methodology is shown below. The objective of this control process is to ensure that 
the feed belt can reach safety positions for blanks regarding the concurrent 
movements of the robot arms, which could collide with the conveyed blanks on the 
belts if no control of their movements is defined, i.e., one blank cannot be moved until 
the robot retracts the arm after having dropped it on the belt. Obviously, process 
design must guarantee that the behavior of an implemented process satisfies the 
specification of the production cell. The CPN describing the time-dependent 
behaviour of the belt control can be seen in figure 4. The sequence of states and 
transition between states represented by the CPN are summarized as follows: 
− the initial marking represents the starting state of the different devices to which the 

feed belt has to interact during FBC process execution, sensors (places L1, L2) and 
actuators (motor commands yielded by firing T3 and T4) are tested while the 
control is in this state; 

− the belt control waits in place A for the arrival of a blank, which is dropped on one 
of its two ends by the robot 3 arm;  

− robot 3 arm drops the object on the belt (T2) and pulls back its arm in a safe way 
(while the model control is marking place C); 

− the motor starts moving the object towards the lightbarrier L2 (T3); 
− once the blank reaches L2, the feed belt motor is commanded to stop (T4); 
− the controller waits for robot 1 picks up the blank (while the model control is 

marking place E); 
− finally, the control returns to its initial state (T5). 

A specification of the Feed Belt Control in terms of CSP+T is next obtained by 
applying a similar set of rules presented as the one in [6]. One CSP+T syntactic term 
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must be specified for each place and its outing transition in figure 4. In the 
WaitingBlank specification, the “Begin_Feed_Belt _Full_true >< tBeginFeedBelt” 
CSP+T construct is used to represent a transition going to the next state, which 
includes the activation condition Begin_Feed_Belt_Full_true, known as marker event, 
and the variable tBeginFeedBelt used to record the time instant at which the marked 
event occurs. Regarding the specification of enabling intervals, the enabling interval 
I(DtakingoutRob3, t_beginfeed) on the output transition of the TakingOut state 
represents the delay interval, named DTO in figure 4, needed to pull back the robot 3 
arm before the motor starts moving the blank towards the end of the belt. 

 
Fig. 4. Feed Belt Control CPN Specification. 

3.2   System Specification in CSP+T 

The processes BeginContinuousProcess and EndContinuousProcess that appears 
included in the specification are extra intermediate processes introduced to model in 
CSP+T the continuous flows BeginBarrierFeedBelt and EndBarrierFeedBelt. 

Feed_Belt_Movement =  start_time. →start; InitFeedBelt 
InitFeedBelt= EndBarrierFeedBelt_Ready !false 
         →BeginBarrierFeedBelt_Ready!true → Waiting_Blank 
Waiting_Blank = (CheckBeginBarrier → BeginFeedBelt ? x   
   →if(x=BeginFeedBelt_Full) then BeginFeedBelt_Full_true; 
   Waiting_Blank  

  | BeginFeedBelt_Full_true ><t_BeginFeedBelt;  
     BeginFeedBelt →BeginFeedBelt_Time!t_BeginFeedBelt; 
     WaitingBlank?resume()) 

TakingOut_Rob3=BlankRob3_Empty →  
    BeginFeedBelt_Time? t_BeginFeedBelt → I(DtakingOutRob3, 
      t_BeginFeedBelt); EndBarrierFeedBelt_Ready!true →  
      BeginBarrierFeedBelt_Ready!false→  
     →Sync?EndFeedBeltCleraded();MoveBelt!left; 
      MovingFeedBelt)                                    
MovingFeedBelt= (CheckEndBarrier → EndFeedBelt ? x  
    → if(x=EndFeedBelt_Full) then EndFeedBelt_Full_true end; 
    MovingFeedBelt  
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|   EndFeedBelt_Full_true → MoveBelt!stop; 
    BeginBarrierFeedBelt_Ready!true  → TakingOut_Rob3) 
Unloading_Blank= (CheckEndBarrier → EndFeedBelt ? x →  
    if (x=EndFeedBelt_Empty) then EndFeedBelt_Full_false; 
    Unloading_Blank  
| EndFeedBelt_Full_false → EndBarrierFeedBelt_Ready !false → 
    EndFeedBelt; WaitingBlank!resume(); 

      Sync!EndFeedBeltCleraded();UnloadingBlank)                  
 
The Feed Belt Control (FBC) must be obtained by the parallel composition of its 

component subprocesses without any additional re-structuring of the specification. All 
the internal events must be hidden using the hiding operator \, so that the 
communication interface of FBC coincides with the flows in figure 1 (b). The FBC 
process is modelled by: 

FBC = Feed_Belt_Movement\{start}||InitFeedBelt||WaitingBlank\ 
{BeginFeedBelt_Full_True, BeginFeedBelt_Time}|| 
TakingOut_Rob3\{BeginFeedBelttime}|| 
Moving_Feed_Belt\{EndFeedBelt_Full_true }|| 
Unloading_Blank\{EnFeedBelt_Full_false, 
Waiting_blank!resume(), WaitingBalnk?resume(), 
Sync!EndFeedBeltCleraded(),Sync?EndFeedBeltCleraded()} 

so the communication interface of the FBC is: 
Interface (FBC) = {EndBarrierFeedBeltReady!false,   
         BeginBarrierFeedBelt_Ready!true, 
         BeginBarrierFeedBelt_Ready!false, CheckBeginBarrier, 
         CheckEndBarrier, BeginFeedBelt?x,BeginFeedBelt, 
         BlankRob3?empty, EndFeedBelt?x, MoveBelt!stop, 
         EndFeedBelt,} 

3.3   CSP Process Architecture Diagram 

In order to obtain an executable implementation of the CSP+T terms specification we 
use the library of Java classes JCSP[14], which is a correct implementation of the 
CSP distributed parallel programming model [7]. The complexity of the specification 
of a set of concurrent communicating processes can be handled by using the JCSP 
library, which implements the CSP programming primitives at the level of 
applications programmed in the Java programming language. 

Each JCSP process is encapsulated in an independent active class derived from 
CSProcess Java interface that overrides the functionality of the method run() and 
defines, as the parameters of the constructor method, input and output channels used 
by the process to communicate with other processes. In order to facilitate the 
modeling of the JCSP processes from a given system specification in terms of 
CSP+T, a software graphical tool has been implemented in pure Java, so that the 
translation of CSP+T processes, mainly when there are multiple levels of nested 
processes, becomes easier and less error prone. With this application, we begin 
modeling in a graphical way the high layer of CSP+T processes that represents the 
production cell and the processes necessary for handling the communications with 
each interacting device; the model obtained after the accomplishment of this action 
corresponds to the stage given by the initial system context diagram (SCD) shown in 
figure1, but it gives a more complete and precise information, including an 
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architectural view, of the system. Then, the channels that constitute the 
communication interface of a process can be defined and connected with other 
processes to obtain a net of processes. Once all the processes are designed, according 
to the previous system specification in CSP+T, the behavior of each process is 
implemented directly in Java. An execution of the built model of the entire system can 
be performed within the framework of the proposed software tool, or the code 
generated by compiling the classes that represents the JCSP processes of the system 
can be downloaded and run into an embedded microcontroller. 

 

Fig. 5. CSP+T Architecture Diagram of the Feed Belt Control Process 

To implement the Feed Belt Control Subsystem of the production cell and, 
therefore, to execute it, other processes apart from the FBC process must be designed. 
We need to specify additional processes, as these to drive the communication to each 
external device (which appear as terminators in the SCD), or intermediate CSP+T 
processes to represent necessary control interactions not included yet. A reduced 
implementation of the Feed Belt Control Subsystem is carried out by only adding a 
SerialBelt process to hide the serial communication to the controller that handles the 
actuators and sensors of the device as can be seen in figure 5. Therefore, the design of 
the CSP+T architecture obtained with the proposed software tool must be seen as a 
more abstract, configurationally oriented, structure of the CSP+T processes or JCSP 
processes that constitute the system under development. 

4   Conclusions and Future Work 

We have presented a development method for obtaining a correct design of embedded 
control and real-time systems (ECRTS) from a high level CPN model aimed at 
describing their dynamic behavior. The drawbacks that presents the CPN notation 
when applied to real-time modeling has been overcome by transforming the initial 
CPN model into an equational specification made up of syntactic terms in CSP+T 
process algebra, so that hard timing constraints on the execution of a target system 
under development can be reflected in this formal specification. As to show the 
applicability of the method, the detailed design of a key component of a paradigmatic 
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manufacturing example has been discussed. Our future plans are twofolded, firstly, 
starting from their CSP+T specification, to generate Java code for ECRTS in several 
computing platforms; secondly, to automate the generation of CSP+T specifications 
from CPN models.  

Acknowledgement 

This work is funded by the research project MAT2004-06872-C03-03. 

References 

1. JENSEN, K. Colored Petri Nets: Basic Concepts, Analysis Methods and Practical Use. 
Monographs in Theoretical Computer Science. Springer, 1992. 

2. LIN, E.Y., ZHOU, C.: Modeling and Analysis of Message Passing in Distributed 
Manufacturing Systems. IEEE Transactions on Systems, Man and Cybernetics, Part C: 
Applications and Reviews, 29,2, 1999, pp.250-262. 

3. CHOPPY, C., PETRUCCI, L.: Towards a Methodology for Modeling with Petri Nets. 
Proceedings on Practical Use of Colored Petri Nets, Aarhus, Denmark, 2004, pp.39-56. 

4. PETTIT, R.G., GOMAA, H.: Validation of Dynamic Behaviour in UML Using Coloured 
Petri Nets. UML 2000 Dynamic Behavior Workshop, England, 2000. 

5. ŽIC, J.J.: Time-Constrained Buffer Specifications in CSP+T and Timed CSP. ACM 
TOPLAS, 16, 1994, 6, pp.1661-1674. 

6. CAPEL, M.I., HOLGADO, J.A.: Transforming SA/RT Graphical Specification into the 
CSP+T Formalism: Obtaining a Formal Specification from Semi-formal SA/RT Essential 
Models. Proceedings of ICEIS 2005 (to appear), Miami, USA, May 24-26, 2005, 8 pages. 

7. HOARE, C.A.R.: Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs 
(N.J.), 1985 

8. MOELLER, M., OLDEROG, E.R., RASCH, H., WEHRHEIM, H. Linking CSP-OZ with 
UML and Java: A Case Study. In IFM’2004. LNCS 2999, Springer-Verlag, 2004, pp.267-
286. 

9. MOELLER, M.: Specifying and Checking Java using CSP. In FTfJP’2002: Workshop on 
Formal Techniques for Java-like Programs. Computing Science Department, U. of 
Nijmegen, 2002, Technical Report NIII-R0204 

10. BROENINK, J.F.: Modeling, Simulation and Analysis with 20-SIM. Journal A of the 
special issue on CASD, 1997, pp.22-25. 

11. WIJBRANS, K.C.J., VAN AMERONGEN, J., BAKKERS, W.P., BROENINK, J.F.: 
Tweente Hierarchical Embedded Systems Implementation by Simulation (THESIS): A 
Structured Approach to Controller Realisation on Transputers. Journal A, 34, 1, 1993, pp. 
51-59. 

12. FDR. Formal Systems (http://www.fsel.com)  
13. LEWERENTZ, C., LINDNER, T: Formal Development of Reactive Systems: Case Study 

Production Cell. LNCS 891, Springer-Verlag, January 1995. 
14. WELCH, P.: Process Oriented Design for Java: Concurrency for All. In: Parallel and 

Distributed Processing Techniques and Applications,  PDPTA 2001, Las Vegas, Nevada, 
USA, 2001. 

48


